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Abstract

This article discusses three weak �-contractive conditions of rational type for a class
of 2-cyclic self-mappings defined on the union of two non-empty subsets of a metric
space to itself. If the space is uniformly convex and the subsets are non-empty,
closed, and convex, then the iterates of points obtained through the self-mapping
converge to unique best proximity points in each of the subsets.

1. Introduction
A general contractive condition has been proposed in [1,2] for mappings on a partially

ordered metric space. Some results about the existence of a fixed point and then its

uniqueness under supplementary conditions are proved in those articles. The rational

contractive condition proposed in [3] includes as particular cases several of the pre-

viously proposed ones [1,4-12], including Banach principle [5] and Kannan fixed point

theorems [4,8,9,11]. The rational contractive conditions of [1,2] are applicable only on

distinct points of the considered metric spaces. In particular, the fixed point theory for

Kannan mappings is extended in [4] by the use of a non-increasing function affecting

the contractive condition and the best constant to ensure a fixed point is also obtained.

Three fixed point theorems which extended the fixed point theory for Kannan map-

pings were stated and proved in [11]. More attention has been paid to the investigation

of standard contractive and Meir-Keeler-type contractive 2-cyclic self-mappings T:A ∪
B ® A ∪B defined on subsets A,B ⊆ X and, in general, p-cyclic self-mappings

T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai defined on any number of subsets Ai ⊂ X, i ∈ p̄ :=

{
1, 2, ..., p

}
,

where (X,d) is a metric space (see, for instance [13-22]). More recent investigation

about cyclic self-mappings is being devoted to its characterization in partially ordered

spaces and also to the formal extension of the contractive condition through the use of

more general strictly increasing functions of the distance between adjacent subsets. In

particular, the uniqueness of the best proximity points to which all the sequences of

iterates of composed self-mappings T2: A∪B ® A ∪ B converge is proven in [14] for

the extension of the contractive principle for cyclic self-mappings in uniformly convex

Banach spaces (then being strictly convex and reflexive [23]) if the subsets A,B ⊂ X in

the metric space (X,d), or in the Banach space (X,|| ||), where the 2-cyclic self-

mappings are defined, are both non-empty, convex and closed. The research in [14] is
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centred on the case of the cyclic self-mapping being defined on the union of two sub-

sets of the metric space. Those results are extended in [15] for Meir-Keeler cyclic con-

traction maps and, in general, for the self-mapping T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai be a p (≥ 2)

-cyclic self-mapping being defined on any number of subsets of the metric space with

p̄ :=
{
1, 2..., p

}
. Also, the concept of best proximity points of (in general) non-self-map-

pings S,T:A ® B relating non-empty subsets of metric spaces in the case that such

maps do not have common fixed points has recently been investigated in [24,25]. Such

an approach is extended in [26] to a mapping structure being referred to as K-cyclic

mapping with contractive constant k < 1/2. In [27], the basic properties of cyclic self-

mappings under a rational-type of contractive condition weighted by point-to-point-

dependent continuous functions are investigated. On the other hand, some extensions

of Krasnoselskii-type theorems and general rational contractive conditions to cyclic

self-mappings have recently been given in [28,29] while the study of stability through

fixed point theory of Caputo linear fractional systems has been provided in [30].

Finally, promising results are being obtained concerning fixed point theory for multiva-

lued maps (see, for instance [31-33]).

This manuscript is devoted to the investigation of several modifications of rational

type of the �-contractive condition of [21,22] for a class of 2-cyclic self-mappings on

non-empty convex and closed subsets A,B ⊂ X. The contractive modification is of

rational type and includes the nondecreasing function associated with the �-contrac-

tions. The existence and uniqueness of two best proximity points, one in each of the

subsets A,B ⊂ X, of 2-cyclic self-mappings T: A∪ B ® A ∪ B defined on the union of

two non-empty, closed, and convex subsets of a uniformly convex Banach spaces, is

proven. The convergence of the sequences of iterates through T: A∪ B ® A ∪ B to

one of such best proximity points is also proven. In the case that A and B intersect,

both the best proximity points coincide with the unique fixed point in the intersection

of both the sets.

2. Basic properties of some modified constraints of 2-cyclic �-contractions
Let (X,d) be a metric space and consider two non-empty subsets A and B of X. Let T:

A∪ B ® A ∪ B be a 2-cyclic self-mapping, i.e., T(A) ⊆ B and T(B) ⊆ A. Suppose, in

addition, that T: A∪ B ® A ∪ B is a 2-cyclic modified weak �-contraction (see [21,22])

for some non-decreasing function �:R0+ ® R0+ subject to the rational modified

�-contractive constraint:

d
(
Tx,Ty

) ≤ α

[
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) − ϕ

(
d (x,Tx) d

(
y,Ty

)
d
(
x, y

)
)]

+ β
(
d
(
x, y

) − ϕ
(
d
(
x, y

)))
+ ϕ (D) ;

∀x, y (�= x) ∈ A ∪ B

(2:1)

where

D := dist (A,B) := inf
{
d
(
x, y

)
: x ∈ A, y ∈ B

}
(2:2)

D ≤ lim sup
n→∞

d
(
Tn+1x,Tnx

) ≤ lim
n→∞

(
knd (x,Tx) +

(1 − kn) (1 − k)
1 − k

ϕ (D)

)
= ϕ (D) ; ∀x ∈ A∪B (2:3)

Note that (2.1) is, in particular, a so-called 2-cyclic �-contraction if a = 0 and �(t) = (1-

a)t for some real constant a Î[0,1) since �:R0+ ® R0+ is strictly increasing [1]. We refer

to “modified weak �-contraction” for (2.1) in the particular case a ≥ 0, b ≥ 0, a + b < 1,
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and �:R0+ ® R0+ being non-decreasing as counterpart to the term �-contraction (or via

an abuse of terminology “modified strong �-contraction”) for the case of �:R0+ ® R0+ in

(2.1) being strictly increasing. There are important background results on the properties

of weak contractive mappings (see, for instance, [1,2,34] and references therein). The so-

called “�-contraction”, [1,2], involves the particular contractive condition obtained from

(2.1) with a = 0, b = 1, and �:R0+ ® R0+ being strictly increasing, that

is,d
(
Tx,Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
+ ϕ (D) ; ∀x ∈ A ∪ B,

In the following, we refer to 2-cyclic self-maps T:A ∪ B ® A ∪B simply as cyclic self-

maps. The following result holds:

Lemma 2.1. Assume that T:A ∪ B ® A ∪B is a modified weak �-contraction, that is,

a cyclic self-map satisfying the contractive condition (2.1) subject to the constraints

min (a, b) ≥ 0 and a + b < 1 with �:R0+ ® R0+ being non-decreasing. Then, the fol-

lowing properties hold:

(i) Assume that �(D) ≥ D

D ≤ d
(
Tn+1x,Tnx

) ≤ kd (Tx, x) + (1 − k) ϕ (D) ; ∀n ∈ N0 := N ∪ {0} , ∀x ∈ A ∪ B (2:4)

D ≤ lim inf
n→∞

d
(
Tn+m+1x,Tn+mx

)≤ lim sup
n→∞

d
(
Tn+m+1x,Tn+mx

) ≤ ϕ (D) ; ∀x ∈ A∪B ∀m ∈ N0 (2:5)

and lim sup
n→∞

d
(
Tn+m+1x,Tn+mx

) ≤ ϕ (D) if D ≠ 0 If �(D) = D = 0 then

∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0; ∀x Î A ∪ B, ∀m Î N0.

(ii) Assume that d(x,Tx) ≤ m(x) for any given xÎ A ∪ B. Then

d
(
Tnx, x

) ≤ km (x)
1 − k

+
1 − k
k

ϕ (D) ; ∀x ∈ A ∪ B, ∀n ∈ N (2:6)

If d(x,Tx) is finite and, in particular, if x and Tx in A ∪ B are finite then the

sequences {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are bounded sequences where Tn Î A and Tn+1x

Î B if x Î A and n is even, Tn Î B and Tn+1 Î B if x Î B and n is even.

Proof: Take y = Tx so that Ty = T2x. Since �:R0+ ® R0+ is non-decreasing �(x) ≥

�(D) for x ≥ D, one gets for any x Î A and any Tx Î B or for any x Î B and any

Tx Î A:

(1 − α) d
(
T2x,Tx

) ≤ −αϕ
(
d
(
Tx,T2x

))
+ β

[
d (x,Tx) − ϕ (d (x,Tx))

]
+ ϕ (D)

= βd (x,Tx) + ϕ (D) − αϕ
(
d
(
Tx,T2x

)) − βϕ (d (x,Tx)) ; ∀x ∈ A ∪ B

⇔ d
(
T2x,Tx

) ≤ kd (x,Tx) +
1 − α − β

1 − α
ϕ (D) = kd (x,Tx) + (1 − k) ϕ (D) ; ∀x ∈ A ∪ B

(2:7)

if Tx ≠ x where k :=
β

1 − α
< 1, since T:A∪ B ® A ∪ B is cyclic, d(x,Tx) ≥ D and �:

R0+ ® R0+ is increasing. Then

d
(
Tn+1x,Tnx

) ≤ knd (x,Tx) +
(
1 − kn

)
ϕ (D) ; ∀x ∈ A ∪ B; ∀n ∈ N (2:8)

F(D) ≥ D ≠ 0 since min (a, b) ≥ 0 and a + b < 1 Proceeding recursively from (2.8),

one gets for any m Î N:

D ≤ d
(
Tn+1x,Tnx

) ≤ knd (Tx, x) + ϕ (D) (1 − k)

(
n−1∑
i=0

ki
)

≤ kd (Tx, x) + ϕ (D)
(
1 − kn

)
(2:9a)
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≤ kd (Tx, x) + (1 − k) ϕ (D) ≤ kd (Tx, x) + ϕ (D) < d (Tx, x) + ϕ (D) ; ∀x ∈ A ∪ B (2:9b)

D ≤ lim sup
n→∞

d
(
Tn+m+1x,Tn+mx

) ≤ lim
n→∞

(
kn+md (Tx, x) + ϕ (D) (1 − k)

(
n+m−1∑
i=0

ki
))

≤ ϕ (D) (1 − k) lim
n→∞

(
1 − kn+m

1 − k

)
= ϕ (D) ; ∀x ∈ A ∪ B

(2:10)

F(D) ≥ D ≠ 0 and if F(D) = D = 0 then the ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0; ∀x Î A ∪

B. Hence, Property (i) follows from (2.9) and (2.10) since �(D) ≥ D and d(x,Tx) ≥ D;

∀x Î A ∪ B, since T:A∪ B ® A ∪ B is a 2-cyclic self-mapping and �:R0+ ® R0+ is

non-decreasing. Now, it follows from triangle inequality for distances and (2.9a) that:

d
(
Tnx, x

) ≤
∑n−1

i=1
d
(
Ti+1x,Tix

) ≤
(∑n−1

i=1
ki

)
d (x,Tx) + ϕ (D)

(∑n−1

i=1

(
1 − ki

))

≤ k
(
1 − kn−1

)
1 − k

d (x,Tx) + ϕ (D)
(∑n−1

i=1
(1 − k)

)
i ≤ k

(
1 − kn−1

)
1 − k

d (x,Tx) +
(1 − k)

(
1 − (1 − k) n−1

)
k

ϕ (D)

≤ k
1 − k

d (x,Tx) +
1 − k
k

ϕ (D) < ∞, ∀x ∈ A ∪ B, ∀n ∈ N

(2:11)

which leads directly to Property (ii) with {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 being bounded

sequences for any finite x Î A ∪ B. □
Concerning the case that A and B intersect, we have the following existence and

uniqueness result of fixed points:

Theorem 2.2. If �(D) = D = 0 (i.e., A0∩B0 ≠ ∅) then ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0

and d (Tnx, x) ≤ kd (x,Tx)
1 − k

; ∀x Î A∪B. Furthermore, if (X,d) is complete and A and B are

non-empty closed and convex then there is a unique fixed point z Î A∩B of T:A∪B ®
A∪B to which all the sequences {Tnx} n∈N0, which are Cauchy sequences, converge; ∀x Î
A∪B.
Proof: It follows from Lemma 2.1(i)-(ii) for �(D) = D = 0 It also follows that

lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= lim

n→∞ (kn) d
(
Tm+2x,Tm+1x

)
= 0; ∀x Î A∪B, ∀m Î N0 what

implies lim
n,m→∞ d

(
Tn+m+1x,Tn+mx

)
= 0 so that {Tnx} n∈N0 is a Cauchy sequence, ∀x Î A∪B,

then being bounded and also convergent in A∩B as n ® ∞ since (X,d) is complete and A

and B are non-empty, closed, and convex. Thus, lim
n→∞ Tnx = z ∈ A ∩ B and

z = lim
n→∞ Tn+1x = T

(
lim
n→∞ Tn+1x

)
= Tz, since the iterate composed self-mapping Tn:A∪B ®

A∪B, ∀n Î N0 is continuous for any initial point x Î A∪B (since it is contractive, then

Lipschitz continuous in view of (2.9a) with associate Lipschitz constant 0 ≤ k < 1 for

�(D) = D = 0). Thus, z Î A∩B is a fixed point of T:A∪B ® A∪B. Its uniqueness is proven
by contradiction. Assume that there are two distinct fixed points z and y of T:A∪B ® A∪B
in A∩B. Then, one gets from (2.1) that either 0 <d(Tz,Ty) ≤ b(d(z,y)-�(d(z,y))) ≤ bd(z,y) <d
(z,y) or d(Tz,Ty) = d(z,y) = 0 what contradicts d(z,y) > 0 since z ≠ y. Then, d(Tz,Ty) ≤ b(d

(x,y) ≤ bd(x,y) <d(z,y) what leads to the contradiction lim
n→∞ d

(
Tnz,Tny

)
= 0 = d

(
z, y

)
> 0.

Thus, z = y. Hence, the theorem. □
Now, the contractive condition (2.1) is modified as follows:

d
(
Tx,Ty

) ≤ α0

[
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) − ϕ

(
d (x,Tx) d

(
y,Ty

)
d
(
x, y

)
)]

+β0
(
d
(
x, y

) − ϕ
(
d
(
x, y

)))
+ϕ (D) (2:12)
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for x,y(≠ x) Î X, where min (a0, b0) ≥ 0, min (a0, b0) > 0, and a0 + b0 ≤ 1. Note that

in the former contractive condition (2.1), a + b < 1. Thus, for any non-negative real

constants a ≤ a0 and b ≤ b0, (2.12) can be rewritten as

d
(
Tx,Ty

) ≤ α

[
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) − ϕ

(
d (x,Tx) d

(
y,Ty

)
d
(
x, y

)
)]

+ β
(
d
(
x, y

) − ϕ
(
d
(
x, y

)))
+ ϕ (D)

+ (α0 − α)

[
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) − ϕ

(
d (x,Tx) d

(
y,Ty

)
d
(
x, y

)
)]

+ (β0 − β)
(
d
(
x, y

) − ϕ
(
d
(
x, y

)))
; ∀x, y ∈ A ∪ B.

(2:13)

The following two results extend Lemma 2.1 and Theorem 2.2 by using constants a0

and b0 in (2.1) whose sum can equalize unity a0+b0 = 1.

Lemma 2.3. Assume that T:A∪B ® A∪B is a cyclic self-map satisfying the contrac-

tive condition (2.13) with min(a0, b0) ≥ 0, a0 + b0 ≤ 1, and �:R0+ ® R0+ is non-

decreasing. Assume also that

ϕ (d (Tx, x)) ≥ d (Tx, x) − 1 − α

1 − α − β
M0; ∀x ∈ A ∪ B (2:14)

For some non-negative real constants M0 ≤ 1 − α − β

1 − α
D, a ≤ a0 and b ≤ b0 with a

+ b < 1. Then, the following properties hold:

(i) D ≤ lim sup
n→∞

d
(
Tn+m+1x,Tn+mx

) ≤ ϕ (D) + (α0 + β0 − α − β)D; ∀x ∈ A∪ B, ∀m ∈ N0 (2:15)

for any arbitrarily small ε Î R+.

(ii) If �(D) = (1+a+b-a0-b0)D then ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= D; ∀x Î A∪B, ∀m Î

N0.

(iii) If d(x,Tx) is finite and, in particular, if x and Tx are finite then the sequence

{Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are bounded sequences, where Tnx Î A and Tn+1x Î B if x

Î A and n is even and Tnx Î B and Tn+1x Î B if x Î A and n is even.

Proof: Since �:R0+ ® R0+ is non-decreasing then �(x) ≥ �(D) for x(ÎR0+) ≥ D. Note

also that M0 ≤ 1 − α − β

1 − α
D implies the necessary condition �(d(Tx,x)) ≥ 0 and (2.14)

implies that 0 ≤ �(D) ≤ D. Note also for y = Tx and Ty = Tx2 and (2.14), since �(x) >�

(D) for x >D, that for x Î A∪B, one gets from (2.14):

ϕ
(
d
(
T2x,Tx

)) ≥ d
(
T2x,Tx

) − 1 − α

1 − α − β
M0; ∀x ∈ A ∪ B (2:16)

leading from (2.14) to

(α0 − α)
[
d
(
T2x,Tx

) − φ
(
d
(
T2x,Tx

))]
+ (β0 − β) (d (Tx, x) − φ (d (Tx, x)))

≤ M: = (α0 + β0 − α − β)
1 − α

1 − α − β
M0

(2:17)

and M ≤ (a0 + b0-a-b)D since M0 ≤ 1 − α − β

1 − α
D. One gets from (2.13) and (2.17)

the following modifications of (2.9) and (2.10) by taking y = Tx, Ty = T2x, and succes-

sive iterates by composition of the self-mapping T:A ∪ B ® A ∪B:
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D ≤ d
(
Tn+1x,Tnx

) ≤ knd (Tx, x) + (ϕ (D) +M) (1 − k)

(
n−1∑
i=0

ki
)

≤ knd (Tx, x) +
(
1 − kn

)
(ϕ (D) +M)

≤ kd (Tx, x) + ϕ (D) +M; ∀x ∈ A ∪ B, ∀n ∈ N0 := N ∪ {0}
(2:18)

D ≤ lim sup
n→∞

d
(
Tn+1x,Tnx

) ≤ ϕ (D)+M ≤ ϕ (D)+(α0 + β0 − α − β)D; ∀x ∈ A∪B, ∀m ∈ N0 (2:19)

D ≤ lim sup
n→∞

d
(
Tn+m+1x,Tn+mx

)

≤ lim
n→∞

(
kn+md (Tx, x) + (ϕ (D) + (α0 + β0 − α − β)D) (1 − k)

(
n+m−1∑
i=0

ki
))

≤ ϕ (D) + (α0 + β0 − α − β)D; ∀x ∈ A ∪ B, ∀m ∈ N0

(2:20)

and Property (i) has been proven. Property (ii) follows from (2.20) directly by repla-

cing �(D) = (1+a+b-a0-b0)D in (2.15). To prove Property (iii), note from (2.18) that

d
(
Tnx, x

) ≤
∑n−1

i=1
d
(
Ti+1x,Tix

) ≤
(∑n−1

i=1
ki

)
d (x,Tx) + (ϕ (D) +M)

(∑n−1

i=1

(
1 − ki

))

≤ k
(
1 − kn−1

)
1 − k

d (x,Tx) + (ϕ (D) +M)
(∑n−1

i=1
(1 − k)

)
i

≤ k
(
1 − kn−1

)
1 − k

d (x,Tx) +
(1 − k)

(
1 − (1 − k) n−1

)
k

(ϕ (D) +M)

≤ k
1 − k

d (x,Tx) +
1 − k
k

(ϕ (D) +M) < ∞; ∀x ∈ A ∪ B, ∀n ∈ N.

Hence, {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are bounded for any finite x Î A∪B. Property (iii)

has been proven. Hence, the lemma. □

Theorem 2.4. If �(D) = D = 0 then ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0; ∀x Î A∪B.

Furthermore, if (X,d) is complete and both A and B are non-empty, closed, and convex

then there is a unique fixed point z Î A∩B of T:A ∪ B ® A ∪B to which all the

sequences {Tnx} n∈N0, which are Cauchy sequences, converge; ∀xÎA∪B.
Proof guideline: It is identical to that of Theorem 2.2 by using �(D) = D = M0 M = 0

and the fact that from (2.17) a0 = a and b0 = b with 0 ≤ a + b < 1 if there is a pair

(x,Tx) Î A × B∪B × A such that d(Tx,x) = �(d(Tx,x)); d(T2x,Tx) = �(d(T2x,Tx)); ∀x Î
A∪B. Hence, the theorem. □
Remark 2.5. Note that Lemma 2.2 (ii) for �(D) ≤ D (�(D) <D if a + b ≤ a0 + b0 ≤ 1)

leads to an identical result as Lemma 2.1 (i) for �(D) = D and a + b < 1 consisting in

proving that ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= D. This result is similar to a parallel obtained

for standard 2-cyclic contractions [2,5,8]. □
Remark 2.6. Note from (2.7) that Lemma 2.1 is subject to the necessary condition D ≤

�(D) since d(T2x,Tx) ≥ D and; ∀x Î A∪B. On the other hand, note from Lemma 2.2,

Equation (2.14) that ϕ (D) ≥ D − 1 − α

1 − α − β
M0, and one also gets from (2.18) for n = 1

the dominant lower-bound ϕ (D) ≥ D − M ≥ D − 1 − α

1 − α − β
M0 (α0 + β0 − α − β), that

is, D ≤ ϕ (D) +
1 − α

1 − α − β
M0 (α0 + β0 − α − β) which coincides with the parallel con-

straint obtained from Lemma 2.1 if a0 + b0 = a + b. □
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Remark 2.7. Note that Lemmas 2.2 and 2.3 apply for non-decreasing functions �:R0+ ®
R0+. The case of �:R0+ ® R0+ being monotone increasing, then unbounded, is also

included as it is the case of �:R0+ ® R0+ being bounded non-decreasing. □
Now, modify the modified cyclic �-contractive constraint (2.1) as follows:

d
(
Tx,Ty

) ≤ α
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) + β
(
d
(
x, y

) − ϕ
(
d
(
x, y

)))

+ (1 − α) ϕ

(
d (x,Tx) d

(
y,Ty

)
d
(
x, y

)
)
+ ϕ (D) ;∀x ∈ A ∪ B

(2:21)

Thus, the following parallel result to Lemmas 2.1 and 2.2 result holds under a more

restrictive modified weak �-contraction Assume that T:A ∪ B ® A ∪B is modified

weak �-contraction subject to �:R0+ ® R0+ subject to the constraint

limsup
x→+∞

(x − ϕ (x)) >
ϕ (D)

1 − α − β
and having a finite limit:

Lemma 2.8. Assume that T:A ∪ B ® A ∪B is a cyclic self-map satisfying the contrac-

tive condition (2.21) with min (a,b) ≥ 0, a + b < 1, and �:R0+ ® R0+ is non-decreasing

having a finite limit lim
x→∞ ϕ (x) = ϕ̄ and subject to �(0) = 0 Assume also that �:R0+ ®

R0+ satisfies limsup
x→+∞

(x − ϕ (x)) >
ϕ (D)

1 − α − β
. Then, the following properties hold:

(i) The following relations are fulfilled:

1 − α − β

2 − α − β
ϕ (D) ≤ D ≤ d

(
Tn+1x,Tnx

) ≤ ϕ (D)

1 − α − β
+ϕ̄ ≤ 2 − α − β

1 − α − β
ϕ̄ < ∞; ∀n ∈ N, ∀x ∈ A∪B (2:22)

1 − α − β

2 − α − β
ϕ (D) ≤ D ≤ lim sup

n→∞
d
(
Tn+1x,Tnx

) ≤ ϕ (D)

1 − α − β
+ϕ̄ ≤ 2 − α − β

1 − α − β
ϕ̄ < ∞; ∀x ∈ A∪B (2:23)

(ii) If, furthermore, �:R0+ ® R0+ is, in addition, sub-additive and d(x,Tx) is finite (in

particular, if x and Tx are finite) then the sequences {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are

both bounded, where Tnx Î A and Tn+1x Î B if x Î A and n is even and Tnx Î B and

Tn+1x Î A if x Î B and n is even. If �:R0+ ® R0+ is identically zero then

∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0; ∀x Î A∪B.

Proof: One gets directly from (2.21):

(1 − α)
(
d
(
T2x,Tx

) − ϕ
(
d
(
T2x,Tx

))) ≤ βd
(
T2x,Tx

)−ϕ
(
d
(
T2x,Tx

))
+ϕ (D) ; ∀x ∈ A∪B (2:24)

or, equivalently, one gets for k =
β

1 − α
< 1 that

d
(
T2x,Tx

) − ϕ
(
d
(
T2x,Tx

)) ≤ kd
(
T2x,Tx

) − ϕ
(
d
(
T2x,Tx

))
+

ϕ (D)

1 − α
; ∀x ∈ A ∪ B (2:25)

leading to

0 ≤ D − ϕ (D) ≤ lim inf
n→∞

(
d
(
Tn+1x,Tnx

) − ϕ
(
d
(
Tn+1x,Tnx

)))
≤ lim sup

n→∞

(
d
(
Tn+1x,Tnx

) − ϕ
(
d
(
Tn+1x,Tnx

))) ≤ ϕ (D)

(1 − α) (1 − k)
=

ϕ (D)

1 − α − β
; ∀x ∈ A ∪ B

(2:26)
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what implies the necessary condition ϕ (D) ≥ 1 − α − β

2 − α − β
D leading to

D
ϕ (D)

=
2 − α − β

1 − α − β
> 1 if D ≠ 0 and then

lim inf
n→∞

(
d
(
Tn+1x,Tnx

) − ϕ
(
d
(
Tn+1x,Tnx

))) ≥ D − ϕ (D) ≥ 0; ∀x Î A∪B. Also, since

limsup
x→+∞

(x − ϕ (x)) >
ϕ (D)

1 − α − β
; ∀x Î R+, by construction, then d(Tn+1x,Tnx) is

bounded; ∀n Î N since, otherwise, a contradiction to (2.24) holds. Since �:R0+ ® R0+ is

non-decreasing and has a finite limit ϕ̄ ≥ ϕ (x) ≥ 0; ∀x R0+ (ϕ̄ = 0 if and only if �:R0+ ®
R0+ is identically zero), thus ϕ̄ ≥ ϕ (D) ≥ 0. Then, (2.22)-(2.23) hold and Property (i) has

been proven. On the other hand, one gets from (2.25), since �:R0+ ® R0+ is sub-additive

and nondecreasing and has a finite limit, that:

d
(
Tnx, x

) − ϕ
(
d
(
Tnx, x

)) ≤
(∑n−1

i=1
d
(
Ti+1x,Tix

) − ϕ
(
d
(
Ti+1x,Tix

)))
≤

(∑n−1

i=1
ki

)
(d (x,Tx) − ϕ (d (x,Tx))) +

ϕ (D)

1 − α

(∑n−1

i=1

(
1 − ki

))

≤ k
(
1 − kn−1

)
1 − k

(d (x,Tx) − ϕ (d (x,Tx))) +
ϕ (D)

1 − α

(∑n−1

i=1
(1 − k)

)
i

≤ k
(
1 − kn−1

)
1 − k

d (x,Tx) +
(1 − k)

(
1 − (1 − k) n−1

)
k

ϕ (D)

1 − α

≤ k
1 − k

(d (x,Tx) − ϕ (d (x,Tx))) +
1 − k
k

ϕ (D)

1 − α
< ∞; ∀x ∈ A ∪ B, ∀n ∈ N

(2:27)

lim sup
n→∞

d
(
Tnx, x

) ≤ k
1 − k

(d (x,Tx) − ϕ (d (x,Tx)))+
1 − k
k

ϕ (D)

1 − α
+ϕ̄ < ∞; ∀x ∈ A∪B (2:28)

Then the sequences {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are both bounded for any x Î A∪B.

Hence, the first part of Property (ii). If �:R0+ ® R0+ is identically zero then

ϕ̄ ≡ ϕ (x,Tx) = 0; ∀x Î A∪B so that ∃ lim
n→∞ d

(
Tn+m+1x,Tn+mx

)
= 0 from (2.23). Hence,

the lemma. □
The existence and uniqueness of a fixed point in A ∩ B if A and B are non-empty,

closed, and convex and (X,d) is complete follows in the subsequent result as its coun-

terpart in Theorem 2.2 modified cyclic �-contractive constraint (2.21):

Theorem 2.9. if (X,d) is complete and A and B intersect and are non-empty, closed,

and convex then there is a unique fixed point z Î A∩B of T:A ∪ B ® A ∪B to which

all the sequences {Tnx} n∈N0, which are Cauchy sequences, converge; ∀x Î A∪B. □
Remark 2.7. Note that the nondecreasing function �:R0+ ® R0+ of the contractive

condition (2.21) is not monotone increasing under Lemma 2.5 since it possesses a

finite limit and it is then bounded. □
Remark 2.8. The case of T:A ∪ B ® A ∪B being a �-contraction, namely, d(Tx,Ty) ≤

d(x,y)-�(d(x,y)) + �(D) with strictly increasing �:R0+ ® R0+; ∀x Î A∪B, [1,2] implies,

since �(x) = 0 if and only if x = 0, implies the relation

d
(
Tx,Ty

) ≤ β1d
(
x, y

)
+ ϕ (D) < d

(
x, y

)
+ ϕ (D) ; ∀x, y (�= x) ∈ A ∪ B (2:29)

for some real constant 0 ≤ b1 = b1(x,y) < 1; ∀x,y(≠x) Î A∪B so that proceeding

recursively:
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d
(
Tn+1x,Tnx

) ≤
∏n

i=1
[β i]d (Tx, x)+ϕ (D)

(∑n

j=1

∏n

�=j+1
[β�]

)
≤ d (Tx, x)+Lϕ (D) , ∀x ∈ A∪B (2:30)

D ≤ lim sup
n→∞

d
(
Tn+1x,Tnx

) ≤ γ ϕ (D)

1 − β̄
; ∀x ∈ A ∪ B (2:31)

where β̄ := lim
n→∞

(∏n
i=1 [β i]

)1/n
< 1 and ∃ lim

n→∞ d(Tn+1x,Tnx) = 0; ∀x Î A∪B if �(D) =

D = 0, and one gets from Lemma 2.1(iii) that {Tnx} n∈N0 and
{
Tn+1x

}
n∈N0 are Cauchy

sequences which converge to a unique fixed point in A∩B if A and B are non-empty,

closed, and convex and (X,d) is complete [1]. □
Remark 2.9. Note that the constraint (2.1) implies in Lemma 2.1 and Theorem 2.2 that

(1-a-b) �(D) ≤ (1-a-b)D what implies �(D) ≤ D if max (a,b) > 0 since 0 ≤ a + b < 1. How-

ever, such a constraint in Lemma 2.3 and Theorem 3.4 implies that (1-a0-b0) �(D) ≤ (1-

a0-b0)D. □

3. Properties for the case that A and B do not intersect
This section considers the contractive conditions (2.1) and (2.21) for the case A∩B ≠ ∅
For such a case, Lemmas 2.1, 2.3, and 2.8 still hold. However, Theorems 2.2, 2.4, and

2.9 do not further hold since fixed points in A∩B cannot exist. Thus, the investigation

is centred in the existence of best proximity points. It has been proven in [1] that if T:

A ∪ B ® A ∪B is a cyclic �-contraction with A and B being weakly closed subsets of a

reflexive Banach space (X,|| ||) then, ∃(x,y) Î A × B such that D = d(x,y) = ||x-y||

where d:R0+ ® R0+ is a norm-induced metric, i.e., x and y are best proximity points.

Also, if T:A ∪ B ® A ∪B is a cyclic contraction ∃(x,y) Î A × B such that D = d(x,y) if

A is compact and B is approximatively compact with respect to A with both A and B

being subsets of a metric space (X,d) (i.e., if lim
n→∞ d

(
T2nx, y

)
= d

(
B, y

)
:= inf

z∈B
d
(
z, y

)
for

some y Î A and x Î B then the sequence {Tnx} n∈N0 has a convergent subsequence

[14]). Theorem 2.2 extends via Lemma 2.1 as follows for the case when A and B do

not intersect, in general:

Theorem 3.1. Assume that T:A ∪ B ® A ∪B is a modified weak �-contraction, that

is, a cyclic self-map satisfying the contractive condition (2.1) subject to the constraints

min (a,b) ≥ 0 and a +b < 1 with �:R0+ ® R0+ being nondecreasing with �(D) = D.

Assume also that A and B are non-empty closed and convex subsets of a uniformly

convex Banach space (X,|| ||). Then, there exist two unique best proximity points z Î
A, y Î B of T:A ∪ B ® A ∪B such that Tz = y, Ty = z to which all the sequences gen-

erated by iterations of T:A ∪ B ® A ∪B converge for any x Î A∪B as follows. The

sequences
{
T2nx

}
n∈N0

and
{
T2n+1x

}
n∈N0

converge to z and y for all x Î A, respectively,

to y and z for all x Î B. If A∩ B ≠ ∅ then z = y Î A∩B is the unique fixed point of T:

A ∪ B ® A ∪B
Proof: If D = 0, i.e., A and B intersect then this result reduces to Theorem 2.2 with

the best proximity points being coincident and equal to the unique fixed point. Con-

sider the case that A and B do not intersect, that is, D > 0 and take x Î A∪B. Assume

with no loss in generality that x Î A. It follows, since A and B are non-empty and

closed, A is convex and Lemma 3.1 (i) that:
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[
d
(
T2n+1x,T2nx

) → D ; d
(
T2n+1x,T2n+2x

) → D
] ⇒ d

(
T2(n+p)x,T2nx

)
→ 0 as n → ∞ (3:1)

(proven in Lemma 3.8 [14]). The same conclusion arises if x Î B since B is convex.

Thus,
{
T2nx

}
n∈N0

is bounded [Lemma 2.1 (ii)] and converges to some point z = z(x), being

potentially dependently on the initial point x, which is in A if x Î A, since A is closed, and

in B if x Î B since B is closed. Take with no loss in generality the norm-induced metric

and consider the associate metric space (X,d) which can be identified with (X, || ||) in this

context. It is now proven by contradiction that for every ε Î R+, there exists n0 Î N0 such

that d(T2mx,T2n+1x) ≤ D + ε for all m >n ≥ n0. Assume the contrary, that is, given some ε

Î R+, there exists n0 Î N0 such that d
(
T2mkx,T2nk+1x

)
> D + ε for all mk >nk ≥ n0 ∀k Î

N0. Then, by using the triangle inequality for distances:

D + ε < d
(
T2mkx,T2nk+1x

) ≤ d
(
T2mkx,T2mk+2x

)
+ d

(
T2mk+2x,T2nk+1x

)
as n → ∞ (3:2)

One gets from (3.1) and (3.2) that

lim inf
k→∞

(
d
(
T2mkx,T2mk+2x

)
+ d

(
T2mk+2x,T2nk+1x

))
= liminf

k→∞
d
(
T2mk+2x,T2nk+1x

)
> D+ε (3:3)

Now, one gets from (3.1), (3.3), �(D) ≥ D, and Lemma 2.1 (i) the following contradic-

tion:

D + ε < limsup
k→∞

d
(
T2mk+2x,T2nk+1x

) ≤ limsup
nk→∞

d
(
T2nk+2x,T2nk+1x

)
+ limsup

k→∞
d
(
T2mk+2x,T2nk+2x

)
= limsup

nk→∞
d
(
T2nk+2x,T2nk+1x

)
= D

(3:4)

As a result, d(T2mx,T2n+1x) ≤ D + ε for every given ε Î R+ and all m >n ≥ n0 for

some existing n0 Î N0. This leads by a choice of arbitrarily small ε to

D ≤ lim sup
n→∞

d
(
T2mx,T2n+1x

) ≤ D ⇒ ∃lim
n→∞ d

(
T2mx,T2n+1x

)
= D (3:5)

But
{
T2nx

}
n∈N0

is a Cauchy sequence with a limit z = T2z in A (respectively, with a

limit y = T2y in B) if x Î A (respectively, if x Î B) such that D = ||Tz-z|| = d(z,Tz)

(Proposition 3.2 [14]). Assume on the contrary that x Î A and
{
T2nx

}
n∈N0 → z �= T2z

as n ® ∞ so that T2z-Tz = z-Tz ≠ z-y so that since A is convex and (X,|| ||) is uni-

formly convex Banach space, then strictly convex, one has

D = d (z,Tz) = d
(
T2z + z

2
− Tz

)
=

∥∥∥∥T2z − Tz
2

+
z − Tz

2

∥∥∥∥ ≤
∥∥∥∥T2z − Tz

2

∥∥∥∥+
∥∥∥∥ z − Tz

2

∥∥∥∥ <
D
2
+
D
2

= D (3:6)

which is a contradiction so that z = T2z is a best approximation point in A of T:A ∪

B ® A ∪B. In the same way,
{
T2nx

}
n∈N0

is a Cauchy sequence with a limit T2y = y Î B

which is a best approximation point in B of T:A ∪ B ® A ∪B if x Î B since B is con-

vex and (X,|| ||) is strictly convex. We prove now that y = Tz. Assume, on the contrary

that y ≠ Tz with y = T2y,Tz = T3z Î B, z = T2z Î A, d(z,y) >D, d(Tz,Ty) ≥ D, d(Tz,z) =

d(Ty,y) = D, and �(D) = D. One gets from (2.1) since �: R0+ ® R0+ is non-decreasing

the following contradiction:

D < d
(
z, y

)
= d

(
T2z,T2y

) ≤ α

[
d
(
T2z,Tz

)
d
(
T2y,Ty

)
d
(
Tz,Ty

) − ϕ

(
d
(
T2z,Tz

)
d
(
T2y,Ty

)
d
(
Tz,Ty

)
)]

+β
(
d
(
Tz,Ty

) − ϕ
(
d
(
Tz,Ty

)))
+D (α + β)D + (1 − α − β)D = D

(3:7)
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Thus, z = Ty = T2z = T3y and y = Tz = T2y = T3z are the best proximity points of T:

A ∪ B ® A ∪B in A and B. Finally, we prove that the best proximity points z Î A and

y Î B are unique. Assume that z1(≠ z2) Î A are two distinct best proximity points of

T:A ∪ B ® A ∪B in A. Thus, Tz1(≠ Tz2) Î B are two distinct best proximity points in

B. Otherwise, Tz1 = Tz2 ⇒ T2z1 = T2z2 ⇒ z1 = z2, since z1 and z1 are best proximity

points, contradicts z1 ≠ z2. One gets from Lemma 2.1(i) and d(Tz1,T
2z2) = d(Tz2,T

2z1)

= d(z1,Tz2) = d(z2,Tz1) = D. Through a similar argument to that concluding with (3.6)

with the convexity of A and the strict convexity of (X,|| ||), guaranteed by its uniform

convexity, one gets the contradiction:

≤
∥∥∥∥T2z1 − Tz1

2

∥∥∥∥ +

∥∥∥∥z2 − Tz2
2

∥∥∥∥ <
D
2

+
D
2

= D (3:8)

since T2z1-Tz1 ≠ Tz1-z1. Thus, z1 is the unique best proximity point in A while Tz1 is

the unique best proximity point in B. □
In a similar way, Theorem 2.4 extends via Lemma 2.3 as follows from the modifica-

tion (2.12) of the contractive condition (2.1):

Theorem 3.2. Assume the following hypotheses:

(1) T:A ∪ B ® A ∪B is a modified weak �-contraction, that is, a cyclic self-map satis-

fying the contractive condition (2.12) subject to the constraints min (a0,b0) ≥ 0, min

(a0,b0) > 0, and a0 + b0 ≤ 1.

(2) �: R0+ ® R0+ is non-decreasing subject to ϕ (d (Tx, x)) ≥ d (Tx, x) − 1 − α

1 − α − β
M0;

∀x Î A∪B and �(D) = (1 + a+b-a0-b0)D for some non-negative real constants

M0 ≤ 1 − α − β

1 − α
D, 0 ≤ a ≤ a0 and 0 ≤ b ≤ b0 with a + b < 1.

(3) A and B are non-empty closed and convex subsets of a uniformly convex Banach

space (X,|| ||).

Then, there exist two unique best proximity points z Î A, y Î B of T:A ∪ B ® A ∪B
such that Tz = y, Ty = z to which all the sequences generated by iterations of T:A ∪ B ®

A ∪B converge for any x Î A∪B as follows. The sequences
{
T2nx

}
n∈N0

and
{
T2n+1x

}
n∈N0

converge to z and y for all x Î A, respectively, to y and z for all x Î B If A ∩B ≠ ∅ then

z = y Î A∩B is the unique fixed point of T:A ∪ B ® A ∪B.
Outline of proof: It is similar to that of Theorem 3.1 since (3.1) to (3.3) still hold,

(3.4) and (3.5) still hold as well from Lemma 2.3(ii) as well as the results from the con-

tradictions (3.6)-(3.8). □
The following result may be proven using identical arguments to those used in the

proof of Theorem 3.1 by using Lemma 2.8 starting with its proven convergence prop-

erty (2.23) for distances:

Theorem 3.3. Assume that T:A ∪ B ® A ∪B is a cyclic self-map satisfying the con-

tractive condition (2.21) with min (a,b) ≥ 0, a + b < 1, and �: R0+ ® R0+ is non-

decreasing having a finite limit lim
x→∞ φ (x) = φ̄ and subject to �(0) = 0 Assume also that

�: R0+ ® R0+ satisfies limsup
x→+∞

(x − ϕ (x)) >
ϕ (D)

1 − α − β
. Finally, assume that A and B are

non-empty closed and convex subsets of a uniformly convex Banach space (X,|| ||).

Then, there exist two unique best proximity points z Î A, y Î B of T:A ∪ B ® A ∪B
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such that Tz = y, Ty = z to which all the sequences generated by iterations of T:A ∪ B ®

A ∪B converge for any x Î A∪B as follows. The sequences
{
T2nx

}
n∈N0

and
{
T2n+1x

}
n∈N0

converge to z and y for all x Î A, respectively, to y and z for all x Î B. If A∩B ≠ ∅ then

z = y Î A∩B is the unique fixed point of T:A ∪ B ® A ∪B. □
Example 3.4. The first contractive condition (2.1) is equivalent to

d
(
Tx,T2x

) ≤ 1
1 − α

(
βd (x,Tx) + ϕ (D) − αϕ

(
d
(
Tx,T2x

)) − βϕ (d (x,Tx))
)
. (3:9)

To fix ideas, we first consider the trivial particular case �(x) ≡ 0 (⇒ �(D) = 0); ∀x Î R0

+. This figures out that T:A ∪ B ® A ∪B is a strict contraction if A∩B is non-empty and

closed, min (a,b) ≥ 0, and a + b < 1. Then, it is known from the contraction principle

that there is a unique fixed point in A∩B. Note that in this case �: R0+ ® 0. If a + b = 1

then T:A ∪ B ® A ∪B is non-expansive fulfilling d(Tp+1x,Tpx) = d(x,Tx); ∀x Î A∪B, ∀p
Î z0+. The convergence to fixed points cannot be proven. It is of interest to see if T:A ∪
B ® A ∪B being a weak contraction with �: R0+ ® R0+ being non-decreasing guarantees

the convergence to a fixed point if a + b = 1 and �(0) = D = 0 according to the modified

contractive condition (2.12). In this case, if �(x) > 0; ∀x Î R+ then convergence to a

fixed point is still potentially achievable since

d
(
Tx,T2x

) ≤ d (x,Tx)− 1
1 − α

(
αϕ

(
d
(
Tx,T2x

))
+ βϕ (d (x,Tx))

)
< d (x,Tx) if x �= Tx. (3:10)

Now, consider the discrete scalar dynamic difference equation of respective state and

control real sequences {xk}k∈Z0+ and {uk}k∈Z0+ and dynamics and control parametrical

real sequences {ak}k∈Z0+ and {bk �= 0}k∈Z0+, respectively:

xk+1 = akxk + bkuk + ηk; ∀k ∈ Z0+, x0 ∈ R (3:11)

where {x̄k}k∈Z0+, of general term defined by x̄k := (x0, x1, ... , xk), is a sequence of real

kth tuples built with state values up till the kth sampled value such that the real

sequence {ηk}k∈Z0+ with ηk = ηk (x̄k) is related to non-perfectly modeled effects which

can include, for instance, contributions of unmodeled dynamics (if the real order of

the difference equation is larger than one), parametrical errors (for instance, the

sequences of parameters are not exactly known), and external disturbances. It is

assumed that upper- and lower-bounding real sequences {η̄k}k∈Z0+ and
{
η̄0
k

}
k∈Z0+

are

known which satisfy η̄k = η̄k (x̄k) ≥ ηk ≥ η̄0
k = η̄0

k (x̄k); ∀k Î z0+. Define a 2-cyclic self-

mapping T:A ∪ B ® A ∪B with T(A)⊆ B and T(B)⊆ A for some sets A ⊂ R0+ := {z Î
R:z ≥ 0} and B ⊂ R0- := {z Î R:z ≤ 0} being non-empty bounded connected sets con-

taining {0}, so that D = 0, such that Txk = xk+1; ∀k Î z0+ for the control sequence
{uk}k∈Z0+ lying in some appropriate class to be specified later on. Note from (3.11)

that

xk+2 = akxk+1 + bk+1uk+1 + ηk+1

= ak+1akxk + ak+1bkuk + bk+1uk+1 + ak+1ηk + ηk+1; ∀k ∈ Z0+, x0 ∈ A ∪ B
(3:12)

.

An equivalent expression to (3.9) if �(D) = D = 0 is by using the Euclidean

distance:
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αϕ (|xk+1| + |xk+2|)+βϕ (|xk| + |xk+1|) ≤ β (|xk| + |xk+1|)−(1 − α) (|xk+1| + |xk+2|) ; ∀k ∈ Z0+ (3:13)

.

Consider different cases as follows by assuming with no loss in generality that the

parametrical sequences {ak}k∈Z0+ and {bk}k∈Z0+ are positive:

(a) D = 0 Then

xk+2 = ak+1akxk + ak+1bkuk + bk+1uk+1 + ak+1ηk + ηk+1; ∀k ∈ Z0+, x0 ∈ A ∪ B (3:14)

Note that if xk ≥ 0 then xk+1 ≤ 0 and xk+2 ≤ 0 if

uk ≤ −akxk + η̄k

bk
≤ 0; uk+1 ≥ ak+1 (η̄k − akxk − bkuk) + η̄k+1

bk+1
; ∀k ∈ Z0+ (3:15)

If xk ≤ 0 then xk+1 ≥ 0 and xk+2≤ 0 if

uk ≥ η̄k − akxk
bk

; uk+1 ≤ −ak+1 (η̄k + akxk + bkuk) + η̄k+1

bk+1
; ∀k ∈ Z0+ (3:16)

.

Thus, if x0 ≥ 0 then the control law is

u2k ≤ −a2kx2k + η̄2k

b2k
≤ 0; u2k+1 ≥ a2k+1 (η̄2k − a2kx2k − b2ku2k) + η̄2k+1

b2k+1
; ∀k ∈ Z0+ (3:17)

and if x0 < 0 then

u2k ≥ η̄2k − a2kx2k
b2k

; u2k+1 ≤ −a2k+1 (η̄2k + a2kx2k + b2ku2k) + η̄2k+1

b2k+1
; ∀k ∈ Z0+ (3:18)

The stabilization and convergence of the state sequence to zero is achieved by using

a control sequence that makes compatible (3.16) and (3.17) with (3.13). First, assume

x0 ≤ 0 and rewrite the controls (3.17) in equivalent equality form as:

u2k = −a2kx2k + η̄2k + ε2k

b2k
; u2k+1 =

a2k+1 (η̄2k − a2kx2k − b2ku2k) + η̄2k+1 + ε2k+1

b2k+1
; ∀k ∈ Z0+ (3:19)

for any non-negative real sequence {εk}k∈Z0+ to be defined so that (3.13) holds. Then

(3.11) and (3.14) lead to:

−ε02k = η̄0
2k − η̄2k − ε2k ≤ x2k+1 = a2kx2k + b2ku2k + η2k = η2k − η̄2k − ε2k ≤ −ε2k ≤ 0

⇒ ε02k ≥ |x2k+1| ≥ ε2k; ∀k ∈ Z0+
(3:20)

ε02k+1 = 2 (a2k+1η̄2k + η̄2k+1) + ε2k+1

≥ x2k+2 = a2k+1a2kx2k + a2k+1b2ku2k + b2k+1u2k+1 + a2k+1η2k + η2k+1

= a2k+1 (η̄2k + η2k) + η̄2k+1 + η2k+1 + ε2k+1 ≥ ε2k+1 ≥ 0

⇒ ε02k+1 ≥ |x2k+2| ≥ ε2k+1; ∀k ∈ Z0+

(3:21)

for the given controls (3.19). Then, (3.13) becomes for x0 Î A:

αϕ (|x2k+1| + |x2k+2|)+βϕ (|x2k| + |x2k+1|)+(1 − α) (|x2k+1| + |x2k+2|) ≤ β (|x2k| + |x2k+1|) ; ∀k ∈ Z0+ (3:22)

which is guaranteed from (3.20) and (3.21), without a need for directly testing the

solution of the difference equation, if the sequence {uk}k∈Z0+ can be chosen to have

zero limit while satisfying:
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αϕ
(
ε02k + ε02k+1

)
+ βϕ

(
ε02k−1 + ε02k

)
+ (1 − α)

(
ε02k + ε02k+1

) ≤ β (ε2k−1 + ε2k) ; ∀k ∈ Z0+ (3:23)

for some upper-bounding sequence
{
ε0k

}
k∈Z0+

satisfying (3.20) and (3.21) and some

given non-decreasing function �:R0+ ® R0+. This implies that xk ® 0 as k ® ∞, which

is the unique fixed point of T:A ∪ B ® A ∪B, by using the proposed control law

(3.19). Note the following:

(1) Even, although {εk}k∈Z0+ converges to zero, it is not required for the contribution

of the non-perfectly modeled part of the model to converge to zero. It can suffice, for

instance, η2k → η̄2k; η2k+1 → − (η̄2k+1 + 2a2k+1η̄2k) as k ® ∞ It is not necessary that
{ηk}k∈Z0+ be convergent fulfilling |η̄k| → |ηk| → η̂ < ∞ as k ® ∞ for some non-negative

real η̂ = η̂ (x̄k). However, there are particular cases in this framework as, for instance,

|η̄k| → |ηk| → 0 as k ® ∞ or ηk → η̂ > 0; a2k+1 ® 1 as k ® ∞.

(2) The constraints (3.23) imply �(x) = 0 for x Î [0,x0] and some x0 Î R0+ but not

that �:R0+ ® R0+ is strictly increasing or that �(x) = 0 if and only if x = 0.

If x0 Î B, then x0 < 0, take u0 ≥ a0 |x0| + η̂0

b0
leading to x1 ≥ 0 The above stabiliza-

tion/convergence condition (3.23) still holds with the replacement k ® k-1 for any

k Î z+.

(b) Now, assume that D > 0, A:={z Î R+ :z ≥ D/2}, and B:={z Î R+ :z ≤ -D/2} are

bounded subsets of R and reconsider the above Case b modified so that T:A∪B ® A∪B
the sequence {εk}k∈Z0+ is subject to ε2k ≥ D/2, ε2k ® D/2 as k ®∞ and �(D) = D = dist

(A,B) Also, the stabilization constraints (3.22) and (3.23) become modified as follows:

αϕ (|x2k+1| + |x2k+2|) + βϕ (|x2k| + |x2k+1|) + (1 − α) (|x2k+1| + |x2k+2|)
≤ D + β (|x2k| + |x2k+1|) ;∀k ∈ Z0+

(3:24)

αϕ
(
ε02k + ε02k+1

)
+βϕ

(
ε02k−1 + ε02k

)
+(1 − α)

(
ε02k + ε02k+1

) ≤ D+β (ε2k−1 + ε2k) , ∀k ∈ Z0+ (3:25)

the second one being a sufficient condition for the first one to hold. Note that x2k
and x2k+1 both converge to best proximity points as k ® ∞ If x0 ≥ D/2 then x2k ®
D/2 and x2k+1 ® D/2 as k ® ∞ and if x0 ≤ -D/2 then x2k ® -D/2 and x2k+1 ® D/2.

Note that Case a is a particular version of Case b for D = 0.

(c) The conditions (3.23) and (3.25) can be generalized to the nonlinear potentially

non-perfectly modeled difference equation:

xk+1 = akg (xk) + bkuk + ηk; ∀k ∈ Z0+, x0 ∈ Rn (3:26)

for some function g : R ® R leading to the nonlinear real sequence
{
gk = g (xk)

}
k∈Z0+

.

Proceed by replacing the controls (3.19) by their counterparts obtained correspond-

ingly with right-hand side replacements xk ®gk = g(xk) by choosing the sequence
{εk}k∈Z0+ with �:[D,∞) ® [D,∞) satisfying �(x) = D for x Î [D,D + x0] and some x0 Î
R0+ so that (3.25) holds.

(d) Consider the nth-order nonlinear dynamic system:

xk+1 = Akxk + Bkuk; ∀k ∈ Z0+, x0 ∈ Rn (3:27)
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for some matrix function sequences sampling point-wise defined by Ak = Ak(xk) and

Bk = Bk(xk) of images in Rn×n and Rn×m, respectively; ∀k Î Z0+. Proceeding recursively

with (3.27) over n consecutive samples, one gets

x(k+1)n = ϕkxkn + Γkūkn; ∀k ∈ Z0+, x0 ∈ Rn (3:28)

with Fk = Fk(xkn) and Γk = Γk(xkn) as:

ϕk :=
∏(k+1)n−1

i=kn
[Ai];Γk :=

[
B(k+1)n−1

... A(k+1)n−1B(k+1)n−2
... · · · ...

∏(k+1)n−1
j=kn+1

[
Aj

]
Bkn

]
(3:29)

with the extended nm control real vector sequence over n consecutive samples being

defined by ukn = ukn (xk) :=
(
u(k+1)n−1, u(k+1)n−2, ..., ukn

)
T. Consider solutions of (3.28)

lying alternately in a non-empty closed bounded connected subset A of the first closed

orthant of Rnand in B = -A for each couple of subsequent samples for some extended

control sequence {uk}k∈Z0+ in Rm, for some integer 1 ≤ m ≤ n, assumed to exist. A

unique such a control sequence exist, if for instance, the controllability condition rank

Γk = n; ∀k Î z0+ holds for each matrix sequence Λk = Λk(xk) by achieving:

x(k+1)n = ϕkxkn + Γkūkn = −Λkxkn; ∀k ∈ Z0+, x0 ∈ A (3:30)

with Λk = Λk(xkn); ∀k Î z0+ defining some prefixed positive real matrix sequence tak-

ing values in Rn×nwith at least a non-zero entry per row. The closed-loop control

objective (3.30) is achievable by the feedback control sequence:

ūkn = −Γ T
k

(
ΓkΓ

T
k

)
(ϕk + Λk) xkn, ∀k ∈ Z0+; x0 ∈ A (3:31)

Thus, a modified constraint of the type (3.22), or (3.23), ensures that the solution of

(3.28), subject to the extended control (3.31), lies alternately in A and B for each two

consecutive samples for x0 Î A and converges to zero, while a modification of (3.24),

or (3.25), ensures that the solution lies alternately in B and A and converges to zero,

provided that Λkx0 Î A∪(-A); ∀x0 Î A∪(-A), ∀k Î z0+, i.e., A∪(-A) is Λk-invariant, ∀k Î
z0+. Furthermore, A and B are both Λ2k-invariant. Such a modifications are got directly

by replacing x(·) ® Λ(·)x(·), ε(·) ® Λ(·)ε(·) Note that the constraints (3.22), (3.23),

(3.24), and (3.25) now become n-vector constraints. The Euclidean distances are now

replaced by any Minkowski distance of order p (p-norm-induced distance for some

real p ≥ 1) in Rn as for instance, 1-norm-induced distance d1
(
x, y

)
=

∑n
i=1

∣∣xi − yi
∣∣, 2-

norm-induced (i.e., Euclidean) distance d2
(
x, y

)
=

(∑n
i=1

∣∣xi − yi
∣∣2)1/2

, p-norm-induced

distance dp
(
x, y

)
=

(∑n
i=1

∣∣xi − yi
∣∣p)1/p

, or infinity-norm-induced distance

d∞
(
x, y

)
= lim

p→∞

(∑n
i=1

∣∣xi − yi
∣∣p)1/p

= max
1≤i≤n

(∣∣xi − yi
∣∣).
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