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Abstract

In this paper, the existence of a fixed point for TF-contractive mappings on complete
metric spaces and cone metric spaces is proved, where T : X ® X is a one to one
and closed graph function and F : P ® P is non-decreasing and right continuous,
with F-1(0) = {0} and F(tn) ® 0 implies tn ® 0. Our results, extend previous results
given by Meir and Keeler (J. Math. Anal. Appl. 28, 326-329, 1969), Branciari (Int. J.
Math. sci. 29, 531-536, 2002), Suzuki (J. Math. Math. Sci. 2007), Rezapour et al. (J.
Math. Anal. Appl. 345, 719-724, 2010), Moradi et al. (Iran. J. Math. Sci. Inf. 5, 25-32,
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1 Introduction
In 2007, Huang et al. [1], introduced the cone metric spaces and proved some fixed

point theorems. Recently, Many results closely related to cone metric spaces are given

(see [2-6]). In addition, some topological properties of these spaces are surveyed.

In 2010, Khojasteh et al. [7] introduced a new concept of integral with respect to a

cone and proved some fixed point theorems in cone metric spaces. At the same year,

Moradi et al. [8] introduced a new type of fixed point theorem by defining TF-contrac-

tion as a new contractive condition in complete metric spaces. To state this result,

some preliminaries from [8,9] are recalled. First, set R+
0 = [0, +∞) and

� :
{
F : R+

0 → R+
0 : F is non - decreasing, right continuous F−1(0) = {0}} . (1:1)

Definition 1.1. Let (X, d) be a metric space, f, T : X ® X be two mappings and F Î
Ψ. The mapping f is said to be TF-contraction, if there exists a Î [0, 1) such that for all

x, y Î X,

F(d(Tfx,Tfy)) ≤ αF(d(Tx,Ty)). (1:2)

Example 1.2. Suppose X = R+
0is endowed with the Euclidean metric. Consider two

mappings T, f : X ® X defined by Tx = 1
x + 1and fx = 2x, respectively. Obviously, f is

not a contraction but it is a TF-contraction, where F(x) ≡ x.
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Definition 1.3. Let (X, d) be a metric space. A mapping T : X ® X is said to be

closed graph, if for every sequence {xn} such that lim
n→∞ Txn = a, there exists b Î X such

that Tb = a. For example, the identity function on X is closed graph.

In 2010, Moradi et al. [8] proved the following fixed point theorem.

Theorem 1.4. Let (X, d) be a complete metric space, a Î [0, 1) and T, f : X ® X be

two mappings such that T is one-to-one and closed graph, and f is TF - contraction,

respectively, where F Î Ψ. Then, f has a unique fixed point a Î X. Also, for every x Î
X, the sequence of iterates {Tfnx} converges to Ta.

2 Cone metric space
Let E be a real Banach space. A subset P of E is called a cone, if and only if, the fol-

lowing hold:

• P is closed, nonempty, and P ≠ {0},

• a, b Î ℝ, a, b ≥ 0, and x, y Î P imply that ax + by Î P,

• x Î P and -x Î P imply that x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y, if and

only if, y -x Î P. We write x < y to indicate that x ≤ y but x ≠ y, while x ≪ y stand

for y - x Î intP, where intP denotes the interior of P. The cone P is called normal, if

there exist a number K >0 such that, 0 ≤ x ≤ y implies ||x|| ≤ K ||y||, for all x, y Î E.

The least positive number satisfying this, called the normal constant [1].

The cone P is called regular, if every increasing sequence which is bounded from

above is convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ ··· ≤ y for

some y Î E, then there exist x Î E such that limn®∞ ||xn - x|| = 0. Equivalently, the

cone P is regular, if and only if, every decreasing sequence which is bounded from

below is convergent [1]. Also, every regular cone is normal [5]. Following example

shows that the converse is not true.

Example 2.1. [5]Suppose E = C2
R([0, 1])with the norm || f || = || f ||∞ + || f’ ||∞, and

consider the cone P = { f Î E : f ≥ 0}. For each K ≥ 1, put f(x) = x and g(x) = x2K.

Then, 0 ≤ g ≤ f, || f || = 2, and ||g|| = 2K + 1. Since K|| f || < ||g||, K is not normal

constant of P.

In this paper, E denotes a real Banach space, P denotes a cone in E with intP ≠ ∅
and ≤ denotes partial ordering with respect to P. Let X be a nonempty set. A function

d : X × X ® E is called a cone metric on X, if it satisfies the following conditions:

(I) d(x, y) ≥ 0 for all x, y Î X and d(x, y) = 0, if and only if, x = y,

(II) d(x, y) = d(y, x), for all x, y Î X,

(III) d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z Î X.

Then, (X, d) is called a cone metric space (see [1]).

Example 2.2. [5]Suppose E = ℓ
1, P = {{xn}nÎN Î E : xn ≥ 0, for all n} and (X, r) be a

metric space. Suppose d : X × X ® E is defined by d(x, y) = { ρ(x,y)
2n }n∈N. Then, (X, d) is a

cone metric space and the normal constant of P is equal to 1.

Example 2.3. Let E = ℝ2, P = {(x, y) Î E | x, y ≥ 0}, x = ℝ. Suppose d : X × X ® E is

defined by d(x, y) = (|x - y|, a|x - y|), where a ≥ 0 is a constant. Then, (X, d) is a cone

metric space.

The following definitions and lemmas have been chosen from [1].
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Definition 2.4. Let (X, d) be a cone metric space and {xn}nÎN be a sequence in x and

x Î X. If for all c Î E with 0 ≪ c, there is n0 Î N such that for all n >n0, d(xn, x0) ≪
c, then {xn}nÎN is said to be convergent and {xn}nÎN converges to x and x is the limit of

{xn}nÎN.

Definition 2.5. Let (X, d) be a cone metric space and {xn}nÎN be a sequence in X. If

for all c Î E with 0 ≪ c, there is n0 Î N such that for all m, n > n0, d(xn, xm) ≪ c,

then {xn}nÎN is called a Cauchy sequence in X.

Definition 2.6. Let (X, d) be a cone metric space. If every Cauchy sequence is conver-

gent in X, then X is called a complete cone metric space.

Definition 2.7. Let (X, d) be a cone metric space. A self-map T on X is said to be

continuous, if limn®∞ xn = x implies limn®∞ T (xn) = T (x) for all sequence {xn}nÎN in

X.

We use the following lemmas in the proof of the main result and refer to [1] for

their proofs.

Lemma 2.8. Let (X, d) be a cone metric space and P be a cone. Let {xn}nÎN be a

sequence in X. Then, {xn}nÎN converges to x, if and only if,

lim
n→∞ d(xn, x) = 0. (2:1)

Lemma 2.9. Let (X, d) be a cone metric space and {xn}nÎN be a sequence in X. If {xn}

nÎN is convergent, then it is a Cauchy sequence.

Lemma 2.10. Let (X, d) be a cone metric space and P be a cone in E. Let {xn}nÎN be

a sequence in X. Then, {xn}nÎN is a Cauchy sequence, if and only if,

lim
m,n→∞ d(xm, xn) = 0. (2:2)

In 1969, Meir and Keeler [4] introduced a new type of fixed point theorem by defin-

ing Meir-Keeler contraction (KMC) as a new contractive condition in complete metric

spaces. It is as follows:

Theorem 2.11. Let (X, d) be a complete metric space and f has the property (KMC)

on X, that is, for all ε >0, there exists δ >0 such that

d(x, y) < ε + δ implies d(fx, fy) < ε

for all x, y Î X. Then, f has a unique fixed point.

In 2006, Suzuki [10] proved the integral type contraction (which has been introduced

by Branciari [11]) is a special case of KMC (see also[12]). In 2010, Rezapour et al. [13]

extended Meir-Keeler’s theorem to cone metric spaces as follows:

Theorem 2.12. Let (X, d) be a complete regular cone metric space and f has the

property (KMC) on X, that is, for all 0 ≠ ε Î P, there exists δ ≫ 0 such that

d(x, y) < ε + δ implies d(fx, fy) < ε

for all x, y Î X. Then, f has a unique fixed point.

3 Cone integration
We recall the following definitions and lemmas of cone integration and refer to [7] for

their proofs.
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Definition 3.1. Suppose P is a cone in E. Let a, b Î E and a < b. Define

[a, b] := {x ∈ E : x = tb + (1 − t)a , for some t ∈ [0, 1]} (3:1)

and

[a, b) := {x ∈ E : x = tb + (1 − t)a , for some t ∈ [0, 1)}. (3:2)

Definition 3.2. The set {a = x0, x1,···, xn = b} is called a partition for [a, b], if and

only if, the intervals {[xi−1, xi)}ni=1are pairwise disjoint and [a, b] = {∪n
i=1[xi−1, xi)} ∪ {b}.

Denote P[a, b]as the collection of all partitions of [a, b].

Definition 3.3. For each partition Q of [a, b] and each increasing function j : [a, b]

® E, we define cone lower summation and cone upper summation as

LConn (φ,Q) =
n−1∑
i=0

φ(xi)||xi − xi+1|| (3:3)

and

UCon
n (φ,Q) =

n−1∑
i=0

φ(xi+1)||xi − xi+1||, (3:4)

respectively. Also, we denote ||Δ(Q)|| = sup{||xi - xi-1||, xi Î Q}.

Definition 3.4. Suppose P is a cone in E. j : [a, b] ® E is called an integrable func-

tion on [a, b] with respect to cone P or to simplicity, cone integrable function, if and

only if, for all partition Q of [a, b]

lim
||�(Q)||→0

LConn (φ,Q) = SCon = lim
||�(Q)||→0

UCon
n (φ,Q)

which SCon must be unique.

We show the common value SCon by∫ b

a
φ(x)dP(x) or to simplicity

∫ b

a
φ dp.

We denote the set of all cone integrable function j : [a, b] ® E by L1([a, b],E).

Lemma 3.5. Let M be a subset of P. The following conditions hold:

(1) If [a, b] ⊆ [a, c] ⊂ M, then
∫ b
a f dp ≤ ∫ c

a f dp, for f ∈ L1(M,P).

(2)
∫ b
a (αf + βg) dp = α

∫ b
a f dp + β

∫ b
a g dp, for f , g ∈ L1(M,P) and α,β ∈ R.

Definition 3.6. The function j : [a, b] ® E is called sub-additive cone integrable

function, if and only if, for each a, b Î P∫ a+b

0
φ dP ≤

∫ a

0
φ dP +

∫ b

0
φ dP. (3:5)

In 2010, Khojasteh et al. [7] introduced the following fixed point theorem in cone

metric spaces.

Theorem 3.7. Let (X, d) be a complete cone metric space and j : P ® P be a non-

vanishing, sub-additive cone integrable mapping on each [a, b] ⊂ P such that for each ε

≫ 0,
∫ ε

0 φ dp 	 0and the mapping θ(x) =
∫ x

0
φ dPfor (x ≥ 0), has a continuous inverse

at zero. If f : X ® X is a mapping such that
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∫ d(f (x),f (y))

0
φ dp ≤ α

∫ d(x,y)

0
φ dp,

for all x, y Î X, and for some a Î (0, 1). Then, f has a unique fixed point in X.

Also, they proved the following lemma:

Lemma 3.8. Let E = ℝ2, P = {(x, y) Î E | x, y ≥ 0}, x = ℝ. Suppose d : X × X ® E is

defined by d(x, y) = (|x - y|, a|x - y|), where a ≥ 0 is a constant. Suppose j : [(0, 0), (a,

b)] ® P is defined by j(x, y) = (j1(x), j2(y)), where φ1,φ2 : R+
0 → R+

0are two integrable

functions. Then,∫ (a,b)

(0,0)
φ dP =

√
a2 + b2(

1
a

∫ a

0
φ1(t)dt,

1
b

∫ b

0
φ2(t)dt).

The rest of the paper is organized as follows: In Section 4, we extend Theorems 1.4

and 3.7 in cone metric spaces. Many authors avoid of using the normality condition of

P (see [13-15]). Here, we avoid of using such condition and the sub-additivity assump-

tion (Theorem 4.7). In addition, a new generalization of Theorems 1.4 and 3.7 which

has a closer relative with KMC (see [4,10]), is given. In Section 5, an example is given

to illustrate our result is a generalization of the results given by Moradi et al. [8] and

Khojasteh et al. [7].

4 Some extensions of recent results
The following definitions play a crucial role to state the main results.

Definition 4.1. A mapping F : P ® P is said to be right continuous, if for each pair of

sequences {xn} and {yn} in P, there exist sequences {en} {e′n}and {εn} (where

||en|| = ||e′n|| = M �= 0, for all n Î N), such that

en ≤ yn ≤ xn ≤ e′n + εn,

where εn ® 0 and (xn - yn) ® 0, then F (xn) - F(yn) ® 0.

Definition 4.2. A mapping F : P ® P is bounded, if for each bounded subset Q ⊂ P

with respect to norm of E, F(Q) is a bounded subset.

Definition 4.3. Let P be a cone in E. Let Ω be the set of all mappings F : P ® P such

that

(I) F-1(0) = {0}.

(II) For each sequence {tn} ⊂ P, F (tn) ® 0 implies that tn ® 0.

(III) F is bounded and non-decreasing in a sense that F(a) ≤ F(b) if a ≤ b, for every a,

b Î P.

(IV) F be right continuous as declared in Definition 4.1.

Definition 4.4. ψ: P ® P is called a L-function, if for each ε ≫ 0, there exists δ ≫ 0

such that ψ(t) ≤ ε for each ε ≤ t ≤ ε + δ. Suppose LPdenote the set of all L-functions on

P into itself.

Example 4.5. For each x Î P define ψ(x) = ax, which a Î [0, 1). Suppose ε ≫ 0 is

given. Taking δ = (
1
α

− 1)εimplies that ψ(x) ≤ ε for each ε ≤ x ≤ ε + δ. Thus, ψ is a

L-function.

Definition 4.6. Let (X, d) be a cone metric space and f, T : X ® X be two functions

and F Î Ω. The mapping f is said to be TF - contraction, if there exists a Î [0, 1) such

that for all x, y Î X,
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F(d(Tfx, Tfy)) ≤ αF(d(Tx,Ty)). (4:1)

The following theorem extends the previous result given by Moradi et al. [8] and

Khojasteh et al. [7] without assuming F(x) =
∫ x
0 φdP to be sub-additive.

Theorem 4.7. Let (X, d) be a complete cone metric space, a Î [0, 1) and T, f : X ®
X be two mappings such that T is one-to-one and closed graph, and f is TF - contrac-

tion, respectively, where F Î Ω. Then, f has a unique fixed point a Î X. Also, for every

x0 Î X, the sequence of iterates {Tfnx0} converges to Ta.

Proof. Uniqueness of the fixed point follows from (4.1). Let x0 Î X, xn+1 = fxn and yn
= Txn for all n Î N. We break the argument into four steps.

Step 1.

lim
n→∞ d(yn+1, yn) = 0. (4:2)

By using (4.1),

F(d(yn+1, yn)) = F(d(Txn+1,Txn))

= F(d(Tf xn,Tf xn−1))

≤ αF(d(Txn,Txn−1))

= αF(d(yn, yn−1))

...

≤ αnF(d(y1, y0)).

(4:3)

Hence by (4.3),

lim
n→∞ F(d(yn+1, yn)) = 0. (4:4)

Since F Î Ω, lim
n→∞ d(yn+1, yn) = 0.

Step 2. {yn}is a bounded sequence.

If {yn} is unbounded, then choose the sequence {n(k)}∞k=1 such that n(1) = 1, n(2) > n

(1) is minimal in the sense of e1 <d(yn(2), yn(1)) for some e1 ÎP, where ||e1|| = 1. Simi-

larly, n(3) > n(2) is minimal in the sense of e2 < d(yn(3), yn(2)) for some e2 Î P, where

||e2|| = 1,..., n(k + 1) > n(k) is minimal in the sense of

ek < d(yn(k+1), yn(k)) (4:5)

for some ek Î P, where ||ek|| = 1. By Step 1, there exists N0 Î N such that for all k ≥

N0 we have n(k + 1) - n(k) ≥ 2. Obviously, for every k ≥ N0 there exists e′k ∈ P where

||e′k|| = 1 and

d(yn(k+1)−1, yn(k)) ≤ e′k. (4:6)

Using (4.5), (4.6) and triangle inequality,

ek < d(yn(k+1), yn(k))

≤ d(yn(k+1), yn(k+1)−1) + d(yn(k+1)−1, yn(k))

≤ d(yn(k+1), yn(k+1)−1) + e′k.
(4:7)

Hence, the sequence {d(yn(k), yn(k+1))} is bounded.
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If εk = d(yn(k)-1, yn(k)) + 2d(yn(k+1), yn(k+1)-1), then εk ® 0. Also

ek < d(yn(k+1), yn(k))

≤ d(yn(k)−1, yn(k+1)−1)

≤ d(yn(k)−1, yn(k)) + d(yn(k), yn(k+1)) + d(yn(k+1), yn(k+1)−1)

≤ e′k + d(yn(k)−1, yn(k)) + 2d(yn(k+1), yn(k+1)−1) = e′k + εk.

(4:8)

In addition,

0 ≤ d(yn(k)−1, yn(k+1)−1) − d(yn(k+1), yn(k))

≤ d(yn(k)−1, yn(k)) + d(yn(k+1), yn(k+1)−1) → 0.
(4:9)

Since F is right continuous,

F(d(yn(k)−1, yn(k+1)−1)) − F(d(yn(k+1), yn(k))) → 0, as (k → ∞). (4:10)

From F(d(yn(k+1), yn(k))) ≤ aF (d(yn(k+1)-1, yn(k)-1)), we conclude

0 ≤ −F(d(yn(k+1), yn(k))) + αF(d(yn(k+1)−1, yn(k)−1))

= F(d(yn(k+1)−1, yn(k)−1)) − F(d(yn(k+1), yn(k)))

− (1 − α)F(d(yn(k+1)−1, yn(k)−1)).

(4:11)

This means that,

0 ≤ (1 − α)F(d(yn(k+1)−1, yn(k)−1))

≤ F(d(yn(k+1)−1, yn(k)−1)) − F(d(yn(k+1), yn(k))).
(4:12)

Since 1 - a >0 and (4.10) holds, then F(d(yn(k)-1, yn(k+1)-1)) ® 0. So from (4.8), ek ® 0

and this is a contradiction because ||ek|| = 1.

Step 3. {yn} is Cauchy sequence.

Let m, n Î N and m > n, from (4.1),

F(d(ym, yn)) = F(d(Tf xm−1,Tf xn−1))

≤ αF(d(Tf xm−2,Tf xn−2))

...

≤ αnF(d(Tf xm−n,Tx0)).

(4:13)

Since {yn} is bounded and (4.13) holds, lim
m,n→∞ d(ym, yn) = 0. This means that, {yn} is a

Cauchy sequence.

Step 4. f has a fixed point.

Since (X, d) is a complete cone metric space and {yn} is Cauchy, there exists y Î X

such that lim
n→∞ yn = y. Since T is closed graph, there exists a Î X such that Ta = y. For

every n Î N

F(d(yn+1,Tfa)) = F(d(Txn+1,Tfa))

= F(d(Tf xn,Tfa))

≤ F(d(Txn,Ta))

= F(d(yn, y)) → 0, (n → ∞).

(4:14)

This shows F(d(yn+1, Tf (a))) ® 0. So d(yn+1, Tf (a)) ® 0. Therefore, yn ® Tf(a), i.e.,

Tf(a) = Ta. Since T is one to one, thus fa = a.□
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Lemma 4.8. Define F(x) =
∫ x
0 φdP, where j : P ® P is a non-vanishing mapping and

sub-additive cone integrable on each [a, b] ⊂ P such that for each ε ≫ 0,∫ ε

0 φ dp 	 0and the mapping F(x) by (x ≥ 0), has a continuous inverse. Then, F satisfies

all conditions of Definition 4.3.

Proof. It suffices to show that F is bounded. Arguing by contradiction, suppose F is

unbounded. There exists a sequence {xk} ⊂ P such that for all k Î N, ||xk|| = 1 and ||F

(xk)|| ® ∞. We can choose nk Î N and ek Î P such that, ||ek|| = 1 for each k Î N and

F(xk) > n2k ek. (4:15)

On the other hand,

F(xk) =
∫ xk

0
φdp

=
∫ nk

xk
nk

0
φdp

≤ nk

∫ xk
nk

0
φdp

(4:16)

Thus

n2k ek < nk

∫ xk
nk

0
φdp. (4:17)

This means that,

nkek <

∫ xk
nk

0
φdp. (4:18)

If nk ® ∞ then

∫ xk
nk

0
φdp → ∞. (4:19)

Suppose a Î intP. From
xk
nk

→ 0 we conclude that, there exists M >0 such that for

each k ≥ M, a − xk
nk

∈ intP and it means that

∫ xk
nk

0
φdp <

∫ a

0
φdp. (4:20)

Therefore, (4.20) contradicts (4.19).

Remark 4.9. If F : R+
0 → R+

0is a non-decreasing function and F(1) ≠ 0, then the condi-

tion (II) of Definition 4.3 holds. Indeed, if {tn} is a sequence in R+
0such that F(tn) ® 0

and tn �→ 0, then there exists ε >0 and a subsequence {tnk}of {tn} such that tnk > ε.

Thus, 0 < F(ε) < F(tnk) → 0and this is a contradiction. Therefore,

F isnon − decreasing ⇒ F(tn) → 0 implies tn → 0.
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Suppose P = {(x, y) : x ≥ 0, y ≥ 0} as a cone in ℝ2. If one define F : P ® P by F(a, b) =

(ab, ab), then F is non-decreasing function and F(n, 1
n2 ) = (1n ,

1
n) → (0, 0)but

(n, 1
n2 ) �→ (0, 0). This means, such property does not holds in cone metric spaces. In

other words, in cone metric spaces

F is non − decreasing �⇒ F(tn) → 0 implies tn → 0.

Corollary 4.10. Let (X, d) be a complete cone metric space and P be a cone. Let T : X

® X be a mapping such that T is one to one and closed graph. Suppose j : P ® P is a

non-vanishing mapping and sub-additive cone integrable on each [a, b] ⊂ P such that

for each ε ≫ 0,
∫ ε

0 φ dp 	 0and the mapping θ(x) =
∫ x

0
φ dP, by (x ≥ 0) has a continu-

ous inverse. If f : X ® X is a mapping such that for all x, y Î X∫ d(Tf (x),Tf (y))

0
φ dp ≤ α

∫ d(Tx,Ty)

0
φ dp, (4:21)

for some a Î (0, 1), then f has a unique fixed point in X.

Proof. Set F(x) =
∫ x
0 φdP in Theorem 4.7 and by using Lemma 4.8, the desired result

is obtained.

Remark 4.11. Theorem 4.7 is an extension of Theorem 1.4 and 3.7 in cone metric

spaces.

Corollary 4.12. Let (X, d) be a complete metric space, a Î [0, 1) and T, f : X ® X be

two mappings such that T is one-to-one and closed graph, and f is TF-contraction,

respectively, where F Î Ω. Then, f has a unique fixed point a Î X. Also, for every x0 Î
X, the sequence of iterates {Tfnx0} converges to Ta.

Proof. By the same proof asserted in Theorem 4.7, the result is obtained.□
The following theorem is a diverse generalization of the results given by Moradi et

al. [8], Khojasteh et al. [7], Suzuki [10], Meir-Keeler [4] and Reza-pour et al. [13].

Theorem 4.13. Let (X, d) be a complete regular cone metric space and f be a map-

ping on X. Let T : X ® X be a mapping such that T is one to one and closed graph.

Assume that there exists a function θ from P into itself satisfying the following:

(I) θ(0) = 0 and θ(t) ≫ 0 for all t ≫ 0.

(II) θ is non-decreasing and continuous function. Moreover, its inverse is continuous.

(III) For all 0 ≠ ε Î P, there exists δ ≫ 0 such that for all x, y Î X

θ(d(Tx,Ty)) < ε + δ implies θ(d(Tfx,Tfy)) < ε. (4:22)

(IV) For all x, y Î X

θ(x + y) ≤ θ(x) + θ(y). (4:23)

Then, f has a unique fixed point.

Proof. θ(d(Tf(x), Tf(y))) < θ(d(Tx, Ty)) for all x, y Î X with x ≠ y. If not, there exist

x0, y0 Î X such that

θ(d(Tf (x0),Tf (y0))) < θ(d(Tx0,Ty0)), (4:24)

does not holds. Now, choose δ ≫ 0 such that

θ(d(Tx0,Ty0)) < θ(d(Tf (x0),Tf (y0))) + δ. (4:25)
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It means that, θ(d(Tf(x0), Tf (y0))) < θ(d(Tf (x0), Tf (y0))) and this is a contradiction.

Let x0 Î X, xn = f (xn-1) and yn = Txn, for all n Î N. (If there is a natural m Î N such

that d(ym+1, ym) = 0, then d(Txm+1, Txm) = 0. Since T is one to one, d(xm+1, xm) = 0.

Thus, f(xm) = xm and so f has a fixed point). Let d(yn+1, yn) ≠ 0 for all n Î N. So θ(d

(yn+1, yn)) <θ(d(yn, yn-1)). Hence, according to regularity of P, there exists a Î P such

that θ(d(yn+1, yn)) ® a. We claim that a = 0. If a ≠ 0, then according to condition

(III), there exists 0 ≪ d such that θ(d(Tf(x), Tf(y)) <a for all x, y Î X with θ(d(Tx,

Ty)) <a + d. Choose r > 0 such that d
2 +Nr(0) ⊆ P and take the natural number N

such that ||θ(d(yn+1, yn)) - a|| <r for all n ≥ N. So for all n Î N

||d
2

− (θ(d(yn+1, yn)) − α) − d
2

|| < r, (4:26)

and hence

d
2

− (θ(d(yn+1, yn)) − α) ∈ d
2
+Nr(0) ⊆ P. (4:27)

So, θ(d(yn+1, yn)) -a ≪ d. Since f has the property (III), θ(d(yn+2, yn+1)) < a for all n

≥ N. This is a contradiction because a < θ(d(yi+1, yi)) for all i ≥ 1. Thus

lim
n→∞ θ(d(yn+1, yn)) = 0. (4:28)

{yn}∞n=1 is Cauchy sequence. If not, then there is a 0 ≪ c such that for all natural

number k, there are mk, nk > k so that the relation d(ymk , ynk) � c does not holds.

Since θ has continuous inverse, there exists 0 ≪ c such that for all k Î N, there are

mk, nk > k such that the relation θ(d(ymk , ynk)) � c does not holds. For 0 ≪ e ≪ c

there exists 0 ≪ d such that θ(d(Tf(x), Tf(y))) < e for all x, y Î X with θ(d(Tx, Ty)) < e

+ d. Choose a natural number M such that θ(d(yi+1, yi)) � d
2 for all i ≥ M. Also, take

mM ≥ nM > M such that the relation θ(d(ymM , ynM)) � c does not holds. Then, condi-

tion (IV) yields

θ(d(ynM−1, ynM+1)) ≤ θ(d(ynM−1, ynM)) + θ(d(ynM , ynM+1))

� d
2 + d

2

� d + e.

(4:29)

Hence, θ(d(ynM , ynM+2)) � e. Similarly, θ(d(ynM , ynM+3)) � e. Thus,

θ(d(ynM , ymM)) � e � c, (4:30)

which is a contradiction. Therefore, {yn}∞n=1 is a Cauchy sequence. Since (X, d) is

complete, there is u Î X such that lim
n→∞ yn → u. Hence, lim

n→∞ T(xn) = u. Since T is

closed graph, thus there exists v Î X such that Tv = u. Now,

θ(d(Txn+1,Tfv)) = θ(d(Tf xn,Tfv)) < θ(d(Txn,Tv)) → 0. (4:31)

Therefore, yn+1 = Txn+1 ®Tfv. Hence, Tfv = Tv. Since T is one to one we conclude

that fv = v. Hence, f has a fixed point. Uniqueness of the fixed point follows from

θ(d(Tx,Ty)) = θ(d(Tfx,Tfy)) < θ(d(Tx,Ty)), (4:32)

for all x ≠ y.
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Remark 4.14. The following notations are considerable:

• By taking θ(x) =
∫ x

0
φ dPin Theorem 4.13, where j satisfies the assumptions of

Corollary 4.10, Corollary 4.10 is concluded.

• By taking Tx ≡ x in Corollary 4.10, Khojasteh’s result is concluded.

• By taking Tx ≡ x in Theorem 4.13, Suzuki [10] and Rezapour-Haghi’s results [13],

are concluded.

The following theorem is a direct result of Theorem 4.13.

Theorem 4.15. Let (X, d) be a complete cone metric space, a Î [0, 1) and T, f : X ®
X be two mappings such that T is one-to-one and closed graph, and f satisfies

θ(d(Tfx,Tfy)) < ψ(θ(d(Tx,Ty))), (4:33)

for all x, y Î X, respectively, where θ : P ® P satisfies in (I), (II) and (IV) of Theorem

4.13 and ψ ∈ LP(see Definition 4.4). Then, f has a unique fixed point a Î X.

Proof. Suppose ε ≫ 0 is given. For each x, y Î X, we can choose δ ≫ 0 such that ε ≤

θ(d(Tx, Ty)) ≤ ε + δ. Since ψ is a L-function thus we have

θ(d(Tfx,Tfy)) < ψ(θ(d(Tx,Ty))) ≤ ε (4:34)

This means that, the condition (III) of Theorem 4.13 holds and so f has a unique

fixed point.□
Corollary 4.16. Let (X, d) be a complete metric space, a Î [0, 1) and T, f : X ® X be

two mappings such that T is one-to-one and closed graph, and f satisfies

∫ d(Tfx,Tfy)

0
φ(t) dt < ψ

(∫ d(Tx,Ty)

0
φ(t) dt

)
, (4:35)

for all x, y Î X, respectively, where ψ is a L-function and φ : R+
0 → R+

0is a non-vanish-

ing integrable mapping on each [a, b] ⊂ R+
0such that for each ε >0,

∫ ε

0 φ(t) dt > 0. Then,

f has a unique fixed point a Î X.

Proof. By taking θ(x) =
∫ x
0 φ(t) dt and P = R+

0 in Theorem 4.15, the desired result is

obtained.

5 An example
In this section, we give an example to illustrate our results.

Example 5.1. Let X = { 1n : n ∈ N} ∪ {0}, E = ℝ2 and P = {(x, y) Î E : x, y ≥ 0}. Sup-

pose d(x, y) = (|x - y|, |x - y|), for each x, y Î X. Then, (X, d) is a complete cone

metric space. Let f : X ® X be defined by

f (x) =

⎧⎨
⎩

1
n+3 x = 1

n ,n is odd,
0 x = 0,
1

n−1 x = 1
n ,n is even.

(5:1)

It is easy to see that f has a unique fixed point x = 0. Let φ : R+
0 → R be defined by

φ(t) =

{
t

1
t−2 (1 − ln(t)) t > 0,
0 t = 0.

(5:2)
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It is easy to compute that,∫ x

0
φ(t) dt = x

1
x , for each x > 0.

This implies that θ(x) =
∫ x
0 φ(t) dt has the continuous inverse at zero. Consider the

mapping j : P ® E defined by

φ(t, s) = (φ(t),φ(s)), for each (t, s) ∈ P.

Since θ(x) =
∫ x
0 φ(t) dt has the continuous inverse on R+

0 by Lemma 3.8, we deduce

θ(τ ) =
∫ τ

0
φ dP , τ ≥ 0,

has the continuous inverse at zero. We show, f does not satisfy in Theorem 3.7 with

j defined as above.

Indeed, for x = 1
m, y =

1
n (m > n are even) and using Lemma 3.8, we have

∫ d(fx,fy)

0
φ dP =

∫ ( m−n
(m−1)(n−1) ,

m−n
(m−1)(n−1)

)

(0,0)
φ dP

=
√
2(m−n)

(m−1)(n−1)

(
(m−1)(n−1)

m−n

∫ m−n
(m−1)(n−1)

0
φ(t) dt

, (m−1)(n−1)
m−n

∫ m−n
(m−1)(n−1)

0
φ(t) dt

)

=
√
2

((
m−n

(m−1)(n−1)

)(
(m−1)(n−1)

m−n

)
,

(
m−n

(m−1)(n−1)

)(
(m−1)(n−1)

m−n

))
(5:3)

and

∫ d(x,y)

0
φ dP =

∫ (m−n
mn ,m−n

mn )

(0,0)
φ dP

=
√
2(m−n)
mn

(
mn
m−n

∫ m−n
mn

0
φ(t) dt, mn

m−n

∫ m−n
mn

0
φ(t) dt

)

=
√
2

(
(m−n

mn )(
mn
m−n ), (m−n

mn )(
mn
m−n )

)
.

(5:4)

Now, if∫ d(fx,fy)

0
φ dP ≤ q

∫ d(x,y)

0
φ dP

for some q Î [0, 1). Then, by taking n = 2 and m = 4, we get

√
2

⎛
⎝(

2
3
)

3
2
, (

2
3
)

3
2

⎞
⎠ ≤ q

√
2

(
(
1
4
)
4

, (
1
4
)
4)

.

This means that, q >1 and this is a contradiction. Therefore, we can’t apply Theorem

3.7 for f.
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But we claim, f satisfies in Corollary 4.10 by the same j. If we define T by

T(x) =

⎧⎨
⎩

1
n+1 x = 1

n ,n is odd,
0 x = 0,
1

n−1 x = 1
n ,n is even.

(5:5)

Obviously, T is one to one, continuous and closed graph. It is easy to see,

Tf (x) =

⎧⎨
⎩

1
n+2 x = 1

n ,n is odd,
0 x = 0,
1
n x = 1

n ,n is even.
(5:6)

We claim that,∫ d(Tfx,Tfy)

0
φ dP ≤ 1

2

∫ d(Tx,Ty)

0
φ dP.

To prove our claim we need to consider the following cases:

Case (1). If x = 1
m and y = 1

n (m > n are even), then

∫ d(Tfx,Tfy)

0
φ dP ≤ 1

2

∫ d(Tx,Ty)

0
φ dP

iff

√
2

(
(m−n

mn )(
mn
m−n ), (m−n

mn )(
mn
m−n )

)
≤ 1

2

√
2

(
( m−n
(m−1)(n−1) )

(
(m−1)(n−1)

m−n )

, ( m−n
(m−1)(n−1) )

(
(m−1)(n−1)

m−n )
)

iff

(
m − n
mn

)(
mn
m−n )(

(m − 1)(n − 1)
m − n

)(
(m−1)(n−1)

m−n ) ≤ 1
2
.

It is easy to see that, the last inequality is equivalent to

(
m − n
mn

)(
m+n−1
m−n )(

(m − 1)(n − 1)
mn

)(
(m−1)(n−1)

m−n ) ≤ 1
2
.

From

(m − 1)(n − 1)
mn

≤ 1 and
(m − 1)(n − 1)

m − n
> 1,

we deduce

(
(m − 1)(n − 1)

mn
)
(m−1)(n−1)

m−n ≤ 1.

Also, since m−n
mn ≤ 1

2 and m+n−1
m−n > 1 we have

(
m − n

mn
)(

m+n−1
m−n ) ≤ 1

2
.

Thus, the desired result is obtained.

Case (2). If x = 1
m and y = 1

n, where m, n are odd.

Case (3). If x = 1
m and y = 1

n, where m is odd and n is even.
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Proof of the Case (2) and (3) are similar to the argument as in the Case (1).

Case (4). If x = 0 and y = 1
n, such that n is even, then

∫ d(Tfx,Tfy)

0
φ dP ≤ 1

2

∫ d(Tx,Ty)

0
φ dP

iff

√
2

(
0,

(
1
n

)n)
≤ 1

2

(
0,

(
1

n − 1

)n−1
)

iff (
1
n

)n

≤ 1
2

(
1

n − 1

)n−1

iff

1
n

(
n − 1
n

)n−1

≤ 1
2
.

From 1
n ≤ 1

2 and
( n−1

n

)n−1
< 1, the desired result is obtained.

Case (5). If x = 0 and y = 1
n, such that n is odd, then

∫ d(Tfx,Tfy)

0
φ dP ≤ 1

2

∫ d(Tx,Ty)

0
φdP

iff

√
2

(
0,

(
1

n + 2

)n+2
)

≤ 1
2

(
0,

(
1

n + 1

)n+1
)

iff (
1

n + 2

)n+2

≤ 1
2

(
1

n + 1

)n+1

iff

1
n + 2

(
n + 1
n + 2

)n+1

≤ 1
2
.

From 1
n+2 ≤ 1

2 and
( n+1
n+2

)n+1
< 1, the desired result is obtained. Therefore, one can

apply Theorem 4.10 for the mapping f.

Remark 5.2. Example 5.1 shows Corollary 4.10 is an extension of Theorem 3.7.
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