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The solvability of nonlinear equations has awakened great interest among mathemati-
cians for a number of centuries, perhaps as early as the Babylonian culture (3000–300
B.C.E.). However, we intend to bring to our attention that some of the problems stud-
ied nowadays appear to be amazingly related to the time of Bolzano’s era (1781–1848).
Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what
is known today as the intermediate value theorem, a result that is intimately related to
various classical theorems that will be discussed throughout this work.

1. Introduction

The main motivation of this paper is to establish a close connection between a classi-
cal theorem from real analysis (discovered over two centuries ago) and recent works in
monotone operator theory for reflexive Banach spaces. Throughout this presentation, we
give a brief description of how the original problem has evolved in time, passing through
various generalizations obtained in the last thirty years. However, the main purpose of
this paper is to generalize Theorem 1 of Minty [17], where the convexity condition on
the domain of the operator is no longer required. We also obtain a new result on mono-
tone operators perturbed by compact mappings.

The study of existence of solutions for nonlinear functional equations involvingmono-
tone operators has been extensively discussed for forty years or so. Concerning the study
of existence of zeros under the boundary condition (2.3), we find, amongmany contribu-
tions, the work of Vaı̆nberg and Kačurovskiı̆ [27], Minty [16, 17], Browder [4, 5, 6], and
Shinbrot [25]. For related work, we also mention Brézis et al. [3], Kačurovskiı̆ [11], Leray
and Lions [15], and Rockafellar [24]. However, the connection between Bolzano’s bound-
ary condition and this most recent condition (2.3) (known by the early 1950s) has not been
explicitly observed. Therefore, our main interest is to identify some of the work done in
the contour of this condition (2.3) that was, perhaps, first observed by this mathematician
of the 19th century.
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We begin with a result for the Euclidean finite-dimensional space Rn, where the sym-
bol 〈·,·〉 represents the corresponding Euclidean inner product. We continue using the
same symbol, although the space of definition will change, passing through Hilbert
spaces to end with reflexive Banach spaces. Since, indeed, most of the results will be given
for this latter class of spaces, wemay assume that both the reflexive Banach spaceX and its
dual X∗ are locally uniformly convex after renorming [26]. This very fact implies that the
duality mapping J is single valued and strictly monotone. In addition, we will present the
main results for demicontinuous operators (i.e., continuous mappings from the strong
topology into the weak topology). We now state this classical well-known result which, in
fact, has been the inspiration of this paper.

Bolzano’s theorem (1817, [8]). Let f : [−r,r]→R be a continuous function, satisfying
the following boundary condition:

x · f (x)≥ 0, for |x| = r. (1.1)

Then there exists at least one solution x0 ∈ [−r,r] of the equation
f (x)= 0. (1.2)

2. Historical background

In 1884, Poincaré [22] has observed that the aforementioned theorem can indeed be ex-
tended to a higher finite dimension, where Bolzano’s boundary condition is formulated
as f (−r)≤ 0 and f (r)≥ 0. Today, such a result is known as Poincaré-Miranda theorem
[23]. Nevertheless, it is our purpose to explore generalizations of Bolzano’s theorem as
well, but under a different boundary condition (see (2.3)) which appears to be unrelated
to the one used by Miranda [18] and Poincaré [23], except for the one-dimensional case.
Indeed, the Poincaré-Miranda theorem can be stated as follows.

Proposition 2.1. Let C be an n-dimensional cube and let f : C → Rn be a continuous
mapping satisfying the following condition:

fi(x)≤ 0, fi(y)≥ 0, for i= 1, . . . ,n, (2.1)

whenever x and y are in opposite faces of the cube C and f = ( f1, . . . , fn). Then (1.2) has at
least one solution in C.

As can be seen, the boundary condition (2.1) used by Poincaré andMiranda appears to
be unrelated to condition (2.3). In fact, condition (2.1) is restricted to n-dimensional rect-
angles, while condition (2.3) may be imposed on more general domains. Consequently,
we initiate our journey with an extension to finite dimension, a result that can be derived
from Brouwer-Bohl theorem [2, 9]. In what follows, we will use B(a;r) to denote the open
ball centered at a with radius r, while ∂A will denote the boundary of the set A.

Proposition 2.2. Let f : B(0;r)⊂Rn→Rn be a continuous mapping satisfying the follow-
ing condition:

〈
f (x),x

〉
> 0, for x ∈ ∂B(0;r). (2.2)
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Then B(0;η) ⊂ f (B(0;r)) for some η > 0. In particular, (1.2) has at least one solution in
B(0;r).

The proof of Proposition 2.2 can be found in Morales [20]. Now, as a consequence of
this proposition, we obtain the first extension of Bolzano’s theorem.

Theorem 2.3. Let f : B(0;r)→Rn be a continuous mapping satisfying the following condi-
tion:

〈
f (x),x

〉≥ 0, for x ∈ ∂B(0;r). (2.3)

Then the equation f (x)= 0 has at least one solution in B(0;r).

A second extension of Bolzano’s theorem will involve infinite-dimensional spaces. We
begin with Hilbert spaces where the operator is defined for a more general class of do-
mains. Perhaps a result of Altman [1], stated for weakly continuous mappings on separa-
ble Hilbert spaces, appears to be one of the earliest results of this type under the above-
mentioned condition (2.3). According to the author, the proof of the latter result is based
on a combinatorial topology argument concerning the notion of degree theory. To the
contrary, a rather elementary proof of our next result can be found in [20].

Theorem 2.4. LetH be a real Hilbert space and let D be a bounded open and convex subset
of H with 0∈D. Suppose A :D→H is a mapping satisfying the following conditions:

(i) I −A is a compact operator;
(ii) 〈A(x),x〉 ≥ 0 for x ∈ ∂D.

Then the equation A(x)= 0 has at least one solution in D.

However, Theorem 2.4 can be extended to compact operators defined on nonconvex
domain for general Banach spaces, under the Leray-Schauder condition (see (2.4)) which
is weaker than the corresponding condition (ii) of Theorem 2.4.

Theorem 2.5. LetX be a Banach space and letD be a bounded open subset of X with 0∈D.
Suppose T :D→ X is a compact mapping satisfying

T(x) 	= λx, for x ∈ ∂D, λ > 1. (2.4)

Then T has a fixed point in D.

An interesting question is whether we can remove the compactness on the operator
I −A of Theorem 2.4 and perhaps replace it with a different type of condition. Indeed,
for the past forty years, monotonicity conditions have captured a great deal of interest
to solve problems of this nature. In fact, by 1960, Kačurovskiı̆ [10] observed that the
gradient of a convex function was a monotone operator. Later, Minty [16] formulated
the notion of monotone operators in Hilbert spaces. For an extensive recollection on
monotone operators, see Kačurovskiı̆ [12] and Zeidler [28]. A mapping A : D ⊂H →H
is said to bemonotone if

〈
A(x)−A(y),x− y

〉≥ 0. (2.5)
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A is said to be strongly monotone if there exists a constant c > 0 such that

〈
A(x)−A(y),x− y

〉≥ c‖x− y‖2. (2.6)

Notice that if we apply the Cauchy-Schwarz inequality to (2.6), we get

c‖x− y‖ ≤ ∥∥A(x)−A(y)
∥
∥, (2.7)

which means that A is expansive, and therefore has an inverse that happens to be Lips-
chitz. We state our first result for monotone operators in Hilbert spaces, which is a conse-
quence of a theorem of Minty [16]. A rather elementary proof of this fact may be found
in [20].

Theorem 2.6. Let H be a (real) Hilbert space and let A : B(0;r)→ H be a continuous
monotone operator. Suppose

〈Ax,x〉 ≥ 0, for x ∈ ∂B(0;r). (2.8)

Then the equation Ax = 0 has a solution in B(0;r).

Now, we ask ourselves whether we can extend Theorem 2.6 beyond Hilbert spaces. To
answer this question, we need to find a proper interpretation of the boundary condition
(2.3). However, continuous linear functionals appear to be the right tool for such an
interpretation, since every vector in an arbitrary Hilbert space can be uniquely identified
with a continuous functional. Therefore, if an operator A with domain D(A) takes values
in the corresponding dual space X∗ of X (with D(A)⊂ X), we may state the following: a
mapping A :D(A)⊂ X → X∗ is said to bemonotone if

〈
A(x)−A(y),x− y

〉≥ 0, for x, y ∈D(A), (2.9)

where the pairing 〈·,·〉 denotes the action of a functional on an element of X . If (2.9)
holds locally, that is, if each z ∈D(A) has a neighborhood U such that the restriction of
A to U is a monotone mapping, then A is said to be a locally monotone mapping. On
the other hand, if we still wish to have the operator A mapping its domain D(A) into
the space X itself, then condition (2.9) requires a different interpretation, which leads to
an entire new class of operators. These are known as accretive operators. In fact, by 1967,
Browder [7] and Kato [14] introduced, independently, this new family ofmappings which
has been extensively studied in recent years.

3. Recent results

We begin with an extension of Theorem 2.6 to reflexive Banach spaces, which was orig-
inally stated by Minty [17]. In this case, Theorem 3.3 gives a sharper conclusion in the
sense of assuring that the solution belongs to a nonconvex domain. We first prove a re-
strictive case of the theorem, which is vital for the proof of this result. In addition, we
improve Theorem 4 of Morales [20].
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Proposition 3.1. Let X be a reflexive (real) Banach space and let D be a bounded open
subset of X such that 0 ∈ D. Suppose A : D→ X∗ is a demicontinuous monotone operator
satisfying

〈Ax,x〉 > 0, for x ∈ ∂D. (3.1)

Then the equation Ax = 0 has a solution in D.

Proof. We first show that there exists z ∈ co(D) such that

〈
Ax,x− z

〉≥ 0, for x ∈D. (3.2)

To this end, define C(x)= {y ∈ co(D) : 〈Ax,x− y〉 ≥ 0}. This means inequality (3.2) has
a solution if ∩{C(x) : x ∈D} 	= φ. Since co(D) is weakly compact, it suffices to show that
the collection {C(x) : x ∈D} enjoys the finite intersection property.

Let C(x1), . . . ,C(xm) be an arbitrary finite collection and let z1, . . . ,zn be a basis of the
finite vector space Y = span{x1, . . . ,xm}. Let G= Y ∩D and define the mapping

g :GY −→ Y by g(x)= Σn
j=1
〈
Ax,zj

〉
zj . (3.3)

Then g is continuous. To see this, let xn → x for some x ∈ G. Since A is monotone, it is
locally bounded on G, and then {Axn} is bounded. This means that there exists a subse-
quence {xnk} such that Axnk

w−→ y. Therefore, g(xnk)→ g(x) and, consequently, g is con-
tinuous onG. In addition, I − g satisfies the Leray-Schauder condition on ∂YG. To see this,
let x ∈ ∂YG so that g(x)= tx for some t < 0. Then

Σn
j=1
〈
Ax,zj

〉
zj = tx, (3.4)

which implies that

Σn
j=1
[〈
Ax,zj

〉]2 = t〈Ax,x〉 < 0. (3.5)

This is a contradiction! Therefore, by Theorem 2.5, there exists x0 ∈ G such that g(x0)=
0. Since 〈Ax0,zj〉 = 0 for each j = 1, . . . ,n, we have

〈
Axi,xi− x0

〉= 〈Axi−Ax0,xi− x0
〉≥ 0, (3.6)

for i = 1, . . . ,m. Hence, ∩m
i=1C(xi) 	= φ. This means that inequality (3.2) has a solution

z ∈ co(D). If z /∈D, then there exists z0 ∈ seg[0,z]∩D such that z = λz0 for some λ > 1.
Consequently, 〈Az0,z0〉 ≤ 0, which contradicts the assumption on z0. Therefore, z ∈D.

To complete the proof of Proposition 2.2, let h ∈ X and t > 0 such that z + th ∈ D.
Then 〈A(z+ th),h〉 ≥ 0 for all t > 0 sufficiently small. Therefore, 〈Az,h〉 ≥ 0. On the other
hand, since h is arbitrary, we easily obtain that Az = 0. �
Lemma 3.2. Let X be a reflexive (real) Banach space, let D be a subset of X , and let A :
D→ X∗ be a monotone operator. Suppose there exists a bounded sequence {xn} such that
A(xn) + εnJ(xn)= 0 for each n∈N with εn→ 0+ as n→∞. Then xn→ x for some x ∈D.

We are now ready to state and prove Bolzano’s theorem for monotone operators de-
fined on reflexive Banach spaces.
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Theorem 3.3. Let X be a reflexive (real) Banach space and let D be a bounded open subset
of X such that 0∈D. SupposeA :D→ X∗ is a demicontinuous monotone operator satisfying

〈Ax,x〉 ≥ 0, for x ∈ ∂D. (3.7)

Then the equation Ax = 0 has a solution in D.

Proof. Let Aε = A+ εJ , where J is the duality mapping and ε > 0. Then Aε satisfies con-
dition (3.1) on ∂D. Therefore, by Proposition 3.1, there exists x ∈ D such that A(x) +
εJ(x)= 0. By selecting a sequence {εn} that converges to zero, we find xn ∈D such that

A
(
xn
)
+ εnJ

(
xn
)= 0, for each n∈N. (3.8)

Therefore, by Lemma 3.2, xn→ x for some x ∈D. Hence, A(x)= 0. �
As a consequence of Theorem 3.3, wemay derive an invariance of the domain theorem,

whose proof [20] uses a rather elementary argument and extends, among others, [21,
Theorem 2.3], where a degree theory argument is used.

Theorem 3.4. LetA be an open subset of a reflexive (real) Banach spaceX . SupposeA :D→
X∗ is a demicontinuous, locally closed, locally one-to-one, and locally monotone operator.
Then A(D) is open in X∗.

We should mention that the operator A, in Theorem 3.4, is closed if it maps closed sets
onto closed sets, and the property holds locally if, for each x ∈D, there exists a closed ball
B such that A restricted to B is closed.

Corollary 3.5. Let X be a reflexive (real) Banach space and let A : X → X∗ be a demicon-
tinuous and α-strongly monotone operator; that is,

〈
A(x)−A(y),x− y

〉≥ α
(‖x− y‖)‖x− y‖, (3.9)

where α : [0,∞)→ [0,∞) is a continuous and nondecreasing function with α(0)= 0, while
α(r) > 0 for r > 0. Then A is surjective.

Finally, we will study a compact perturbation of a strongly monotone operator under
the same boundary condition discussed throughout this paper. For additional related
results, see Kartsatos [13] and Morales [19].

Theorem 3.6. Let X be a reflexive Banach space and let A : X → X∗ be a demicontinuous
and α-strongly monotone operator. Suppose D is a bounded open subset of X (with 0 ∈ D)
such that the mapping g :D→ X∗ is compact and satisfies

〈
A(x) + g(x),x

〉≥ 0, (3.10)

for all x ∈ ∂D. Then 0∈�(A+ g).

Proof. Since A is a bijection from X to X∗ and α(t) is a continuous increasing func-
tion, then A−1 exists and is also continuous. Now, let h : D → X be defined by h(x) =
A−1(−g(x)). Indeed, to prove our conclusion is equivalent to showing that h has a fixed
point in D. To this end, we will prove that h satisfies the Leray-Schauder condition on D.
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Let h(x)= λx for x ∈ ∂D and λ > 1. Then A(λx) + g(x)= 0 and hence

〈
A(x) + g(x),x

〉
+
〈
A(λx)−A(x),x

〉= 0. (3.11)

However, due to the assumption on A+ g, we obtain that

〈
A(λx)−A(x),x

〉≤ 0, (3.12)

but since A is α-strongly monotone, we may derive that λ= 1, which is a contradiction.
Therefore, by Theorem 2.5, h has a fixed point, implying that A+ g has a zero in D. �

We should remark that if g is a constant function, then the conclusion of Theorem 3.6
follows directly from Corollary 3.5.
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für Math. 127 (1904), 179–276 (German).
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