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Let K be a nonempty, bounded, closed, and convex subset of a Banach space. We show
that the iterates of a typical element (in the sense of Baire’s categories) of a class of con-
tinuous self-mappings of K converge uniformly on K to the unique fixed point of this
typical element.

1. Introduction

Let K be a nonempty, bounded, closed, and convex subset of a Banach space (X ,‖ · ‖).
We consider the topological subspace K ⊂ X with the relative topology induced by the
norm ‖ · ‖. Set

diam(K)= sup
{‖x− y‖ : x, y ∈ K

}
. (1.1)

Denote by � the set of all continuous mappings A : K → K which have the following
property:

(P1) for each ε > 0, there exists xε ∈ K such that

∥∥Ax− xε
∥∥≤ ∥∥x− xε

∥∥+ ε ∀x ∈ K. (1.2)

For each A,B ∈�, set

d(A,B)= sup
{‖Ax−Bx‖ : x ∈ K

}
. (1.3)

Clearly, the metric space (�,d) is complete.
In this paper, we use the concept of porosity [1, 2, 3, 4, 5, 6] which we now recall.
Let (Y ,ρ) be a complete metric space. We denote by B(y,r) the closed ball of center

y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y ,ρ) if there exist α ∈ (0,1)
and r0 > 0 such that for each r ∈ (0,r0] and each y ∈ Y , there exists z ∈ Y for which

B(z,αr)⊂ B(y,r) \E. (1.4)
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A subset of the space Y is called σ-porous in (Y ,ρ) if it is a countable union of porous
subsets in (Y ,ρ).

Since porous sets are nowhere dense, all σ-porous sets are of the first category. If Y is
a finite-dimensional Euclidean space Rn, then σ-porous sets are of Lebesgue measure 0.

To point out the difference between porous and nowhere dense sets, note that if E ⊂ Y
is nowhere dense, y ∈ Y , and r > 0, then there are a point z ∈ Y and a number s > 0 such
that B(z,s) ⊂ B(y,r) \ E. If, however, E is also porous, then for small enough r, we can
choose s= αr, where α∈ (0,1) is a constant which depends only on E.

Our purpose in this paper is to establish the following result.

Theorem 1.1. There exists a set � ⊂� such that the complement � \� is σ-porous in
(�,d) and each A∈� has the following properties:

(i) there exists a unique fixed point xA ∈ K such that

Anx −→ xA as n−→∞, uniformly∀x ∈ K ; (1.5)

(ii) ‖Ax− xA‖ ≤ ‖x− xA‖ for all x ∈ K ;
(iii) for each ε > 0, there exist a natural number n and δ > 0 such that for each integer

p ≥ n, each x ∈ K , and each B ∈� satisfying d(B,A)≤ δ,
∥∥Bpx− xA

∥∥≤ ε. (1.6)

2. Auxiliary result

In this section, we present and prove an auxiliary result which will be used in the proof
of Theorem 1.1 in Section 3.

Proposition 2.1. Let A∈� and ε ∈ (0,1). Then there exist x̄ ∈ K and B ∈� such that

d(A,B)≤ ε,
‖x̄−Bx‖ ≤ ‖x̄− x‖ ∀x ∈ K.

(2.1)

Proof. Choose a positive number

ε0 < 8−1ε2
(
diam(K) + 1

)−1
. (2.2)

Since A∈�, there exists x̄ ∈ K such that

‖Ax− x̄‖ ≤ ‖x− x̄‖+ ε0 ∀x ∈ K. (2.3)

Let x ∈ K . There are three cases:

‖Ax− x̄‖ < ε; (2.4)

‖Ax− x̄‖ ≥ ε, ‖Ax− x̄‖ < ‖x− x̄‖; (2.5)

‖Ax− x̄‖ ≥ ε, ‖Ax− x̄‖ ≥ ‖x− x̄‖. (2.6)

First, we consider case (2.4). There exists an open neighborhood Vx of x in K such that

‖Ay− x̄‖ < ε ∀y ∈Vx. (2.7)
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Define ψx :Vx → K by

ψx(y)= x̄, y ∈Vx. (2.8)

Clearly, for all y ∈Vx,

0= ∥∥ψx(y)− x̄
∥∥≤ ‖y− x̄‖, ∥∥Ay−ψx(y)

∥∥= ‖Ay− x̄‖ < ε. (2.9)

Consider now case (2.5). Since A is continuous, there exists an open neighborhood Vx of
x in K such that

‖Ay− x̄‖ < ‖y− x̄‖ ∀y ∈Vx. (2.10)

In this case, we define ψx :Vx → K by

ψx(y)= Ay, y ∈Vx. (2.11)

Finally, we consider case (2.6). Inequalities (2.6), (2.2), and (2.3) imply that

‖x− x̄‖ ≥ ‖Ax− x̄‖− ε0 > 7
8
ε. (2.12)

For each γ ∈ [0,1], set

z(γ)= γAx+ (1− γ)x̄. (2.13)

By (2.13), (2.6), and (2.12), we have

∥∥z(0)− x̄
∥∥= 0,

∥∥z(1)− x̄
∥∥= ‖Ax− x̄‖ ≥ ‖x− x̄‖ > 7

8
ε. (2.14)

By (2.2) and (2.14), there exists γ0 ∈ (0,1) such that

∥∥z(γ0)− x̄
∥∥= ‖x− x̄‖− ε0. (2.15)

It now follows from (2.13), (2.15), and (2.3) that

γ0
(‖x− x̄‖+ ε0

)≥ γ0‖Ax− x̄‖ = ∥∥γ0Ax+ (1− γ0
)
x̄− x̄

∥∥= ∥∥z(γ0)− x̄
∥∥= ‖x− x̄‖− ε0,

(2.16)

γ0 ≥
(‖x− x̄‖− ε0

)(‖x− x̄‖+ ε0
)−1 = 1− 2ε0

(‖x− x̄‖+ ε0
)−1 ≥ 1− 2ε0‖x− x̄‖−1.

(2.17)

Inequalities (2.17) and (2.12) imply that

γ0 ≥ 1− 2ε0
(
7
8
ε
)−1

. (2.18)
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By (2.13), (1.1), (2.18), and (2.2),

∥∥z(γ0)−Ax
∥∥= ∥∥γ0Ax+ (1− γ0

)
x̄−Ax

∥∥= (1− γ0
)‖Ax− x̄‖

≤ (1− γ0
)
diam(K)≤ 16ε0(7ε)−1 diam(K)

≤ 3ε0 diam(K)ε−1 ≤ 3
8
ε,

(2.19)

∥∥z(γ0)−Ax
∥∥≤ 3

8
ε. (2.20)

Relations (2.15) and (2.20) imply that there exists an open neighborhood Vx of x in K
such that for each y ∈Vx,

∥∥z(γ0)−Ay
∥∥ < ε, ∥∥z(γ0)− x̄

∥∥ < ‖y− x̄‖. (2.21)

Define ψx :Vx → K by

ψx(y)= z
(
γ0
)
, y ∈Vx. (2.22)

It is not difficult to see that in all three cases, we have defined an open neighborhood Vx

of x in K and a continuous mapping ψx :Vx → K such that for each y ∈Vx,

∥∥Ay−ψx(y)
∥∥ < ε, ∥∥x̄−ψx(y)

∥∥≤ ‖y− x̄‖. (2.23)

Since the metric space K with the metric induced by the norm is paracompact, there
exists a continuous locally finite partition of unity {φi}i∈I on K subordinated to {Vx}x∈K ,
where each φi : K → [0,1], i∈ I , is a continuous function such that for each y ∈ K , there
is a neighborhood U of y in K such that

U ∩ supp
(
φi
) 
= ∅ (2.24)

only for a finite number of i∈ I ;

∑
i∈I

φi(x)= 1, x ∈ K ; (2.25)

and for each i∈ I , there is xi ∈ K such that

supp
(
φi
)⊂Vxi . (2.26)

Here, supp(φ) is the closure of the set {x ∈ K : φ(x) 
= 0}. Define

Bz =
∑
i∈I

φi(z)ψxi(z), z ∈ K. (2.27)

Clearly, B : K → K is well defined and continuous.
Let z ∈ K . There are a neighborhood U of z in K and i1, . . . , in ∈ I such that

U ∩ supp
(
φi
)=∅ for any i∈ I \ {i1, . . . , in}. (2.28)
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We may assume, without loss of generality, that

z ∈ supp
(
φip
)
, p = 1, . . . ,n. (2.29)

Then

n∑
p=1

φip(z)= 1, Bz =
n∑

p=1
φip(z)ψxip (z). (2.30)

Relations (2.26), (2.29), and (2.23) imply that for p = 1, . . . ,n, the following relations also
hold: z ∈Vxip ,

∥∥Az−ψxip (z)
∥∥ < ε, ∥∥x̄−ψxip (z)

∥∥≤ ‖x̄− z‖. (2.31)

By (2.31) and (2.30),

‖Bz−Az‖ =
∥∥∥∥∥

n∑
p=1

φip(z)ψxip (z)−Az

∥∥∥∥∥≤
n∑

p=1
φip(z)

∥∥ψxip (z)−Az
∥∥ < ε,

∥∥x̄−Bz
∥∥=

∥∥∥∥∥x̄−
n∑

p=1
φip(z)ψxip (z)

∥∥∥∥∥≤
n∑

p=1
φip(z)

∥∥x̄−ψxip (z)
∥∥≤ ‖x̄− z‖,

‖Bz−Az‖ < ε, ‖x̄−Bz‖ ≤ ‖x̄− z‖.

(2.32)

Proposition 2.1 is proved. �

3. Proof of Theorem 1.1

For each C ∈� and x ∈ K , set C0x = x. For each natural number n, denote by �n the set
of all A∈� which have the following property:

(P2) there exist x̄ ∈ K , a natural number q, and a positive number δ > 0 such that

‖x̄−Ax‖ ≤ ‖x̄− x‖+n−1 ∀x ∈ K , (3.1)

and such that, for each B ∈� satisfying d(B,A)≤ δ, and each x ∈ K ,

∥∥Bqx− x̄
∥∥≤ n−1. (3.2)

Define

�=∩∞n=1�n. (3.3)

Lemma 3.1. Let A∈�. Then there exists a unique fixed point xA ∈ K such that

(i) Anx→ xA as n→∞, uniformly on K ;
(ii)

∥∥Ax− xA
∥∥≤ ∥∥x− xA

∥∥ for all x ∈ K ; (3.4)



216 Generic convergence

(iii) for each ε > 0, there exist a natural number q and δ > 0 such that, for each B ∈�
satisfying d(B,A)≤ δ, each x ∈ K , and each integer i≥ q,

∥∥Bix− xA
∥∥≤ ε. (3.5)

Proof. Let n be a natural number. Since A∈�⊂�n, it follows from (P2) that there exist
xn ∈ K , an integer qn ≥ 1, and a number δn ≥ 0 such that

∥∥xn−Ax
∥∥≤ ∥∥xn− x

∥∥+n−1 ∀x ∈ K , (3.6)

and we have the following property:
(P3) for each B ∈� satisfying d(B,A)≤ δn, and each x ∈ K ,

∥∥Bqnx− xn
∥∥≤ 1

n
. (3.7)

Property (P3) implies that for each x ∈ K , ‖Aqnx− xn‖ ≤ 1/n. This fact implies, in turn,
that for each x ∈ K ,

∥∥Aix− xn
∥∥≤ 1

n
for any integer i≥ qn. (3.8)

Since n is any natural number, we conclude that for each x ∈ K , {Aix}∞i=1 is a Cauchy
sequence and there exists limi→∞Aix. Inequality (3.8) implies that for each x ∈ K ,

∥∥∥∥ lim
i→∞

Aix− xn

∥∥∥∥≤ 1
n
. (3.9)

Since n is again an arbitrary natural number, we conclude further that limi→∞Aix does
not depend on x. Hence, there is xA ∈ K such that

xA = lim
i→∞

Aix ∀x ∈ K. (3.10)

By (3.9) and (3.10),

∥∥xA− xn
∥∥≤ 1

n
. (3.11)

Inequalities (3.11) and (3.6) imply that for each x ∈ K ,

∥∥Ax− xA
∥∥≤ ∥∥Ax− xn

∥∥+∥∥xn− xA
∥∥≤ 1

n
+
∥∥Ax− xn

∥∥≤ 1
n
+
∥∥x− xn

∥∥+ 1
n

≤ 2
n
+
∥∥x− xA

∥∥+∥∥xA− xn
∥∥≤ ∥∥x− xA

∥∥+ 3
n
,

(3.12)

so that

∥∥Ax− xA
∥∥≤ ∥∥x− xA

∥∥+ 3
n
. (3.13)



S. Reich and A. J. Zaslavski 217

Since n is an arbitrary natural number, we conclude that

∥∥Ax− xA
∥∥≤ ∥∥x− xA

∥∥ for each x ∈ K. (3.14)

Let ε > 0. Choose a natural number

n >
8
ε
. (3.15)

Property (P3) implies that

∥∥Bix− xn
∥∥≤ 1

n
(3.16)

for each x ∈ K , each integer i ≥ qn, and each B ∈� satisfying d(B,A) ≤ δn. Inequalities
(3.16), (3.11), and (3.15) imply that for each B ∈� satisfying d(B,A) ≤ δn, each x ∈ K ,
and each integer i≥ qn,

∥∥Bix− xA
∥∥≤ ∥∥Bix− xn

∥∥+∥∥xn− xA
∥∥≤ 1

n
+
1
n
< ε. (3.17)

This completes the proof of Lemma 3.1. �

Completion of the proof of Theorem 1.1. In order to complete the proof of this theorem,
it is sufficient, by Lemma 3.1, to show that for each natural number n, the set � \�n is
porous in (�,d).

Let n be a natural number. Choose a positive number

α < (16n)−12−1
((
diam(K) + 1

)2
16 · 8n

)−1
. (3.18)

Let

A∈�, r ∈ (0,1]. (3.19)

By Proposition 2.1, there exist A0 ∈� and x̄ ∈ K such that

d
(
A,A0

)≤ r

8
, (3.20)

∥∥A0x− x̄
∥∥≤ ‖x− x̄‖ for each x ∈ K. (3.21)

Set

γ = 8−1r
(
diam(K) + 1

)−1
(3.22)

and choose a natural number q for which

1≤ q
((
diam(K) + 1

)2
16n · 8r−1

)−1 ≤ 2. (3.23)

Define Ā : K → K by

Āx = (1− γ)A0x+ γx̄, x ∈ K. (3.24)
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Clearly, the mapping Ā is continuous and, for each x ∈ K ,

‖Āx− x̄‖ = ∥∥(1− γ)A0x+ γx̄− x̄
∥∥= (1− γ)

∥∥A0x− x̄
∥∥≤ (1− γ)‖x− x̄‖. (3.25)

Thus, Ā∈�. Relations (1.3), (3.24), (1.1), (3.22), and (3.25) imply that

d
(
Ā,A0

)= sup
{∥∥Āx−A0x

∥∥ : x ∈ K
}= sup

{
γ
∥∥x̄−A0x

∥∥ : x ∈ K
}

≤ γdiam(K)≤ r

8
.

(3.26)

Together with (3.20), this implies that

d(Ā,A)≤ d
(
Ā,A0

)
+d
(
A0,A

)≤ r

4
. (3.27)

Assume now that

B ∈�, d
(
B,Ā

)≤ αr. (3.28)

Then (3.28), (3.18), and (3.25) imply that for each x ∈ K ,

∥∥Bx− x̄
∥∥≤ ∥∥Bx− Āx

∥∥+∥∥Āx− x̄
∥∥≤ ‖x− x̄‖+αr ≤ ‖x− x̄‖+ 1

n
. (3.29)

In addition, (3.28), (3.27), and (3.18) imply that

d(B,A)≤ d(B,Ā) +d(Ā,A)≤ αr +
r

4
≤ r

2
. (3.30)

Assume that x ∈ K . We will show that there exists an integer j ∈ [0,q] such that
‖Bjx− x̄‖ ≤ (8n)−1. Assume the contrary. Then

∥∥Bix− x̄
∥∥ > (8n)−1, i= 0, . . . ,q. (3.31)

Let an integer i∈ {0, . . . ,q− 1}. By (3.28) and (3.25),

∥∥Bi+1x− x̄
∥∥= ∥∥B(Bix

)− x̄
∥∥≤ ∥∥B(Bix

)− Ā
(
Bix
)∥∥+∥∥Ā(Bix

)− x̄
∥∥

≤ d(B,Ā) +
∥∥Ā(Bix

)− x̄
∥∥≤ αr + (1− γ)

∥∥Bix− x̄
∥∥,∥∥Bi+1x− x̄

∥∥≤ αr + (1− γ)
∥∥Bix− x̄

∥∥.
(3.32)

When combined with (3.31), (3.18), and (3.22), this inequality implies that

∥∥Bix− x̄
∥∥−∥∥Bi+1x− x̄

∥∥≥ ∥∥Bix− x̄
∥∥−αr− (1− γ)

∥∥Bix− x̄
∥∥

= γ
∥∥Bix− x̄

∥∥−αr > (8n)−1γ−αr ≥ (16n)−1γ,
(3.33)

so that

∥∥Bix− x̄
∥∥−∥∥Bi+1x− x̄

∥∥≥ (16n)−1γ. (3.34)
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When combined with (1.1), this inequality implies that

diam(K)≥ ‖x− x̄‖−∥∥Bqx− x̄
∥∥≥

q−1∑
i=0

(∥∥Bix− x̄
∥∥−∥∥Bi+1x− x̄

∥∥)≥ q(16n)−1γ,

q ≤ diam(K)
16n
γ

,

(3.35)

a contradiction (see (3.22) and (3.23)). The contradiction we have reached shows that
there exists an integer j ∈ {0, . . . ,q− 1} such that

∥∥Bjx− x̄
∥∥≤ (8n)−1. (3.36)

It follows from (3.28) and (3.25) that for each integer i∈ {0, . . . ,q− 1},
∥∥Bi+1x− x̄

∥∥= ∥∥B(Bix
)− x̄

∥∥≤ ∥∥B(Bix
)− Ā

(
Bix
)∥∥+∥∥Ā(Bix

)− x̄
∥∥

≤ d(Ā,B) +
∥∥Ā(Bix

)− x̄
∥∥≤ αr +

∥∥Bix− x̄
∥∥,∥∥Bi+1x− x̄

∥∥≤ ∥∥Bix− x̄
∥∥+αr.

(3.37)

This implies that for each integer s satisfying j < s≤ q,

∥∥Bsx− x̄
∥∥≤ ∥∥Bjx− x̄

∥∥+αr(s− j)≤ ∥∥Bjx− x̄
∥∥+αrq. (3.38)

It follows from (3.36), (3.38), (3.23), and (3.18) that

∥∥Bqx− x̄
∥∥≤ αrq+ (8n)−1 ≤ (2n)−1. (3.39)

Thus, we have shown that the following property holds: for each B satisfying (3.28) and
each x ∈ K ,

∥∥Bqx− x̄
∥∥≤ (2n)−1,

∥∥Bx− x̄
∥∥≤ ‖x− x̄‖+ 1

n
(3.40)

(see (3.29)). Thus

{
B ∈� : d(B,Ā)≤ αr

2

}
⊂�n∩

{
B ∈� : d(B,A)≤ r

}
. (3.41)

In other words, we have shown that the set � \�n is porous in (�,d). This completes the
proof of Theorem 1.1.
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