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Abstract

In this article, we introduce a new three-step iterative scheme for the mappings
which are asymptotically nonexpansive in the intermediate sense in Banach spaces.
Weak convergence theorem is established for this three-step iterative scheme in a
uniformly convex Banach space that satisfies Opial’s condition or whose dual space
has the Kadec-Klee property. Furthermore, we give an example of the nonself
mapping which is asymptotically nonexpansive in the intermediate sense but not
asymptotically nonexpansive. The results obtained in this article extend and improve
many recent results in this area.
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1 Introduction
Fixed-point iterations process for nonexpansive and asymptotically nonexpansive map-

pings in Banach spaces have been studied extensively by various authors [1-13]. In

1991, Schu [4] considered the following modified Mann iteration process for an

asymptotically nonexpansive map T on C and a sequence {an} in [0, 1]:

x1 ∈ C, xn+1 = αnxn + (1 − αn)Tnxn, n ≥ 1. (1:1)

Since then, Schu’s iteration process (1.1) has been widely used to approximate fixed

points of asymptotically nonexpansive mappings in Hilbert spaces or Banach spaces

[7,8,10-13]. Noor, in 2000, introduced a three-step iterative scheme and studied the

approximate solutions of variational inclusion in Hilbert spaces [6]. Later, Xu and

Noor [7], Cho et al. [8], Suantai [9], Plubtieng et al. [12] studied the convergence of

the three-step iterations for asymptotically nonexpansive mappings in a uniformly con-

vex Banach space which satisfies Opial’s condition or whose norm is Fréchet

differentiable.

In most of these articles, the operator T remains a self-mapping of a nonempty

closed convex subset C of a uniformly convex Banach space X. If, however, the domain

of T, D(T), is a proper subset of X (and this is the case in several applications), and T

maps D(T) into X, then the iterative sequence {xn} may fail to be well defined. One

method that has been used to overcome this is to introduce a retraction P. A subset C

Zhu et al. Fixed Point Theory and Applications 2011, 2011:106
http://www.fixedpointtheoryandapplications.com/content/2011/1/106

© 2011 Zhu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:qlhmath@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0


of X is said to be retract if there exists continuous mapping P : X ® C such that Px =

x for all x Î C and P is said to be a retraction. Recent results on approximation of

fixed points of nonexpansive or asymptotically nonexpansive nonself mappings can be

found in [14-19] and the references cited therein. For example, in 2003, Chidume et al.

[16] introduced the following modified Mann iteration process and got the conver-

gence theorems for asymptotically nonexpansive nonself-mapping:

x1 ∈ C, xn+1 = P[αnxn + (1 − αn)T(PT)n−1xn], n ≥ 1. (1:2)

Recently, Thianwan [18] generalized the iteration process (1.2) as follows: x1 Î C,

xn+1 = P[αnyn + (1 − αn)T1(PT1)n−1yn];

yn = P[βnxn + (1 − βn)T2(PT2)n−1xn].
(1:3)

Obviously, if bn = 1 for all n ≥ 1, then (1.3) reduces to (1.2). Thianwan [18] proved

the weak convergence theorem of the iteration process (1.3) in uniformly convex

Banach spaces that satisfy Opial’s condition.

The concept of asymptotically nonexpansive in the intermediate sense nonself map-

pings was introduced by Chidume et al. [20] as an important generalization of asymp-

totically nonexpansive in the intermediate sense self-mappings.

Definition 1.1 Let C be a nonempty subset of a Banach space X. Let P : X ® C be a

nonexpansive retraction of X onto C. A nonself mapping T : C ® X is called asymptoti-

cally nonexpansive in the intermediate sense if T is continuous and the following

inequality holds:

lim sup
n→+∞

sup
x,y∈C

(‖ T(PT)n−1x − T(PT)n−1y ‖ − ‖ x − y ‖) ≤ 0.

It should be noted that in [20-22], the asymptotically nonexpansive in the intermedi-

ate sense mapping is required to be uniformly continuous. In this article, we assume

the continuity of T instead of uniform continuity. Chidume et al. [20] gave the weak

convergence theorem for uniformly continuous nonself mapping which is asymptoti-

cally nonexpansive in the intermediate sense in uniformly convex Banach space whose

dual space has the Kadec-Klee property.

Inspired and motivated by [16,18,20], we investigate the weak convergence theorem

of three-step iteration process for continuous nonself mappings which are asymptoti-

cally nonexpansive in the intermediate sense in this article. Since the asymptotically

nonexpansive in the intermediate sense mappings are non-Lipschitzian and Bruck’s

Lemma [23] do not extend beyond Lipschitzian mappings, new techniques are needed

for this more general case. Utilizing the technique of the modulus of convexity and a

new demiclosed principle for nonself-maps of Kazor [24], we establish the weak con-

vergence theorem of the three-step iterative scheme in a uniformly convex Banach

space that satisfies Opial’s condition or whose dual space has the Kadec-Klee property,

which extends and improves the recently announced ones in [4,16,18-20]. It should be

noted that our theorems are new even in the case that the space has a Fréchet differ-

entiable norm. In the end, to illustrate our theorem, we give a nonself mapping which

is asymptotically nonexpansive in the intermediate sense but not asymptotically

nonexpansive.
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2 Preliminaries
Let X be a Banach space and X* be its dual, then the value of x* Î X* at x Î X will be

denoted by 〈x, x*〉 and we associate the set

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}.

It follows from the Hahn-Banach theorem that J(x) ≠ ∅ for any x Î X. Then the

multi-valued operator J : X ↦ X* is called the normalized duality mapping of X. Recall

that a Banach space X is said to be uniformly convex if for each ε Î [0, 2], the modu-

lus of convexity of X defined by

δ(ε) = inf{1 − 1
2

‖ x + y ‖:‖ x ‖≤ 1, ‖ y ‖≤ 1, ‖ x − y ‖≥ ε},

satisfies the inequality δ(ε) >0 for all ε >0. Note that every closed convex subset of a uni-

formly convex Banach space is a retract. We say that X has the Kadec-Klee property if for

every sequence {xn} ⊂ X, whenever xn ⇀ x with ||xn|| ® ||x||, it follows that xn ® x. We

would like to remark that a reflexive Banach space X with a Fréchet differentiable norm

implies that its dual X* has Kadec-Klee property, while the converse implication fails [25].

Recall that a Banach space X is said to satisfies Opial’s condition if xn ⇀ x and x ≠ y

implies that

lim sup
n→+∞

‖ xn − x ‖< lim sup
n→+∞

‖ xn − y ‖ .

The following lemmas are needed to prove our main results in next section.

Lemma 2.1 [5]Let the nonnegative number sequences {cn} and {wn} satisfy

cn+1 ≤ cn + wn, n ∈ N

If
+∞∑
n=1

wn < +∞, then lim
n→+∞ cnexists.

Lemma 2.2 [4]Suppose that X is a uniformly convex Banach space and for all posi-

tive integers n, 0 < p ≤ tn ≤ q <1. If {xn} and {yn} are two sequences of X such that

lim sup
n→+∞

‖ yn ‖≤ r, lim sup
n→+∞

‖ yn ‖≤ rand

lim
n→+∞ ‖ tnxn + (1 − tn)yn ‖= r

hold for some r ≥ 0. Then lim
n→+∞ ‖ xn − yn ‖= 0.

Lemma 2.3 [3]Let X be a uniformly convex Banach space. If ||x|| ≤ 1, ||y|| ≤ 1 and

||x - y|| ≥ ε >0, then for all l Î [0, 1],

‖ λx + (1 − λ)y ‖≤ 1 − 2λ(1 − λ)δ(ε).

Lemma 2.4 [26]Let X be a Banach space and J be the normalized duality mapping.

Then for given x, y Î X and j(x + y) Î J(x + y), we have

‖ x + y‖2 ≤‖ x‖2 + 2〈y, j(x + y)〉.

Lemma 2.5 (Demiclosed principle for nonself-map [24]) Let C be a nonempty closed

convex subset of a uniformly convex Banach space X and T : C ® X be a nonself map-

ping which is continuous and asymptotically nonexpansive in the intermediate sense. If

{xn} is a sequence in C converging weakly to x and
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lim
k→+∞

lim sup
n→+∞

‖ xn − T(PT)k−1xn ‖= 0,

then x Î F(T), i.e., Tx = x.

3 Main results
Let C be a nonempty closed convex subset of a uniformly convex Banach space X and

P : X ® C be a nonexpansive retraction from X onto C. Let T1, T2, T3 : C ® X be

three continuous nonself mappings which are asymptotically nonexpansive in the inter-

mediate sense. Suppose that

rn = max{0, sup
x,y∈C;i=1,2,3.

‖ Ti(PTi)n−1x − Ti(PTi)n−1y ‖ − ‖ x − y ‖},

then rn ≥ 0, lim
n→+∞ rn = 0 and for all x, y Î C and n Î N,

‖ Ti(PTi)n−1x − Ti(PTi)n−1y ‖ − ‖ x − y ‖≤ rn, i = 1, 2, 3.

For a given x1 Î C, we define the sequence {xn} ⊂ C by

xn+1 = P[α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn];

zn = P[α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn];

yn = P[α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn].

(3:1)

where {α(i)
n } is in 0[1] with 0 < p ≤ α

(i)
n ≤ q < 1, i = 1, 2, 3.

We also assume that the sequence {rn} satisfies
+∞∑
n=1

rn < +∞ and the set of common

fixed points of {Ti}3i=1 is nonempty, i.e.,

F = ∩3
i=1F(Ti) = {x ∈ C : T1x = T2x = T3x = x} �= ∅.

Lemma 3.1

lim
n→+∞ ‖ xn − f ‖= lim

n→+∞ ‖ yn − f ‖= lim
n→+∞ ‖ zn − f ‖= r (3:2)

exists for all f Î F.

Proof. For all f Î F,

‖ yn − f ‖=‖ P[α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn] − f ‖

≤‖ [α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn] − f ‖

≤ α
(3)
n ‖ xn − f ‖ +(1 − α

(3)
n ) ‖ T3(PT3)n−1xn − f ‖

=‖ xn − f ‖ +rn.

Hence

‖ zn − f ‖=‖ P[α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn] − f ‖

≤‖ [α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn] − f ‖

≤‖ yn − f ‖ +rn
≤‖ xn − f ‖ +2rn.

(3:3)
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Thus

‖ xn+1 − f ‖=‖ P[α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn] − f ‖

≤‖ [α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn] − f ‖

≤‖ zn − f ‖ +rn
≤‖ xn − f ‖ +3rn.

(3:4)

Put wn = 3rn, then we can obtain
+∞∑
n=1

wn < +∞ and

‖ xn+1 − f ‖≤‖ xn − f ‖ +wn.

By Lemma 2.1, we can conclude that

lim
n→+∞ ‖ xn − f ‖= r

exists. Combining it with (3.4), we have

lim
n→+∞ ‖ zn − f ‖= r.

Hence by (3.3), we get

lim
n→+∞ ‖ yn − f ‖= r.

This completes the proof.

Lemma 3.2

lim
k→+∞

lim sup
n→+∞

‖ xn − Ti(PTi)k−1xn ‖= 0, i = 1, 2, 3.

Proof. By (3.2) and (3.4), we can get

r = lim
n→+∞ ‖ [α(1)

n zn + (1 − α
(1)
n )T1(PT1)n−1zn] − f ‖

= lim
n→+∞ ‖ (1 − α

(1)
n )[T1(PT1)n−1zn − f ] + α

(1)
n (zn − f ) ‖

Then it follows from Lemma 2.2 and lim sup
n→+∞

‖ T1(PT1)n−1zn − f ‖≤ r that

lim
n→+∞ ‖ T1(PT1)n−1zn − zn ‖= 0. (3:5)

According to (3.3), we have

r = lim
n→+∞ ‖ [α(2)

n yn + (1 − α
(2)
n )T2(PT2)n−1yn] − f ‖

= lim
n→+∞ ‖ (1 − α

(2)
n )[T2(PT2)n−1yn − f ] + α

(2)
n (yn − f ) ‖

Noting lim sup
n→+∞

‖ T2(PT2)n−1yn − f ‖≤ r, by Lemma 2.2 again, we can get

lim
n→+∞ ‖ T2(PT2)n−1yn − yn ‖= 0. (3:6)

Similarly, we can obtain

lim
n→+∞ ‖ T3(PT3)n−1xn − xn ‖= 0. (3:7)
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Hence, it follows from

‖ yn − xn ‖ =‖ P[α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn] − xn ‖

≤‖ [α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn] − xn ‖

≤‖ T3(PT3)n−1xn − xn ‖ .

that lim
n→+∞ ‖ yn − xn ‖= 0. Also, we can see

‖ zn − yn ‖ =‖ P[α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn] − yn ‖

≤‖ [α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn] − yn ‖

≤‖ T2(PT2)n−1yn − yn ‖

and

‖ xn+1 − zn ‖ =‖ P[α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn] − zn ‖

≤‖ [α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn] − zn ‖

≤‖ T1(PT1)n−1zn − zn ‖ .

It follows from (3.5) and (3.6) that

lim
n→+∞ ‖ xn+1 − zn ‖= lim

n→+∞ ‖ zn − yn ‖= 0.

Hence lim
n→+∞ ‖ xn+1 − xn ‖= lim

n→+∞ ‖ zn − xn ‖= 0. Thus for any fixed k Î N,

lim
n→+∞ ‖ xn+k − xn ‖= 0.

Noting (3.7) and

‖ xn − T3(PT3)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T3(PT3)n+k−1xn+k ‖ + ‖ T3(PT3)n+k−1xn+k

−T3(PT3)n+k−1xn ‖ + ‖ T3(PT3)n+k−1xn − T3(PT3)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T3(PT3)n+k−1xn+k ‖ + ‖ xn+k − xn ‖ +rn+k

+ ‖ T3(PT3)n−1xn − xn ‖ +rk

we have lim sup
n→+∞

‖ xn − T3(PT3)k−1xn ‖≤ rk, which implies

lim
k→+∞

lim sup
n→+∞

‖ xn − T3(PT3)k−1xn ‖= 0.

Combining (3.6) with

‖ T2(PT2)n−1xn − xn ‖
≤‖ T2(PT2)n−1xn − T2(PT2)n−1yn ‖ + ‖ T2(PT2)n−1yn − yn ‖ + ‖ yn − xn ‖
≤ 2 ‖ xn − yn ‖ + ‖ T2(PT2)n−1yn − yn ‖ +rn,

we can see lim
n→+∞ ‖ T2(PT2)n−1xn − xn ‖= 0. Thus

‖ xn − T2(PT2)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T2(PT2)n+k−1xn+k ‖ + ‖ T2(PT2)n+k−1xn+k

−T2(PT2)n+k−1xn ‖ + ‖ T2(PT2)n+k−1xn − T2(PT2)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T2(PT2)n+k−1xn+k ‖ + ‖ xn+k − xn ‖ +rn+k

+ ‖ T2(PT2)n−1xn − xn ‖ +rk
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which implies

lim
k→+∞

lim sup
n→+∞

‖ xn − T2(PT2)k−1xn ‖= 0.

Combining (3.5) with

‖ T1(PT1)n−1xn − xn ‖
≤‖ T1(PT1)n−1xn − T1(PT1)n−1zn ‖ + ‖ T1(PT1)n−1zn − zn ‖ + ‖ xn − xn ‖
≤ 2 ‖ xn − zn ‖ + ‖ T1(PT1)n−1zn − zn ‖ +rn,

we can see lim
n→+∞ ‖ T1(PT1)n−1xn − xn ‖= 0. Thus

‖ xn − T1(PT1)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T1(PT1)n+k−1xn+k ‖ + ‖ T1(PT1)n+k−1xn+k

−T1(PT1)n+k−1xn ‖ + ‖ T1(PT1)n+k−1xn − T1(PT1)k−1xn ‖
≤‖ xn − xn+k ‖ + ‖ xn+k − T1(PT1)n+k−1xn+k ‖ + ‖ xn+k − xn ‖ +rn+k

+ ‖ T1(PT1)n−1xn − xn ‖ +rk

which implies

lim
k→+∞

lim sup
n→+∞

‖ xn − T1(PT1)k−1xn ‖= 0.

This completes the proof.

Define the operator Wn : C ® C by

Wnx = P[α(1)
n x(1) + (1 − α

(1)
n )T1(PT1)n−1x(1)];

x(1) = P[α(2)
n x(2) + (1 − α

(2)
n )T2(PT2)n−1x(2)];

x(2) = P[α(3)
n x + (1 − α

(3)
n )T3(PT3)n−1x],

where x Î C. Then by (3.1), xn+1 = Wnxn and for all x, y Î C, we have

‖ x(2) − y(2) ‖ ≤ α
(3)
n ‖ x − y ‖ +(1 − α

(3)
n ) ‖ T3(PT3)n−1x − T3(PT3)n−1y ‖

≤‖ x − y ‖ +rn,

‖ x(1) − y(1) ‖ ≤‖ x(2) − y(2) ‖ +rn ≤‖ x − y ‖ +2rn

and

‖ Wnx − Wny ‖≤‖ x − y ‖ +3rn =‖ x − y ‖ +wn.

For any f Î F, we get Wnf = f. Set

Sn,m = Wn+m−1Wn+m−2 · · ·Wn+1Wn : C → C,

then xn+m = Sn,mxn and for all f Î F, Sn,mf = f. Note that for any x, y Î C,

‖ Sn,mx − Sn,my ‖≤‖ x − y ‖ +(wn + · · · + wn+m−1). (3:8)

Lemma 3.3 Let f, g Î F and l Î [0, 1], then

h(λ) = lim
n→+∞ ‖ λxn + (1 − λ)f − g ‖

exists.
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Proof. It follows from Lemma 3.1 that lim
n→+∞ ‖ xn − f ‖ = r exists. If l = 0, 1 or r = 0,

then the conclusion holds. Assume that r >0 and l Î (0, 1), then for any ε >0, there

exists d >0 (d < ε) such that

(r + d)[1 − 2λ(1 − λ)δ(
ε

r + d
)] < r − d, (3:9)

where δ(·) is the modulus of convexity of the norm. Hence there exists a positive

integer n0 such that for all n > n0,

r − d
4

≤‖ xn − f ‖≤ r +
d
4

(3:10)

and

+∞∑
i=n

wi ≤ λ(1 − λ)
d
4

<
ε

4
(3:11)

Now we claim that for all n > n0,

‖ Sn,m[λxn + (1 − λ)f ] − [λSn,mxn + (1 − λ)f ] ‖≤ ε. ∀m ∈ N

Otherwise, we can suppose that there are some n > n0 and some m Î N such that

‖ Sn,m[λxn + (1 − λ)f ] − [λSn,mxn + (1 − λ)f ] ‖≥ ε.

Put z = lxn + (1 - l)f, x = (1 - l)(Sn,mz - f ), and y = l(Sn,mxn - Sn,mz), then by (3.8),

(3.10), and (3.11), we have

‖ x ‖ = (1 − λ) ‖ Sn,mz − f ‖
≤ (1 − λ)[‖ z − f ‖ +(wn+m−1 + · · · + wn+1 + wn)]

≤ λ(1 − λ)(‖ xn − f ‖ +
d
4
)

≤ λ(1 − λ)(r + d),

‖ y ‖ = λ ‖ Sn,mxn − Sn,mz ‖
≤ λ[‖ xn − z ‖ +(wn+m−1 + · · · + wn+1 + wn)]

≤ λ(1 − λ)(‖ xn − f ‖ +
d

4
)

≤ λ(1 − λ)(r + d),

‖ x − y ‖ =‖ Sn,m[λxn + (1 − λ)f ] − [λSn,mxn + (1 − λ)f ] ‖≥ ε

and

λx + (1 − λ)y = λ(1 − λ)(Sn,mxn − f ).

So by Lemma 2.3, we get

λ(1 − λ) ‖ Sn,mxn − f ‖ =‖ λx + (1 − λ)y ‖
≤ λ(1 − λ)(r + d)[1 − 2λ(1 − λ)δ(

ε

λ(1 − λ)(r + d)
)]

≤ λ(1 − λ)(r + d)[1 − 2λ(1 − λ)δ(
ε

r + d
)]

Zhu et al. Fixed Point Theory and Applications 2011, 2011:106
http://www.fixedpointtheoryandapplications.com/content/2011/1/106

Page 8 of 13



and then by (3.10),

r − d ≤‖ xn+m − f ‖=‖ Sn,mxn − f ‖
≤ (r + d)[1 − 2λ(1 − λ)δ(

ε

r + d
)],

which contradicts (3.9). Thus we can conclude that for all n > n0,

‖ Sn,m[λxn + (1 − λ)f ] − [λSn,mxn + (1 − λ)f ] ‖≤ ε, ∀m ∈ N.

Hence by (3.11), for all n > n0,

‖ λxn+m + (1 − λ)f − g ‖
=‖ λSn,mxn + (1 − λ)f − g ‖
≤‖ [λSn,mxn + (1 − λ)f ] − Sn,m[λxn + (1 − λ)f ] ‖ + ‖ Sn,m[λxn + (1 − λ)f ] − g ‖
≤ ε+ ‖ λxn + (1 − λ)f − g ‖ +(wn+m−1 + · · · + wn+1 + wn)

≤ 2ε+ ‖ λxn + (1 − λ)f − g ‖ .

For any fixed n > n0, we can take the limsup for m and obtain

lim sup
m→+∞

‖ λxm + (1 − λ)f − g ‖≤‖ λxn + (1 − λ)f − g ‖ +2ε.

Hence

lim sup
m→+∞

‖ λxm + (1 − λ)f − g ‖≤ lim inf
n→+∞ ‖ λxn + (1 − λ)f − g ‖ +2ε.

Since ε >0 is arbitrary, this implies that

h(λ) = lim
n→+∞ ‖ λxn + (1 − λ)f − g ‖

exists. This completes the proof.

Remark 3.1 If the mappings are asymptotically nonexpansive, we can use Bruck’s

Lemma [23]to prove Lemma 3.3. While Bruck’s Lemma is not valid for non-Lipschitzian

mappings, we must introduce new technique to establish a similar inequality. In [20],

Chidume et al. also proved that lim
n→+∞ ‖ λxn + (1 − λ)f − g ‖exists (Lemma 3.12 in

[20]). As we have seen, our proof is completely different from theirs in [20].

Lemma 3.4 If f Î ωω ({xn}) and lim
n→+∞ ‖ λxn + (1 − λ)f − g ‖exists, then

h(λ) = lim
n→+∞ ‖ λxn + (1 − λ)f − g ‖≤‖ f − g ‖ .

Proof. For any ε >0, there exists n0 such that for all n ≥ n0,

‖ λxn + (1 − λ)f − g ‖≤ h(λ) + ε.

Then for all n ≥ n0,

〈λxn + (1 − λ)f − g, J(f − g)〉 ≤‖ f − g ‖ (h(λ) + ε).

Since f Î ωω({xn}), there exists a subsequence {xni} ⊂ {xn} with xni ⇀ f . Hence

f ∈ c̄o{xni , i ≥ n0} and
{λf + (1 − λ)f − g, J(f − g)} ≤‖ f − g ‖ (h(λ) + ε),

i.e., ||f - g||2 ≤ ||f - g||(h(l) + ε). Therefore ||f - g|| ≤ h(l). This completes the proof.

Now we can prove the weak convergence theorem of the iterative sequence (3.1).
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Theorem 3.1 Let C be a nonempty closed convex subset of uniformly convex Banach

space X which satisfies the Opial’s condition or whose dual X* has the Kadec-Klee prop-

erty. Let P : X ® C be a nonexpansive retraction from X onto C. Let T1, T2, T3 : C ® X

be three asymptotically nonexpansive in the intermediate sense nonself mappings with F

≠ ∅ and the nonnegative sequence {rn} satisfy
+∞∑
n=1

rn < +∞. Let {xn} be defined by: x1 Î

C and

xn+1 = P[α(1)
n zn + (1 − α

(1)
n )T1(PT1)n−1zn];

zn = P[α(2)
n yn + (1 − α

(2)
n )T2(PT2)n−1yn];

yn = P[α(3)
n xn + (1 − α

(3)
n )T3(PT3)n−1xn].

where {α(i)
n }is in [0, 1] with 0 < p ≤ α

(i)
n ≤ q < 1, i = 1, 2, 3. Then {xn}, {yn}, and {zn}

converge weakly to a common fixed point of {Ti}3i=1.
Proof. It suffices to show that {xn} converges weakly to a common fixed point of

{Ti}3i=1. To this aim, we only need to prove that the set ωω({xn}) is singleton. Since X is

reflexive and C is bounded, we obtain ωω({xn}) ≠ ∅. Assume that f, g Î ωω({xn}), then

there exist two subsequences {xni} and {xnj}in {xn} such that xni ⇀ fand xnj ⇀ g. In the

following, we shall show f = g. By Lemmas 2.5 and 3.2, f, g Î F. On one hand, if X

satisfies the Opial’s condition and f ≠ g, then by the Lemma 3.1, we get

r = lim
n→+∞ ‖ xn − f ‖= lim

i→+∞
‖ xni − f ‖

< lim
i→+∞

‖ xni − g ‖= lim
n→+∞ ‖ xn − g ‖= lim

j→+∞
‖ xnj − g ‖

< lim
j→+∞

‖ xnj − f ‖= lim
n→+∞ ‖ xn − f ‖= r.

This contraction implies f = g. On the other hand, if X* has Kadec-Klee property,

then from Lemmas 2.4, 3.3, and 3.4, we have

‖ λxn + (1 − λ)f − g‖2
≤ ‖ f − g‖2 + 2λ〈xn − f , J(λxn + (1 − λ)f − g)〉

and for all l Î [0, 1],

lim inf
n→+∞ 〈xn − f , J(λxn + (1 − λ)f − g)〉 ≥ 0.

Hence

lim inf
j→+∞

〈xnj − f , J(λxnj + (1 − λ)f − g)〉 ≥ 0.

Thus for arbitrary k Î N, there exists jk ≥ k, {jk} ↑, such that

〈xnjk − f , J(
1
k
xnjk + (1 − 1

k
)f − g)〉 ≥ −1

k
. (3:12)

Obviously xnjk ⇀ g. Put

jk = J(
1
k
xnjk + (1 − 1

k
)f − g),

then we may assume that, without loss of generality, jk is weakly convergent to some
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point j Î X*. Therefore ‖ j ‖≤ lim inf
k→+∞

‖ jk ‖=‖ f − g ‖. Noting

〈f − g, jk〉 =‖ 1
k
xnjk + (1 − 1

k
)f − g‖2 − 1

k
〈xnjk − f , jk〉

and passing the limit for k, we have 〈f - g, j〉 = ||f - g||2. Hence ||j|| ≥ || f - g|| and

〈f − g, j〉 =‖ f − g‖2 =‖ j‖2,

which means j = J(f - g). Thus we can conclude jk ⇀ j and ||jk|| ® ||f - g|| = ||j||.

Since X* has Kadec-Klee property, we have jk ® j. Taking the limit in (3.12), we get 〈g

- f, j〉 ≥ 0, i.e., ||f - g||2 ≤ 0, which implies f = g. This completes the proof.

Remark 3.2 Theorem 3.1 extends the main results in [4,16,18,20]to the case of

asymptotically nonexpansive in the intermediate sense mappings and it seems to be new

even in the case that the space has a Fréchet differentiable norm.

In the following, we shall give a nonself mapping which is asymptotically nonexpan-

sive in the intermediate sense but not asymptotically nonexpansive.

Example 3.1 Let Δ be the Cantor ternary set. Define the Cantor ternary function

τ (x) =

⎧⎨
⎩

+∞∑
n=1

bn
2n x =

+∞∑
n=1

2bn
3n ∈ 	, (bn = 0, 1)

sup{τ (y), y ≤ x, y ∈ 	} x ∈ [0, 1]\	

then τ : [0, 1] ® [0, 1] is a continuous and increasing but not absolutely continuous

function with τ(0) = 0, τ ( 12) =
1
2 (see [27]). Since a Lipschitzian function is absolutely

continuous, τ is non-Lipschitzian. Define �: R ® R by

ϕ(x) =

⎧⎨
⎩
0 x < 0 or x > 1
x
2 0 ≤ x ≤ 1

2
1
2τ (1 − x) 1

2 < x ≤ 1

It is easy to see that � is continuous and for all x, y Î R, |ϕ(x) − ϕ(y)| ≤ 1
2. It also

can be verified that the n-fold composition mapping �n is defined by

ϕn(x) =

⎧⎨
⎩
0 x < 0 or x > 1
x
2n 0 ≤ x ≤ 1

2
1
2n τ (1 − x) 1

2 < x ≤ 1

Since τ is non-Lipschitzian, so is �n and for all x, y Î R,

|ϕn(x) − ϕn(y)| ≤ 1
2n

.

Taking X = R2 with the norm ‖ (x, y) ‖ =
√
x2 + y2, (x, y) Î X and C = R × {0}, we

define the nonself mapping T : C ® X by

T(x, 0) = (ϕ(x), x), (x, 0) ∈ C,

then T is continuous and (0, 0) is a fixed point of T. Define P : X ® C by

P(x, y) = (x, 0), (x, y) ∈ X,

then P is a nonexpansive retraction from X onto C. Hence for all (x, 0), (y, 0) Î C,

T(PT)n−1(x, 0) = (ϕn(x),ϕn−1(x)),
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which means T(PT)n-1 is is non-Lipschitzian and

‖ T(PT)n−1(x, 0) − T(PT)n−1(y, 0) ‖
=‖ (ϕn(x),ϕn−1(x)) − (ϕn(y),ϕn−1(y)) ‖
=

√
(ϕn(x) − ϕn(y))2 + (ϕn−1(x) − ϕn−1(y))2

≤ |ϕn(x) − ϕn(y)| + |ϕn−1(x) − ϕn−1(y)|
≤‖ (x, 0) − (y, 0) ‖ +

3
2n

.

Therefore, we can conclude that T is asymptotically nonexpansive in the intermedi-

ate sense but not an asymptotically nonexpansive.

If T1, T2, and T3 are nonexpansive, we can prove the following theorem.

Theorem 3.2 Let C be a nonempty closed convex subset of uniformly convex Banach

space X which satisfies the Opial’s condition or whose dual has the Kadec-Klee prop-

erty. Let P : X ® C be a nonexpansive retraction from X onto C. Let T1, T2, T3 : C ®
X be three nonexpansive nonself mappings and {xn} be defined by: x1 Î C and

xn+1 = P[α(1)
n zn + (1 − α

(1)
n )T1zn];

zn = P[α(2)
n yn + (1 − α

(2)
n )T2yn];

yn = P[α(3)
n xn + (1 − α

(3)
n )T3xn].

where {α(i)
n }is in 0[1]with 0 < p ≤ α

(i)
n ≤ q < 1, i = 1, 2, 3. Then {xn}, {yn} and {zn}

converge weakly to a common fixed point of {Ti}3i=1.
Remark 3.3 We would like to remark that if the so-called error terms are added in

our recursion formula and are assumed to be bounded, then the results of this article

still hold. Thus we can get the main results in [19].
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