Open Access

Fixed point and weak convergence theorems for point-dependent λ -hybrid mappings in Banach spaces

Young-Ye Huang¹, Jyh-Chung Jeng², Tian-Yuan Kuo³ and Chung-Chien Hong^{4*}

* Correspondence: chong@mail. npust.edu.tw ⁴Department of Industrial Management, National Pingtung University of Science and

University of Science and Technology, 1 Shuefu Rd., Neopu, Pingtung 91201, Taiwan Full list of author information is available at the end of the article

Abstract

The purpose of this article is to study the fixed point and weak convergence problem for the new defined class of point-dependent λ -hybrid mappings relative to a Bregman distance D_f in a Banach space. We at first extend the Aoyama-lemoto-Kohsaka-Takahashi fixed point theorem for λ -hybrid mappings in Hilbert spaces in 2010 to this much wider class of nonlinear mappings in Banach spaces. Secondly, we derive an Opial-like inequality for the Bregman distance and apply it to establish a weak convergence theorem for this new class of nonlinear mappings. Some concrete examples in a Hilbert space showing that our extension is proper are also given.

2010 MSC: 47H09; 47H10.

Keywords: fixed point, Bregman distance, Gâteaux differentiable, subdifferential

1 Introduction

Let *C* be a nonempty subset of a Hilbert space *H*. A mapping $T: C \rightarrow H$ is said to be

- (1.1) nonexpansive if $||Tx Ty|| \le ||x y||, \forall x, y \in C$, cf. [1,2];
- (1.2) nonspreading if $||Tx Ty||^2 \le ||x y||^2 + 2 \langle x Tx, y Ty \rangle, \forall x, y \in C, cf. [3-5];$
- (1.3) hybrid if $||Tx Ty||^2 \le ||x y||^2 + \langle x Tx, y Ty \rangle$, $\forall x, y \in C$, cf. [3,5-7].

As shown in [3], (1.2) is equivalent to

 $2||Tx - Ty||^2 \le ||Tx - y||^2 + ||x - Ty||^2$

for all $x, y \in C$.

In 1965, Browder [1] established the following

Browder fixed point Theorem. Let C be a nonempty closed convex subset of a Hilbert space H, and let $T : C \rightarrow C$ be a nonexpansive mapping. Then, the following are equivalent:

- (a) There exists $x \in C$ such that $\{T^n x\}_{n \in \mathbb{N}}$ is bounded;
- (b) T has a fixed point.

The above result is still true for nonspreading mappings which was shown in Kohsaka and Takahashi [4]. (We call it the Kohsaka-Takahashi fixed point theorem.)

Recently, Aoyama et al. [8] introduced a new class of nonlinear mappings in a Hilbert space containing the classes of nonexpansive mappings, nonspreading mappings and hybrid mappings. For $\lambda \in \mathbb{R}$, they call a mapping $T: C \to H$

© 2011 Huang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (1.4) λ -hybrid if $||Tx - Ty||^2 \leq ||x - y||^2 + \lambda \langle x - Tx, y - Ty \rangle, \forall x, y \in C.$

And, among other things, they establish the following

Aoyama-Iemoto-Kohsaka-Takahashi fixed point Theorem. [8]*Let* C *be a nonempty closed convex subset of a Hilbert space* H*, and let* $T : C \to C$ *be a* λ *-hybrid mapping. Then, the following are equivalent:*

(a) There exists $x \in C$ such that $\{T^n x\}_{n \in \mathbb{N}}$ is bounded;

(b) T has a fixed point.

Obviously, T is nonexpansive if and only if it is 0-hybrid; T is nonspreading if and only if it is 2-hybrid; T is hybrid if and only if it is 1-hybrid.

Motivated by the above works, we extend the concept of λ -hybrid from Hilbert spaces to Banach spaces in the following way:

Definition 1.1. For a nonempty subset C of a Banach space X, a Gâteaux differentiable convex function $f: X \to (-\infty, \infty]$ and a function $\lambda : C \to \mathbb{R}$, a mapping $T: C \to X$ is said to be point-dependent λ -hybrid relative to D_f if

(1.5) $D_f(Tx, Ty) \leq D_f(x, y) + \lambda(y) \langle x - Tx, f(y) - f(Ty) \rangle, \forall x, y \in C,$

where D_f is the Bregman distance associated with f and f(x) denotes the Gâteaux derivative of f at x.

In this article, we study the fixed point and weak convergence problem for mappings satisfying (1.5). This article is organized in the following way: Section 2 provides preliminaries. We investigate the fixed point problem for point-dependent λ -hybrid mappings in Section 3, and we give some concrete examples showing that even in the setting of a Hilbert space, our fixed point theorem generalizes the Aoyama-Iemoto-Kohsaka-Takahashi fixed point theorem properly in Section 4. Section 5 is devoting to studying the weak convergence problem for this new class of nonlinear mappings.

2 Preliminaries

In what follows, X will be a real Banach space with topological dual X^* and $f: X \to (-\infty,\infty]$ will be a convex function. \mathcal{D} denotes the domain of f, that is,

 $\mathcal{D} = \{x \in X : f(x) < \infty\},\$

and \mathcal{D}° denotes the algebraic interior of \mathcal{D} , i.e., the subset of \mathcal{D} consisting of all those points $x \in \mathcal{D}$ such that, for any $y \in X \setminus \{x\}$, there is z in the open segment (x, y) with $[x, z] \subseteq \mathcal{D}$. The topological interior of \mathcal{D} , denoted by $Int(\mathcal{D})$, is contained in \mathcal{D}° . f is said to be proper provided that $\mathcal{D} \neq \emptyset$. f is called lower semicontinuous (l.s.c.) at $x \in X$ if $f(x) \leq \liminf_{y \to x} f(y)$. f is strictly convex if

 $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$

for all $x, y \in X$ and $\alpha \in (0, 1)$.

The function $f: X \to (-\infty, \infty]$ is said to be Gâteaux differentiable at $x \in X$ if there is $f(x) \in X^*$ such that

$$\lim_{t\to 0}\frac{f(x+t\gamma)-f(x)}{t}=\langle \gamma,f'(x)\rangle$$

for all $y \in X$.

The Bregman distance D_f associated with a proper convex function f is the function $D_f : \mathcal{D} \times \mathcal{D} \rightarrow [0, \infty]$ defined by

$$D_f(y, x) = f(y) - f(x) + f^{\circ}(x, x - y),$$
(1)

where $f^{\circ}(x, x - y) = \lim_{t \to 0^+} \frac{f(x + t(x - y)) - f(x)}{t}$. $D_f(y, x)$ is finite valued if and only if $x \in \mathcal{D}^{\circ}$, cf. Proposition 1.1.2 (iv) of [9]. When f is Gâteaux differentiable on D, (1)

 $x \in \mathcal{D}^{0}$, cf. Proposition 1.1.2 (iv) of [9]. When f is Gateaux differentiable on D, (1) becomes

$$D_f(y,x) = f(y) - f(x) - \langle y - x, f'(x) \rangle, \tag{2}$$

and then the modulus of total convexity is the function $v_f : \mathcal{D}^\circ \times [0, \infty) \to [0, \infty]$ defined by

$$v_f(x, t) = \inf\{D_f(y, x) : y \in \mathcal{D}, ||y - x|| = t\}.$$

It is known that

$$\nu_f(x,ct) \ge c\nu_f(x,t) \tag{3}$$

for all $t \ge 0$ and $c \ge 1$, cf. Proposition 1.2.2 (ii) of [9]. By definition it follows that

$$D_f(y, x) \ge v_f(x, ||y - x||).$$
 (4)

The modulus of uniform convexity of *f* is the function $\delta_f : [0, \infty) \to [0, \infty]$ defined by

$$\delta_f(t) = \inf \left\{ f(x) + f(y) - 2f\left(\frac{x+y}{2}\right) : x, y \in \mathcal{D}, ||x-y|| \ge t \right\}.$$

The function *f* is called uniformly convex if $\delta_f(t) > 0$ for all t > 0. If *f* is uniformly convex then for any $\varepsilon > 0$ there is $\delta > 0$ such that

$$f\left(\frac{x+\gamma}{2}\right) \le \frac{f(x)}{2} + \frac{f(\gamma)}{2} - \delta \tag{5}$$

for all $x, y \in \mathcal{D}$ with $||x - y|| \ge \varepsilon$.

Note that for $\gamma \in \mathcal{D}$ and $x \in \mathcal{D}^{\circ}$, we have

$$f(x) + f(y) - 2f\left(\frac{x+y}{2}\right) \\ = f(y) - f(x) - \frac{f(x+\frac{y-x}{2}) - f(x)}{\frac{1}{2}} \\ \le f(y) - f(x) - f^{\circ}(x, y-x) \le D_f(y, x),$$

where the first inequality follows from the fact that the function $t \rightarrow f(x + tz) - f(x)/t$ is nondecreasing on $(0, \infty)$. Therefore,

$$\nu_f(x,t) \ge \delta_f(t) \tag{6}$$

whenever $x \in \mathcal{D}^{\circ}$ and $t \ge 0$. For other properties of the Bregman distance D_{f} , we refer readers to [9].

The normalized duality mapping *J* from *X* to 2^{X^*} is defined by

$$Jx = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}$$

for all $x \in X$.

When $f(x) = ||x||^2$ in a smooth Banach space *X*, it is known that f(x) = 2J(x) for $x \in X$, cf. Corollaries 1.2.7 and 1.4.5 of [10]. Hence, we have

$$D_f(y, x) = ||y||^2 - ||x||^2 - \langle y - x, f'(x) \rangle$$

= $||y||^2 - ||x||^2 - 2\langle y - x, Jx \rangle$
= $||y||^2 + ||x||^2 - 2\langle y, Jx \rangle.$

Moreover, as the normalized duality mapping J in a Hilbert space H is the identity operator, we have

$$D_f(y,x) = ||y||^2 + ||x||^2 - 2\langle y,x\rangle = ||y-x||^2.$$

Thus, in case λ is a constant function and $f(x) = ||x||^2$ in a Hilbert space, (1.5) coincides with (1.4). However, in general, they are different.

A function $g: X \to (-\infty,\infty]$ is said to be subdifferentiable at a point $x \in X$ if there exists a linear functional $x^* \in X^*$ such that

 $g(y) - g(x) \ge \langle y - x, x^* \rangle, \qquad \forall y \in X.$

We call such x^* the subgradient of g at x. The set of all subgradients of g at x is denoted by $\partial g(x)$ and the mapping $\partial g: X \to 2^{X^*}$ is called the subdifferential of g. For a l.s.c. convex function f, ∂f is bounded on bounded subsets of $Int(\mathcal{D})$ if and only if f is bounded on bounded subsets of $Int(\mathcal{D})$ if and only if f is bounded on bounded subsets there, cf. Proposition 1.1.11 of [9]. A proper convex l.s.c. function f is Gâteaux differentiable at $x \in Int(\mathcal{D})$ if and only if it has a unique subgradient at x; in such case $\partial f(x) = f(x)$, cf. Corollary 1.2.7 of [10].

The following lemma will be quoted in the sequel.

Lemma 2.1. (Proposition 1.1.9 of [9]) If a proper convex function $f: X \to (-\infty, \infty]$ is Gâteaux differentiable on $Int(\mathcal{D})$ in a Banach space X, then the following statements are equivalent:

- (a) The function f is strictly convex on $Int(\mathcal{D})$.
- (b) For any two distinct points $x, y \in Int(\mathcal{D})$, one has $D_f(y, x) > 0$.
- (c) For any two distinct points $x, y \in Int(\mathcal{D})$, one has

 $\langle x-y,f'(x)-f'(y)\rangle > 0.$

Throughout this article, F(T) will denote the set of all fixed points of a mapping *T*.

3 Fixed point theorems

In this section, we apply Lemma 2.1 to study the fixed point problem for mappings satisfying (1.5).

Theorem 3.1. Let X be a reflexive Banach space and let $f : X \to (-\infty, \infty]$ be a l.s.c. strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$ and is bounded on bounded subsets of $Int(\mathcal{D})$. Suppose $C \subseteq Int(\mathcal{D})$ is a nonempty closed convex subset of X and $T : C \to C$ is point-dependent λ -hybrid relative to D_f for some function $\lambda : C \to \mathbb{R}$. For $x \in C$ and any $n \in \mathbb{N}$ define

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x,$$

where T^0 is the identity mapping on C. If $\{T^n x\}_{n \in \mathbb{N}}$ is bounded, then every weak cluster point of $\{S_n x\}_{n \in \mathbb{N}}$ is a fixed point of T.

Proof. Since *T* is point-dependent λ -hybrid relative to D_f we have, for any $y \in C$ and $k \in \mathbb{N} \cup \{0\}$,

$$\begin{split} 0 &\leq D_{f}(T^{k}x, \gamma) - D_{f}(T^{k+1}x, T\gamma) + \lambda(\gamma)\langle T^{k}x - T^{k+1}x, f'(\gamma) - f'(T\gamma) \rangle \\ &= f(T^{k}x) - f(\gamma) - \langle T^{k}x - \gamma, f'(\gamma) \rangle - f(T^{k+1}x) + f(T\gamma) + \langle T^{k+1}x - T\gamma, f'(T\gamma) \rangle \\ &+ \lambda(\gamma)\langle T^{k}x - T^{k+1}x, f'(\gamma) - f'(T\gamma) \rangle \\ &= [f(T^{k}x) - f(T^{k+1}x)] + [f(T\gamma) - f(\gamma)] + \langle \lambda(\gamma)(T^{k}x - T^{k+1}x) - T^{k}x + \gamma, f'(\gamma) \rangle \\ &+ \langle T^{k+1}x - T\gamma - \lambda(\gamma)(T^{k}x - T^{k+1}x), f'(T\gamma) \rangle. \end{split}$$

Summing up these inequalities with respect to k = 0, 1, ..., n - 1, we get

$$0 \le [f(x) - f(T^{n}x)] + n[f(Ty) - f(y)] + \langle \lambda(y)(x - T^{n}x) + ny - nS_{n}x, f'(y) \rangle + \langle (n+1)S_{n+1}x - x - nTy - \lambda(y)(x - T^{n}x), f'(Ty) \rangle.$$

Dividing the above inequality by *n*, we have

$$0 \leq \frac{f(x) - f(T^{n}x)}{n} + [f(Ty) - f(y)] + \left(\frac{\lambda(y)(x - T^{n}x)}{n} + y - S_{n}x, f'(y)\right) + \left(\frac{n+1}{n}S_{n+1}x - \frac{x}{n} - Ty - \frac{\lambda(y)(x - T^{n}x)}{n}, f'(Ty)\right).$$
(7)

Since $\{T^n x\}_{n \in \mathbb{N}}$ is bounded, $\{S_n x\}_{n \in \mathbb{N}}$ is bounded, and so, in view of X being reflexive, it has a subsequence $\{S_{n_i} x\}_{i \in \mathbb{N}}$ so that $S_{n_i} x$ converges weakly to some $v \in C$ as $n_i \rightarrow \infty$. Replacing *n* by n_i in (7), and letting $n_i \rightarrow \infty$, we obtain from the fact that $\{T^n x\}_{n \in \mathbb{N}}$ and $\{f(T^n x)\}_{n \in \mathbb{N}}$ are bounded that

$$0 \le f(T\gamma) - f(\gamma) + \langle \gamma - \nu, f'(\gamma) \rangle + \langle \nu - T\gamma, f'(T\gamma) \rangle.$$
(8)

Putting y = v in (8), we get

$$0 \leq f(Tv) - f(v) + \langle v - Tv, f'(Tv) \rangle,$$

that is,

$$0\leq -D_f(v,Tv),$$

from which follows that $D_f(v, Tv) = 0$. Therefore Tv = v by Lemma 2.1. \Box The following theorem comes from Theorem 3.1 immediately.

Theorem 3.2. Let X be a reflexive Banach space and let $f : X \to (-\infty, \infty]$ be a l.s.c. strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$ and is bounded on bounded subsets of $Int(\mathcal{D})$. Suppose $C \subseteq Int(\mathcal{D})$ is a nonempty closed convex subset of X and $T : C \to C$ is point-dependent λ -hybrid relative to D_f for some function $\lambda : C \to \mathbb{R}$. Then, the following two statements are equivalent:

- (a) There is a point $x \in C$ such that $\{T^n x\}_{n \in \mathbb{N}}$ is bounded.
- (b) $F(T) \neq \emptyset$.

Taking $\lambda(x) = \lambda$, a constant real number, for all $x \in C$ and noting the function $f(x) = ||x||^2$ in a Hilbert space *H* satisfies all the requirements of Theorem 3.2, the corollary below follows immediately.

Corollary 3.3. [8]*Let C* be a nonempty closed convex subset of Hilbert space H and suppose $T: C \rightarrow C$ *is* λ *-hybrid. Then, the following two statements are equivalent:*

(a) There exists $x \in C$ such that $\{T^n(x)\}_{n \in \mathbb{N}}$ is bounded.

(b) *T* has a fixed point.

We now show that the fixed point set F(T) is closed and convex under the assumptions of Theorem 3.2.

A mapping $T : C \to X$ is said to be quasi-nonexpansive with respect to D_f if $F(T) \neq \emptyset$ and $D_f(v, Tx) \leq D_f(v, x)$ for all $x \in C$ and all $v \in F(T)$.

Lemma 3.4. Let $f : X \to (-\infty,\infty]$ be a proper strictly convex function on a Banach space X so that it is Gâteaux differentiable on $Int(\mathcal{D})$, and let $C \subseteq Int(\mathcal{D})$ be a nonempty closed convex subset of X. If $T : C \to C$ is quasi-nonexpansive with respect to D_{f} then F(T) is a closed convex subset.

Proof. Let $x \in \overline{F(T)}$ and choose $\{x_n\}_{n \in \mathbb{N}} \subseteq F(T)$ such that $x_n \to x$ as $n \to \infty$. By the continuity of $D_f(\cdot, Tx)$ and $D_f(x_n, T_x) \leq D_f(x_n, x)$, we have

$$D_f(x, Tx) = \lim_{n \to \infty} D_f(x_n, Tx) \le \lim_{n \to \infty} D_f(x_n, x) = D_f(x, x) = 0.$$

Thus, due to the strict convexity of *f*, it follows from Lemma 2.2 that Tx = x. This shows F(T) is closed. Next, let $x, y \in F(T)$ and $\alpha \in [0, 1]$. Put $z = \alpha x + (1 - \alpha)y$. We show that Tz = z to conclude F(T) is convex. Indeed,

$$\begin{split} D_{f}(z, Tz) \\ &= f(z) - f(Tz) - \langle z - Tz, f'(Tz) \rangle \\ &= f(z) + [\alpha f(x) + (1 - \alpha)f(y)] - f(Tz) - \langle z - Tz, f'(Tz) \rangle - [\alpha f(x) + (1 - \alpha)f(y)] \\ &= f(z) + \alpha [f(x) - f(Tz) - \langle x - Tz, f'(Tz) \rangle] \\ &+ (1 - \alpha)[f(y) - f(Tz) - \langle y - Tz, f'(Tz) \rangle] - [\alpha f(x) + (1 - \alpha)f(y)] \\ &= f(z) + \alpha D_{f}(x, Tz) + (1 - \alpha)D_{f}(y, Tz) - [\alpha f(x) + (1 - \alpha)f(y)] \\ &\leq f(z) + \alpha D_{f}(x, z) + (1 - \alpha)D_{f}(y, z) - [\alpha f(x) + (1 - \alpha)f(y)] \\ &= f(z) + \alpha [f(x) - f(z) - \langle x - z, f'(z) \rangle] + (1 - \alpha)[f(y) - f(z) - \langle y - z, f'(z) \rangle] \\ &- [\alpha f(x) + (1 - \alpha)f(y)] \\ &= f(z) + \alpha f(x) - \alpha f(z) - \langle \alpha x - \alpha z, f'(z) \rangle + (1 - \alpha)f(y) - (1 - \alpha)f(z) \\ &- \langle (1 - \alpha)y - (1 - \alpha)z, f'(z) \rangle - [\alpha f(x) + (1 - \alpha)f(y)] \\ &= -\langle \alpha x + (1 - \alpha)y - (\alpha z + (1 - \alpha)z), f'(z) \rangle \\ &= -\langle 0, f'(z) \rangle = 0. \end{split}$$

Therefore, Tz = z by the strictly convex of *f*. This completes the proof. \Box

Proposition 3.5. Let $f: X \to (-\infty,\infty]$ be a proper strictly convex function on a reflexive Banach space X so that it is Gâteaux differentiable on $Int(\mathcal{D})$ and is bounded on bounded subsets of Int(D), and let $C \subseteq Int(\mathcal{D})$ be a nonempty closed convex subset of X. Suppose $T: C \to C$ is point-dependent λ -hybrid relative to D_f for some function λ : $C \to \mathbb{R}$ and has a point $x_0 \in C$ such that $\{T^n(x_0)\}_{n \in \mathbb{N}}$ is bounded. Then, T is quasi-nonexpansive with respect to D_f and therefore, F(T) is a nonempty closed convex subset of C.

Proof. In view of Theorem 3.2, $F(T) \neq \emptyset$. Now, for any $v \in F(T)$ and any $y \in C$, as T is point-dependent λ -hybrid relative to D_b we have

$$D_f(v, Ty) = D_f(Tv, Ty)$$

$$\leq D_f(v, y) + \lambda(y) \langle v - Tv, f'(y) - f'(Ty) \rangle$$

$$= D_f(v, y)$$

for all $y \in C$, so *T* is quasi-nonexpansive with respect to D_{f} and hence, F(T) is a nonempty closed convex subset of *C* by Lemma 3.4. \Box

For the remainder of this section, we establish a common fixed point theorem for a commutative family of point-dependent λ -hybrid mappings relative to D_{f} .

Lemma 3.6. Let X be a reflexive Banach space and let $f : X \to (-\infty,\infty]$ be a l.s.c. strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$ and is bounded on bounded subsets of $Int(\mathcal{D})$. Suppose $C \subseteq Int(\mathcal{D})$ is a nonempty bounded closed convex subset of X and $\{T_1, T_2, ..., T_N\}$ is a commutative finite family of point-dependent λ hybrid mappings relative to D_f for some function $\lambda : C \to \mathbb{R}$ from C into itself. Then $\{T_1, T_2, ..., T_N\}$ has a common fixed point.

Proof. We prove this lemma by induction with respect to *N*. To begin with, we deal with the case that N = 2. By Proposition 3.5, we see that $F(T_1)$ and $F(T_2)$ are nonempty bounded closed convex subsets of *X*. Moreover, $F(T_1)$ is T_2 -invariant. Indeed, for any $v \in F(T_1)$, it follows from $T_1T_2 = T_2T_1$ that $T_1T_2v = T_2T_1v = T_2v$, which shows that $T_2v \in F(T_1)$. Consequently, the restriction of T_2 to $F(T_1)$ is point-dependent λ -hybrid relative to D_f , and hence by Theorem 3.2, T_2 has a fixed point $u \in F(T_1)$, that is, $u \in F(T_1) \cap F(T_2)$.

By induction hypothesis, assume that for some $n \ge 2$, $E = \bigcap_{k=1}^{n} F(T_k)$ is nonempty. Then, *E* is a nonempty closed convex subset of *X* and the restriction of T_{n+1} to *E* is a point-dependent λ -hybrid mapping relative to D_f from *E* into itself. By Theorem 3.2, T_{n+1} has a fixed point in *X*. This shows that $E \cap F(T_{n+1}) \neq \emptyset$, that is, $\bigcap_{k=1}^{n+1} F(T_k) \neq \emptyset$, completing the proof. \Box .

Theorem 3.7. Let X be a reflexive Banach space and let $f: X \to (-\infty,\infty]$ be a l.s.c. strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$. Suppose $C \subseteq Int(\mathcal{D})$ is a nonempty bounded closed convex subset of X and $\{T_i\}_{i \in I}$ is a commutative family of pointdependent λ -hybrid mappings relative to D_f for some function $\lambda : C \to \mathbb{R}$ from C into itself. Then, $\{T_i\}_{i \in I}$ has a common fixed point.

Proof. Since *C* is a nonempty bounded closed convex subset of the reflexive Banach space *X*, it is weakly compact. By Proposition 3.5, each $F(T_i)$ is a nonempty weakly compact subset of *C*. Therefore, the conclusion follows once we note that $\{F(T_i)\}_{i \in I}$ has the finite intersection property by Lemma 3.6. \Box .

4 Examples

In this section, we give some concrete examples for our fixed point theorem. At first, we need a lemma.

Lemma 4.1. Let h and k be two real numbers in [0, 1]. Then, the following two statements are true.

(a) $(h^2 - k^2)^2 - (h - k)^2 \ge 0$, if $\frac{h+k}{2} > 0.5$. (b) $(h^2 - k^2)^2 - (h - k)^2 \le 0$, if $\frac{h+k}{2} \le 0.5$. *Proof.* First, we represent h and k by

$$h = 0.5 + a$$
, where $-0.5 \le a \le 0.5$,

and

$$k = 0.5 + b$$
, where $-0.5 \le b \le 0.5$.

Then, we have

$$(h^2 - k^2)^2 - (h - k)^2 = (a - b)^2(a + b)(a + b + 2).$$

If $\frac{h+k}{2} > 0.5$, then a + b > 0, and so through the above equation, we obtain that $(h^2 - k^2)^2 - (h - k)^2 \ge 0$. On the other hand, $\frac{h+k}{2} \le 0.5$ implies $a + b \le 0$, and hence, $(h^2 - k^2)^2 - (h - k)^2 \le 0$.

Example 4.2. Let $C = \{x \in l^2(\mathbb{N}) : x = (x_1, x_2, \dots, x_n, \dots), 0 \le x_i \le 1 - \frac{1}{i+1}\}$ and δ be a positive number so small that $\sqrt{\delta} < 0.5$. Define a mapping $T : C \to C$ by

$$Tx = (Tx_1, Tx_2, \dots, Tx_n, \dots) : Tx_i = \begin{cases} x_i^2, & \text{if } \sqrt{\delta} < x_i \le 1 - \frac{1}{i+1}; \\ \delta, & \text{if } \delta < x_i \le \sqrt{\delta}; \\ x_i, & \text{if } 0 \le x_i \le \delta. \end{cases}$$

Then for any $\lambda \in \mathbb{R}$, T is not λ -hybrid. However, for each $x \in C$, if we let $n_x = \min\{n : \sum_{i=n+1}^{\infty} x_i^2 \leq \delta^2\}$ and define $\lambda : C \to \mathbb{R}$ by

$$\lambda(x) = \frac{1}{\left(\frac{1}{n_{x}+1} - \frac{1}{(n_{x}+1)^{2}}\right)^{2}},$$

then T is point-dependent λ -hybrid, that is,

$$||Tx - Ty||^2 \le ||x - y||^2 + \lambda(y) \langle x - Tx, y - Ty \rangle$$
(9)

for all $x, y \in C$. Therefore, we can apply Theorem 3.2 to conclude that T has a fixed point, while the Aoyama-Iemoto-Kohsaka-Takahashi fixed point theorem fails to give us the desired conclusion.

Proof. Let *x* and *y* be two elements from *C* so that the m^{th} coordinate of *x* is $1 - \frac{1}{m+1}$ the m^{th} coordinate of *y* is 0.5 and the rest coordinates of *x* and *y* are zero. We have

$$||Tx - Ty||^{2} - ||x - y||^{2} - m \langle x - Tx, y - Ty \rangle$$

$$= \left[\left(1 - \frac{1}{m+1} \right)^{2} - (0.5)^{2} \right]^{2} - \left[\left(1 - \frac{1}{m+1} \right) - 0.5 \right]^{2}$$

$$-m \left[\left(1 - \frac{1}{m+1} \right) - \left(1 - \frac{1}{m+1} \right)^{2} \right] [0.5 - (0.5)^{2}]$$

$$= \frac{9}{16} - \frac{2}{m+1} + \frac{9}{2(m+1)^{2}} - \frac{4}{(m+1)^{3}} + \frac{1}{(m+1)^{4}} - \frac{m^{2}}{4(m+1)^{2}}$$

$$\rightarrow \frac{5}{16} \text{ as } m \rightarrow \infty.$$

Since the value of above equality is always positive as *m* is large enough, we conclude that there is no constant λ to satisfy the inequality:

$$||Tx - Ty||^2 \le ||x - y||^2 + \lambda \langle x - Tx, y - Ty \rangle$$

for all $x, y \in C$.

It remains to show that T satisfies the inequality (9). We can rewrite the inequality as

$$\sum_{i=1}^{\infty} (Tx_i - Ty_i)^2 \leq \sum_{i=1}^{\infty} (x_i - y_i)^2 + \sum_{i=1}^{\infty} \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

Thus, if we can show that for all $i \in \mathbb{N}$,

$$(Tx_i - Ty_i)^2 \leq (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i), \qquad (10)$$

then the assertion follows. We prove inequality (10) holds for all $i \in \mathbb{N}$ by considering the following two cases: (I) $i > \min\{n_x, n_y\}$ and (II) $i \le \min\{n_x, n_y\}$.

• Case (I). $i > \min\{n_x, n_y\}$.

In this case, at least one of x_i and y_i is less than or equal to δ . Suppose that $0 \le x_i \le \delta$. There are three subcases to discuss.

(I-1): If $\sqrt{\delta} < \gamma_i \le 1 - \frac{1}{i+1}$, then we have

$$(Tx_i - Ty_i)^2 = (x_i - y_i^2)^2 \le (x_i - y_i)^2 \le (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

(I-2): $\delta < \gamma_i \leq \sqrt{\delta}$, then we have

$$\begin{aligned} (Tx_i - Ty_i)^2 &= (x_i - \delta)^2 \leq (x_i - y_i)^2 \\ &\leq (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i). \end{aligned}$$

(I-3): If $0 \le y_i \le \delta$, then we have

$$(Tx_i-Ty_i)^2 = (x_i-y_i)^2 \leq (x_i-y_i)^2 + \lambda(y)(x_i-Tx_i)(y_i-Ty_i).$$

The case that $0 \le y_i \le \delta$ can be proved in the same manner.

• Case (II). $i \leq \min\{n_x, n_y\}$.

In this case, there are 9 subcases to discuss.

(II-1): $\sqrt{\delta} < x_i \le 1 - \frac{1}{i+1}$ and $\sqrt{\delta} < \gamma_i \le 1 - \frac{1}{i+1}$. If $\frac{x_i+\gamma_i}{2} \le 0.5$, it follows from Lemma 4.1 that

$$(Tx_i - Ty_i)^2 = (x_i^2 - y_i^2)^2 \le (x_i - y_i)^2 \le (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

If $\frac{x_i+y_i}{2} > 0.5$, then both x_i and y_i are greater than $\frac{1}{i+1}$, and so by considering the graph of the function $g(z) = z - z^2$ in \mathbb{R} , which is symmetric to the line L : x = 0.5, we have

$$(x_i - x_i^2) \ge \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2 \ge \left(\frac{1}{n_{\gamma}+1}\right) - \left(\frac{1}{n_{\gamma}+1}\right)^2$$

and

$$(\gamma_i - \gamma_i^2) \ge \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2 \ge \left(\frac{1}{n_\gamma + 1}\right) - \left(\frac{1}{n_\gamma + 1}\right)^2.$$

Consequently, we obtain

$$(Tx_i - Ty_i)^2 = (x_i^2 - y_i^2)^2 \le 1 \le \frac{1}{\left(\frac{1}{n_y + 1} - \frac{1}{(n_y + 1)^2}\right)^2} (x_i - x_i^2)(y_i - y_i^2)$$

$$\le (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

(II-2): $\delta < x_i < \sqrt{\delta}$ and $\sqrt{\delta} < \gamma_i \leq 1 - \frac{1}{i+1}$. If $y_i \leq 0.5$, then $\frac{x_i + y_i}{2} < 0.5$. Thus, from Lemma 4.1, we have

$$\begin{aligned} (Tx_i - Ty_i)^2 &= (\delta - y_i^2)^2 \leq (x_i^2 - y_i^2)^2 \\ &\leq (x_i - y_i)^2 \\ &\leq (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i). \end{aligned}$$

If $y_i > 0.5$, we have either

$$\delta < x_i \le \delta + \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2$$

or

$$\delta + \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2 < x_i \le \sqrt{\delta}.$$

When $\delta < x_i \le \delta + (\frac{1}{i+1}) - (\frac{1}{i+1})^2$, by considering the graph of the function g(z) = z z^2 in \mathbb{R} , we have

$$y_i - y_i^2 \ge \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2 \ge x_i - \delta$$

and thus, we obtain

$$\gamma_i - x_i \ge \gamma_i^2 - \delta > 0.$$

Therefore,

$$(Tx_i - Ty_i)^2 = (\delta - \gamma_i^2)^2$$

$$\leq (x_i - \gamma_i)^2 \leq (x_i - \gamma_i)^2 + \lambda(\gamma)(x_i - Tx_i)(\gamma_i - T\gamma_i).$$

When $\delta + \left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2 < x_i \le \sqrt{\delta}$, both of $x_i - \delta$ and $\gamma_i - \gamma_i^2$ are greater than $\left(\frac{1}{i+1}\right) - \left(\frac{1}{i+1}\right)^2$ and thus also greater than $\left(\frac{1}{n_{\gamma}+1}\right) - \left(\frac{1}{n_{\gamma}+1}\right)^2$.

Therefore,

$$(Tx_i - Ty_i)^2 = (\delta - y_i^2)^2 \le 1 \le \frac{1}{\left(\frac{1}{n_y + 1} - \frac{1}{(n_y + 1)^2}\right)^2} (x_i - \delta)(y_i - y_i^2)$$

$$\le (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

Likely, we can prove the case:

(II-3): $\sqrt{\delta} < x_i \le 1 - \frac{1}{i+1}$ and $\delta < \gamma_i \le \sqrt{\delta}$. (II-4): $0 \leq x_i \leq \delta$ and $\sqrt{\delta} < \gamma_i \leq 1 - \frac{1}{i+1}$.

Then, we have

$$(Tx_i - Ty_i)^2 = (x_i - y_i^2)^2 \le (x_i - y_i)^2 \le (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

Similarly, we can prove the case:

(II-5): $\sqrt{\delta} < x_i \le 1 - \frac{1}{i+1}$ and $0 \le y_i \le \delta$. (II-6): $\delta < x_i \le \sqrt{\delta}$ and $\delta < y_i \le \sqrt{\delta}$. In this case, we have

$$(Tx_i - Ty_i)^2 = (\delta - \delta)^2 = 0 \leq (x_i - y_i)^2 + \lambda(y)(x_i - Tx_i)(y_i - Ty_i).$$

(II-7): $0 \le x_i \le \delta$ and $\delta < y_i \le \sqrt{\delta}$. This case can be treated as (I-2). (II-8): $0 \le x_i \le \delta$ and $0 \le y_i \le \delta$. This case can be treated as (I-3). (II-9): $\delta < x_i \le \sqrt{\delta}$ and $0 \le y_i \le \delta$. This case can be treated as (I-2). \Box

To end this section, we give another example which shows that the concept of a nonspreading mapping in the sense of (1.2) is generally different from that of a 2-hybrid mapping relative to some D_f in Hilbert spaces.

Example 4.3. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^{10}$ for all $x \in \mathbb{R}$, and define $T : [0, 0.85] \to [0, 0.85]$ by $Tx = x^2$ for all $x \in [0, 0.85]$. Then, T is neither nonexpansive nor non-spreading, but it is λ -hybrid relative to D_f for any $\lambda \ge 0$. Thus, we can apply Theorem 3.2 to conclude T has a fixed point, while both of the Browder Fixed Point Theorem and the Kohsaka-Takahashi fixed point theorem fail.

Proof. It is easy to check that T is not nonexpansive. As for not nonspreading, taking x = 0.85 and y = 0.5, we have

$$||Tx - Ty||^2 = (x^2 - y^2)^2 = [(0.85)^2 - (0.5)^2]^2 = 0.22325625$$

while

$$||x - y||^{2} + 2 \langle x - Tx, y - Ty \rangle$$

= $(x - y)^{2} + 2(x - x^{2})(y - y^{2})$
= $(0.85 - 0.5)^{2} + 2[0.85 - (0.85)^{2}][0.5 - (0.5)^{2}] = 0.18625.$

Hence, *T* is not nonspreading in the sense of (1.2). It remains to show that for any $\lambda \ge 0$, *T* is λ -hybrid relative to D_{f} . Note at first that, for all $\lambda \ge 0$ and for all $x, y \in [0, 0.85]$,

$$\lambda \langle x - Tx, f'(y) - f'(Ty) \rangle$$

= $\lambda (x - x^2) (10y^9 - 10y^{18}) \ge 0$

Hence, it suffices to prove that T is 0-hybrid relative to D_{f} , that is, to show that

$$D_f(Tx, T\gamma) - D_f(x, \gamma) \leq 0, \quad \forall x, \gamma \in [0, 0.85].$$

Fixed any $x \in [0, 0.85]$, let $h(y) = D_t(T_x, T_y) - D_t(x, y)$. Then

$$\begin{split} h(y) &= f(Tx) - f(Ty) - \langle Tx - Ty, f'(Ty) \rangle - [f(x) - f(y) - \langle x - y, f'(y) \rangle] \\ &= x^{20} + 9y^{20} - 10x^2y^{18} - x^{10} - 9y^{10} + 10xy^9. \end{split}$$

We have

$$\begin{aligned} h'(\gamma) &= 180\gamma^{19} - 180x^2\gamma^{17} - 90\gamma^9 + 90x\gamma^8 \\ &= 90\gamma^8(2\gamma^{11} - 2x^2\gamma^9 - \gamma + x) \\ &= 90\gamma^8[2\gamma^9(\gamma^2 - x^2) - (\gamma - x)] \\ &= 90\gamma^8[2\gamma^9(\gamma + x)(\gamma - x) - (\gamma - x)] \\ &= 90\gamma^8(\gamma - x)[2\gamma^9(\gamma + x) - 1]. \end{aligned}$$

Since y and x are in [0, 0.85], one has

$$2\gamma^{9}(\gamma + x) - 1 < 2(0.85)^{9}(0.85 + 0.85) - 1 < 0,$$

and hence

$$h'(\gamma) \begin{cases} \geq 0 & \text{, if } \gamma \leq x; \\ \leq 0 & \text{, if } \gamma > x. \end{cases}$$

Moreover, we know h(y) = 0 if x = y. Therefore, h(y) is always less than or equal to zero and we have proved that $D_f(Tx, Ty) - D_f(x, y) \le 0$ for all $x, y \in [0, 0.85]$. \Box

5 Weak convergence theorems

In this section, we discuss the demiclosedness and the weak convergence problem of point-dependent λ -hybrid relative to D_f . We denote the weak convergence and strong convergence of a sequence $\{x_n\}$ to ν in a Banach space by $x_n \rightarrow \nu$ and $x_n \rightarrow \nu$, respectively. For a nonempty closed convex subset *C* of a Banach space *X*, a mapping *T* : *C* $\rightarrow X$ is demiclosed if for any sequence $\{x_n\}$ in *C* with $x_n \rightarrow \nu$ and $x_n - Tx_n \rightarrow 0$, one has $T\nu = \nu$.

We first derive an Opial-like inequality for the Bregman distance. For the Opial's inequality, we refer readers to Lemma 1 of [11].

Lemma 5.1. Suppose $f: X \to (-\infty,\infty]$ is a proper strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$ in a Banach space X and $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in \mathcal{D} such that $x_n \to v$ for some $v \in Int(\mathcal{D})$. Then

$$\liminf_{n\to\infty} D_f(x_n,\nu) < \liminf_{n\to\infty} D_f(x_n,\gamma), \quad \forall \gamma \in \operatorname{Int}(\mathcal{D}) \text{ with } \gamma \neq \nu.$$

Proof. Since

$$D_{f}(x_{n}, v) - D_{f}(x_{n}, y)$$

$$= f(x_{n}) - f(v) - \langle x_{n} - v, f'(v) \rangle - [f(x_{n}) - f(y) - \langle x_{n} - y, f'(y) \rangle]$$

$$= f(x_{n}) - f(v) - \langle x_{n} - v, f'(v) \rangle - f(x_{n}) + f(y) + \langle x_{n} - y, f'(y) \rangle]$$

$$+ \langle x_{n} - v, f'(y) \rangle - \langle x_{n} - v, f'(y) \rangle$$

$$= - [f(v) - f(y) - \langle v - y, f'(y) \rangle] + \langle x_{n} - v, f'(y) - f'(v) \rangle$$

$$= - D_{f}(v, y) + \langle x_{n} - v, f'(y) - f'(v) \rangle$$

and $x_n \rightarrow \nu$, we have

$$\lim_{n\to\infty} [D_f(x_n, v) - D_f(x_n, \gamma)] = -D_f(v, \gamma).$$

Consequently,

$$\begin{split} \liminf_{n \to \infty} D_f(x_n, \nu) &= \liminf_{n \to \infty} [(D_f(x_n, \nu) - D_f(x_n, \gamma)) + D_f(x_n, \gamma)] \\ &= \lim_{n \to \infty} (D_f(x_n, \nu) - D_f(x_n, \gamma)) + \liminf_{n \to \infty} D_f(x_n, \gamma) \\ &= -D_f(\nu, \gamma) + \liminf_{n \to \infty} D_f(x_n, \gamma), \end{split}$$

and hence in view of $D_f(v, y) > 0$ for $y \neq v$ we obtain

$$\liminf_{n\to\infty} D_f(x_n,\nu) < \liminf_{n\to\infty} D_f(x_n,\gamma).$$

1		
	_	

Proposition 5.2. Let $f: X \to (-\infty, \infty]$ be a strictly convex function so that it is Gâteaux differentiable on $Int(\mathcal{D})$ and is bounded on bounded subsets of $Int(\mathcal{D})$. Suppose C is a closed convex subset of $Int(\mathcal{D})$ and $T: C \to C$ is point-dependent λ -hybrid relative to D_f for some $\lambda : C \to \mathbb{R}$. Then T is demiclosed.

Proof. Let $\{x_n\}$ be any sequence in *C* with $x_n \rightarrow v$ and $x_n - Tx_n \rightarrow 0$. We have to show that Tv = v. Since *f* is bounded on bounded subsets, by Proposition 1.1.11 of [9] there exists a constant *M* >0 such that

$$\max\{\sup\{||f'(x_n)|| : n \in \mathbb{N}\}, ||\lambda(v)||, ||f'(Tv)||, ||f'(v)||\} \le M.$$

Rewrite $D_f(x_n, Tv)$ as

$$D_{f}(x_{n}, Tv) = f(x_{n}) - f(Tv) - \langle x_{n} - Tv, f'(Tv) \rangle$$

$$= f(x_{n}) + f(Tx_{n}) - f(Tx_{n}) - f(Tv) - \langle x_{n} - Tv, f'(Tv) \rangle$$

$$+ \langle Tx_{n} - Tv, f'(Tv) \rangle - \langle Tx_{n} - Tv, f'(Tv) \rangle$$

$$= [f(Tx_{n}) - f(Tv) - \langle Tx_{n} - Tv, f'(Tv) \rangle] + f(x_{n}) - f(Tx_{n})$$

$$+ \langle Tx_{n} - x_{n}, f'(Tv) \rangle$$

$$= D_{f}(Tx_{n}, Tv) + f(x_{n}) - f(Tx_{n}) + \langle Tx_{n} - x_{n}, f'(Tv) \rangle.$$
(11)

Noting $f(x_n) - f(Tx_n) \le \langle x_n - Tx_n, f(x_n) \rangle$ and T is point-dependent λ -hybrid relative to D_f we have from (11) that

$$D_{f}(x_{n}, Tv) \leq D_{f}(Tx_{n}, Tv) + \langle x_{n} - Tx_{n}, f'(x_{n}) \rangle - \langle x_{n} - Tx_{n}, f'(Tv) \rangle \leq D_{f}(x_{n}, v) + \lambda(v) \langle x_{n} - Tx_{n}, f'(v) - f'(Tv) \rangle + \langle x_{n} - Tx_{n}, f'(x_{n}) - f'(Tv) \rangle$$

$$\leq D_{f}(x_{n}, v) + [|\lambda(v)|(||f'(v)|| + ||f'(Tv)||) + (||f'(x_{n})|| + ||f'(Tv)||)]||x_{n} - Tx_{n}||$$

$$\leq D_{f}(x_{n}, v) + 2M(M + 1)||x_{n} - Tx_{n}||.$$
(12)

If $Tv \neq v$, then Lemma 5.1 and (12) imply that

$$\liminf_{n \to \infty} D_f(x_n, v)$$

<
$$\liminf_{n \to \infty} D_f(x_n, Tv)$$

\$\le \limits_n \infty D_f(x_n, v) + 2M(M+1)||x_n - Tx_n||] = \limits_{n \to \infty} D_f(x_n, v),

a contradiction. This completes the proof. \Box

A mapping $T: C \to C$ is said to be asymptotically regular if, for any $x \in C$, the sequence $\{T^{n+1}x - T^nx\}$ tends to zero as $n \to \infty$.

Theorem 5.3. Suppose the following conditions hold:

 $(5.3.1) f: X \to (-\infty,\infty]$ is l.s.c. uniformly convex function so that it is Gâteaux differentiable on Int(\mathcal{D}) and is bounded on bounded subsets of Int(\mathcal{D}) in a reflexive Banach space X.

(5.3.2) $C \subseteq Int(\mathcal{D})$ is a closed convex subset of X.

(5.3.3) $T: C \to C$ is point-dependent λ -hybrid relative to D_f for some $\lambda: C \to \mathbb{R}$ and is asymptotically regular with a bounded sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ for some $x_0 \in C$.

(5.3.4) The mapping $x \to f(x)$ for $x \in X$ is weak-to-weak* continuous.

Then for any $x \in C$, $\{T^n x\}_{n \in \mathbb{N}}$ is weakly convergent to an element $v \in F(T)$.

Proof. Let $v \in F(T)$ and $x \in C$. If $\{T^n x\}_{n \in \mathbb{N}}$ is not bounded, then there is a subsequence $\{T^{n_i} x\}_{i \in \mathbb{N}}$ such that $||v - T^{n_i} x|| \ge 1$ for all $i \in \mathbb{N}$ and $||v - T^{n_i} x|| \to \infty$ as $i \to \infty$. From (5.3.3), for any $n \in \mathbb{N}$, we have

$$D_f(v, T^{n+1}x) = D_f(Tv, T^{n+1}x)$$

$$\leq D_f(v, T^nx) + \lambda(T^nx) \{v - Tv, f'(T^nx) - f'(T^{n+1}x)\} = D_f(v, T^nx)$$

$$\leq D_f(v, x),$$

which in conjunction with (3), (4), and (6) implies that

$$D_f(v, x) \ge D_f(v, T^{n_i}x) \ge v_f(T^{n_i}x, ||v - T^{n_i}x||)$$

$$\ge ||v - T^{n_i}x||v_f(T^{n_i}x, 1)$$

$$\ge ||v - T^{n_i}x||\delta_f(1) \to \infty, \quad \text{as } i \to \infty,$$

a contradiction. Therefore, for any $x \in X$, $\{T^n x\}_{n \in \mathbb{N}}$ is bounded, and so it has a subsequence $\{T^{n_j} x\}_{j \in \mathbb{N}}$ which is weakly convergent to w for some $w \in C$. As $T^{n_j} x - T^{n_j+1} x \to 0$, it follows from the demiclosedness of T that $w \in F(T)$. It remains to show that $T^n x \to w$ as $n \to \infty$. Let $\{T^{n_k} x\}_{n \in \mathbb{N}}$ be any subsequence of $\{T^n x\}_{n \in \mathbb{N}}$ so that $T^{n_k} x \to u$ for some $u \in C$. Then $u \in F(T)$. Since both of $\{D_f(w, T^n x)\}_{n \in \mathbb{N}}$ and $\{D_f(u, T^n x)\}_{n \in \mathbb{N}}$ are decreasing, we have

$$\lim_{n\to\infty} [D_f(w,T^nx) - D_f(u,T^nx)] = \lim_{n\to\infty} [f(w) - f(u) - \langle w - u, f'(T^nx) \rangle] = a$$

for some $a \in \mathbb{R}$. Particularly, from (5.3.4) we obtain

$$a = \lim_{n_j \to \infty} [f(w) - f(u) - \langle w - u, f'(T^{n_j}x) \rangle] = f(w) - f(u) - \langle w - u, f'(w) \rangle$$

and

$$a = \lim_{n_k \to \infty} [f(w) - f(u) - \langle w - u, f'(T^{n_k}x) \rangle] = f(w) - f(u) - \langle w - u, f'(u) \rangle.$$

Consequently, $\langle w - u, f(w) - f(u) \rangle = 0$, and hence w = u by the strict convexity of f. This shows that $T^n x \to w$ for some $w \in F(T)$.

Adopting the technique of [8], we have the following ergodic theorem for pointdependent λ -hybrid mappings in Hilbert spaces.

Theorem 5.4. Suppose

(5.4.1) *C* is nonempty closed convex subset of a Hilbert space *H*. (5.4.2) $T: C \to C$ is a point-dependent λ -hybrid mapping for some function $\lambda: C \to \mathbb{R}$, that is,

$$||Tx - Ty||^2 \leq ||x - y||^2 + \lambda(y)\langle x - Tx, y - Ty\rangle, \quad \forall x, y \in C.$$

(5.4.3) $F(T) \neq \emptyset$.

Then for any $x \in C$, the sequence $\{S_n(x)\}_{n \in \mathbb{N}}$ defined by

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to some point $v \in F(T)$.

Author details

¹Center for General Education, Southern Taiwan University, 1 Nantai St., Yongkang Dist., Tainan 71005, Taiwan ²Nanjeon Institute of Technology, 178 Chaoqin Rd., Yenshui Dist., Tainan 73746, Taiwan ³Fooyin University, 151 Jinxue Rd., Daliao Dist., Kaohsiung 83102, Taiwan ⁴Department of Industrial Management, National Pingtung University of Science and Technology, 1 Shuefu Rd., Neopu, Pingtung 91201, Taiwan

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 25 August 2011 Accepted: 23 December 2011 Published: 23 December 2011

References

- Browder, FE: Fixed point theorems for noncompact mappings in a Hilbert space. Proc Nat Acad Sci USA. 53, 1272–1276 (1965). doi:10.1073/pnas.53.6.1272
- Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge 28 (1990)
- 3. lemoto, S, Takahashi, W: Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Anal. **71**, 2082–2089 (2009). doi:10.1016/j.na.2009.03.064
- Kohsaka, F, Takahashi, W: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch Math. 91, 166–177 (2008). doi:10.1007/s00013-008-2545-8
- Takahashi, W, Yao, JC: Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces. Taiwanese J Math. 15, 457–472 (2011)
- Kocourek, P, Takahashi, W, Yao, JC: Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiwanese J Math. 14, 2497–2511 (2010)
- Takahashi, W: Fixed point theorems for new nonlinear mappings in a Hilbert space. J Nonlinear Convex Anal. 11, 79–88 (2010)
- Aoyama, K, Iemoto, S, Kohsaka, F, Takahashi, W: Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces. J Nonlinear Convex Anal. 11, 335–343 (2010)
- 9. Butnariu, D, Iusem, AN: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, The Netherlands (2000)
- 10. Ciorãnescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, The Netherlands (1990)
- Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive. mappings Bull Amer Math Soc. 73, 591–597 (1967). doi:10.1090/S0002-9904-1967-11761-0

doi:10.1186/1687-1812-2011-105

Cite this article as: Huang *et al.*: Fixed point and weak convergence theorems for point-dependent λ -hybrid mappings in Banach spaces. *Fixed Point Theory and Applications* 2011 **2011**:105.