RESEARCH

Open Access

The fixed point theorems of 1-set-contractive operators in Banach space

Shuang Wang

Correspondence: wangshuang19841119@163.com School of Mathematical Sciences, Yancheng Teachers University, Yancheng, 224051, Jiangsu, PR China

Abstract

In this paper, we obtain some new fixed point theorems and existence theorems of solutions for the equation $Ax = \mu x$ using properties of strictly convex (concave) function and theories of topological degree. Our results and methods are different from the corresponding ones announced by many others.

MSC: 47H09, 47H10

Keywords: 1-Set-contractive operator, Topological degree, Convex function, Concave function, Fixed point theorems

1 Introduction

For convenience, we first recall the topological degree of 1-set-contractive fields due to Petryshyn [1].

Let *E* be a real Banach space, $p \in E$, Ω be a bounded open subset of *E*. Suppose that $A: \overline{\Omega} \to E$ is a 1-set-contractive operator such that

$$|(I - A)x - p|| \ge \delta > 0, \quad \forall x \in \partial \Omega$$

In addition, if there exists a *k*-set-contractive operator $(k < 1) W : \overline{D} \to E$ such that

$$||Ax - Wx|| \leq \frac{\delta}{3}, \quad \forall x \in \partial D,$$

then $(I - W)x \neq p, \forall x \in \partial D$, and so it is easy to see that deg(I - W, D, p) is well defined and independent of W. Therefore, we are led to define the topological degree as follows:

$$\deg(I - A, D, p) = \deg(I - W, D, p).$$

Without loss of generality, we set $p = \theta$ in the above definition.

Let $A : \overline{\Omega} \to E$ be a 1-set-contractive operator. *A* is said to be a semi-closed 1-setcontractive operator, if *I*-*A* is closed operator (see [2]).

It should be noted that this class of operators, as special cases, includes completely continuous operators, strict set-contractive operators, condensing operators, semi-compact 1-set-contractive operators and others (see [2]).

Petryshyn [1] and Nussbaum [3] first introduced the topological degree of 1-set-contractive fields, studied its basic properties and obtained fixed point theorems of 1-setcontractive operators. Amann [4] and Nussbaum [5] have introduced the fixed point

SpringerOpen[♥]

© 2011 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. indices of *k*-set contractive operators ($0 \le k < 1$) and condensing operators to derive some fixed point theorems. As a complement, Li [2] has defined the fixed point index of 1-set-contractive operators and obtained some fixed point theorems of 1-set-contractive operators. Recently, Li [6] obtained some fixed point theorems for 1-set-contractive operators and existence theorems of solutions for the equation $Ax = \mu x$. Very recently, Xu [7] extended the results of Li [6] and obtained some fixed point theorems. In this paper, we continue to investigate boundary conditions, under which the topological degree of 1-set contractive fields, deg(I - A, Ω , p), is equal to unity or zero. Consequently, we obtain some new fixed point theorems and existence theorems of solutions for the equation $Ax = \mu x$ using properties of strictly convex (concave) functions. Our results and methods are different from the corresponding ones announced by many others (e.g., Li [6], Xu [7]).

We need the following concepts and lemmas for the proof of our main results.

Suppose that $A : \overline{\Omega} \to E$ is a semi-closed 1-set-contractive operator and $\theta \notin (I - A)\partial\Omega$, then, by the standard method, we can easily see that the topological degree has the basic properties as follows:

(a) (Normalization) deg(I, Ω, p) = 1, when $p \in \Omega$; deg(I, Ω, p) = 0, when $p \notin \Omega$;

(b) (Solution property) If deg(*I* - *A*, Ω , θ) \neq 0, then *A* has at least one fixed point in Ω .

(c) (Additivity) For every pair of disjoint open subsets Ω_1 , Ω_2 of Ω such that $\{x \in \Omega \mid (I - A)x = 0\} \subset \Omega_1 \cup \Omega_2$, we have

 $\deg(I - A, \Omega, \theta) = \deg(I - A, \Omega_1, \theta) + \deg(I - A, \Omega_2, \theta).$

(d) (Homotopy invariance) Let $H(t, x) = H_t(x) : [0, 1] \times \overline{\Omega} \to E$ be a continuous operator such that

 $||x - H_t(x)|| \ge \delta > 0$, for $(t, x) \in [0, 1] \times \partial \Omega$

and the measure of non-compactness $\gamma(H([0, 1] \times Q)) \leq \gamma(Q)$ for every $Q \subset \overline{\Omega}$. Then deg(*I* - H_t , Ω , θ) = *const*, for any $t \in [0, 1]$.

(e) Let *B* be an open ball with center θ , $A : \overline{B} \to E$ a semi-closed 1-set-contractive operator and $(I - A)x \neq 0$ for all $x \in \partial B$. Suppose that *A* is odd on ∂B (i.e., A(-x) = Ax, for $x \in \partial B$), then deg $(I - A, B, \theta) \neq 0$.

(f) (Change of base) Let $p \neq \theta$, then deg(*I* - *A*, Ω , *p*) = deg(*I* - *A* - *p*, Ω , θ).

Lemma 1.1. [7]. Let E be a real Banach space, Ω a bounded open subset of E and $\theta \in \Omega$. A: $\overline{\Omega} \to E$ is a semi-closed 1-set-contractive operator and satisfies the Leray-Schauder boundary condition

 $Ax \neq tx$, for all $x \in \partial \Omega$, and $t \ge 1$, (L-S)

then $\deg(I - A, \Omega, \theta) = 1$ and so A has a fixed point in Ω .

Definition 1.2. Let *D* be a nonempty subset of *R*. If $\phi : D \to R$ is a real function such that

$$\varphi[tx + (1-t)\gamma] < t\varphi(x) + (1-t)\varphi(\gamma), \quad \forall x, \gamma \in D, \ x \neq \gamma, \ t \in (0,1),$$

then ϕ is called strictly convex function on *D*. If $\phi : D \to R$ is a real function such that

$$\varphi[tx + (1-t)y] > t\varphi(x) + (1-t)\varphi(y), \quad \forall x, y \in D, \ x \neq y, \ t \in (0, 1),$$

then ϕ is called strictly concave function on *D*.

2 Main results

We are now in the position to apply the topological degree and properties of strictly convex (concave) function to derive some new fixed point theorems for semi-closed 1-set-contractive operators and existence theorems of solutions for the equation $Ax = \mu x$ which generalize a great deal of well-known results and relevant recent ones.

Theorem 2.1. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist strictly convex function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$ with $\phi(t) \ge 1$, for all t > 1, such that

$$\varphi(||Ax - x||) \ge \varphi(||Ax||)\phi(||Ax|| \cdot ||x||^{-1}) - \varphi(||x||), \quad \forall x \in \partial\Omega,$$

$$(1)$$

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial\Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. If the operator A has a fixed point on $\partial\Omega$, then A has at least one fixed point in $\overline{\Omega}$. Now suppose that A has no fixed points on $\partial\Omega$. Next we shall prove that the condition (L-S) is satisfied.

Suppose this is not true. Then there exists $x_0 \in \partial \Omega$, $t_0 \ge 1$ such that $Ax_0 = t_0x_0$, i.e., $x_0 = t_0^{-1}Ax_0$. It is easy to see that $||Ax_0|| \ne 0$ and $t_0 > 1$.

From (1), we have

$$\varphi(||Ax_0 - t_0^{-1}Ax_0||) \ge \varphi(||Ax_0||)\phi(||Ax_0|| \cdot ||t_0^{-1}Ax_0||^{-1}) - \varphi(||t_0^{-1}Ax_0||),$$

which implies

$$\varphi[(1 - t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) \ge \varphi(||Ax_0||)\phi(t_0).$$
⁽²⁾

By strict convexity of ϕ and $\phi(0) = 0$, we obtain

$$\begin{aligned} \varphi[(1-t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) &= \varphi[(1-t_0^{-1})||Ax_0|| + t_0^{-1}||\theta||] + \varphi[t_0^{-1}||Ax_0|| + (1-t_0^{-1})||\theta||] \\ &< (1-t_0^{-1})\varphi(||Ax_0||) + t_0^{-1}\varphi(0) + t_0^{-1}\varphi(||Ax_0||) + (1-t_0^{-1})\varphi(0) \quad (3) \\ &= \varphi(||Ax_0||). \end{aligned}$$

It is easy to see from (2) and (3) that

$$\varphi(||Ax_0||)\phi(t_0) < \varphi(||Ax_0||). \tag{4}$$

Noting that $t_0 > 1$ and $\varphi(t) \ge 1$, for all t > 1, we have

 $\varphi(||Ax_0||)\phi(t_0) \ge \varphi(||Ax_0||),$

which contradicts (4), and so the condition (L-S) is satisfied. Therefore, it follows from Lemma 1.1 that the conclusions of Theorem 2.1 hold. \Box

Remark 2.2. If there exist convex function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, $\phi(0) = 0$ and real function φ : $\mathbb{R}^+ \to \mathbb{R}$, $\varphi(t) > 1$, $\forall t > 1$ satisfied (1), the conclusions of Theorem 2.1 also hold.

Theorem 2.3. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist strictly concave function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with ϕ (0) = 0 and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$, ϕ (t) ≤ 1 , $\forall t > 1$, such that

$$\varphi(||Ax - x||) \le \varphi(||Ax||)\phi(||Ax|| \cdot ||x||^{-1}) - \varphi(||x||), \quad \forall x \in \partial\Omega,$$
(5)

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial \Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. If the operator A has a fixed point on $\partial\Omega$, then A has at least one fixed point in $\overline{\Omega}$. Now suppose that A has no fixed points on $\partial\Omega$. Next we shall prove that the condition (L-S) is satisfied.

Suppose this is not true. Then there exists $x_0 \in \partial \Omega$, $t_0 \ge 1$ such that $Ax_0 = t_0x_0$, i.e., $x_0 = t_0^{-1}Ax_0$. It is easy to see that $||Ax_0|| \ne 0$ and $t_0 > 1$. From (5), we have

$$\varphi(||Ax_0 - t_0^{-1}Ax_0||) \le \varphi(||Ax_0||)\phi(||Ax_0|| \cdot ||t_0^{-1}Ax_0||^{-1}) - \varphi(||t_0^{-1}Ax_0||).$$

This implies that

$$\varphi[(1 - t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) \le \varphi(||Ax_0||)\phi(t_0).$$
(6)

By strict concavity of ϕ and ϕ (0) = 0, we obtain

$$\varphi[(1 - t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) = \varphi[(1 - t_0^{-1})||Ax_0|| + t_0^{-1}||\theta||] + \varphi[t_0^{-1}||Ax_0|| + (1 - t_0^{-1})||\theta||] > (1 - t_0^{-1})\varphi(||Ax_0||) + t_0^{-1}\varphi(0) + t_0^{-1}\varphi(||Ax_0||) + (1 - t_0^{-1})\varphi(0)$$
(7)
$$= \varphi(||Ax_0||).$$

It follows from (6) and (7) that

$$\varphi(||Ax_0||)\phi(t_0) > \varphi(||Ax_0||).$$
(8)

On the other hand, by $t_0 > 1$ and $\varphi(t) \le 1$, $\forall t > 1$, we have

 $\varphi(||Ax_0||)\phi(t_0) \leq \varphi(||Ax_0||),$

which contradicts (8), and so the condition (L-S) is satisfied. Therefore, it follows from Lemma 1.1 that the conclusions of Theorem 2.3 hold. \Box

Remark 2.4. If there exist concave function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, $\phi(0) = 0$ and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$, $\phi(t) < 1$, $\forall t > 1$ satisfied (5), the conclusions of Theorem 2.3 also hold.

Corollary 2.5. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and $\beta \ge 0$ such that

$$||Ax - x||^{\alpha} \ge ||Ax||^{\alpha + \beta} ||x||^{-\beta} - ||x||^{\alpha}, \quad \forall x \in \partial \Omega,$$

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial\Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. Putting $\phi(t) = t^{\alpha}$, $\phi(t) = t^{\beta}$, we have $\phi(t)$ is a strictly convex function with $\phi(0) = 0$ and $\phi(t) \ge 1$, $\forall t > 1$. Therefore, from Theorem 2.1, the conclusions of Corollary 2.5 hold.. \Box

Remark 2.6. 1. Corollary 2.5 generalizes Theorem 2.2 of Xu [7] from $\alpha > 1$ to $\alpha \in (-\infty, 0) \cup (1, +\infty)$. Moreover, our methods are different from those in many recent works (e.g., Li [6], Xu [7]).

2. Putting $\alpha > 1$, $\beta = 0$ in Corollary 2.5, we can obtain Theorem 5 of Li [6].

Corollary 2.7. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist $\alpha \in (0, 1)$ and $\beta \leq 0$ such that

$$||Ax - x||^{\alpha} \le ||Ax||^{\alpha + \beta} ||x||^{-\beta} - ||x||^{\alpha}, \quad \forall x \in \partial D,$$

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial\Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. Putting $\phi(t) = t^{\alpha}$, $\varphi(t) = t^{\beta}$, we have $\phi(t)$ is a strictly concave function with ϕ (0) = 0 and $\varphi(t) \leq 1$, $\forall t > 1$. Therefore, from Theorem 2.3, the conclusions of Corollary 2.7 hold. \Box

Remark 2.8. Corollary 2.7 extends Theorem 8 of Li [6]. Putting $\beta = 0$ in Corollary 2.7, we can obtain Theorem 8 of Li [6].

Theorem 2.9. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist strictly convex function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$ with $\phi(t) \ge 1$, for all t > 1, such that

$$\varphi(||Ax - x||) \ge \varphi(||Ax||)\phi(||Ax + x|| \cdot ||x||^{-1}) - \varphi(||x||), \quad \forall x \in \partial\Omega,$$
(9)

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial\Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. If the operator A has a fixed point on $\partial\Omega$, then A has at least one fixed point in $\overline{\Omega}$. Now suppose that A has no fixed points on $\partial\Omega$. Next we shall prove that the condition (L-S) is satisfied.

Suppose this is not true. Then there exists $x_0 \in \partial \Omega$, $t_0 \ge 1$ such that $Ax_0 = t_0x_0$, i.e., $x_0 = t_0^{-1}Ax_0$. It is easy to see that $||Ax_0|| \ne 0$ and $t_0 > 1$. By virtue of (9), we have

$$\varphi(||Ax_0 - t_0^{-1}Ax_0||) \ge \varphi(||Ax_0||)\phi(||Ax_0 + t_0^{-1}Ax_0|| \cdot ||t_0^{-1}Ax_0||^{-1}) - \varphi(||t_0^{-1}Ax_0||),$$

which implies

$$\varphi[(1-t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) \ge \varphi(||Ax_0||)\phi[(1+t_0^{-1})t_0].$$
(10)

By strict convexity of ϕ and ϕ (0) = 0, we obtain (3) holds. From (3) and (10), we have

$$\varphi(||Ax_0||)\phi[(1+t_0^{-1})t_0] < \varphi(||Ax_0||).$$
(11)

Noting that $t_0 > 1$ and $\varphi(t) \ge 1$, for all t > 1, we have $(1 + t_0^{-1})t_0 = t_0 + 1 > 1$, and so

$$\varphi(||Ax_0||)\phi[(1+t_0^{-1})t_0] \ge \varphi(||Ax_0||),$$

which contradicts (11), and so the condition (L-S) is satisfied. Therefore, it follows from Lemma 1.1 that the conclusions of Theorem 2.9 hold. \Box

Remark 2.10. If there exist convex function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, $\phi(0) = 0$ and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$, $\phi(t) > 1$, $\forall t > 1$ satisfied (9), the conclusions of Theorem 2.9 also hold.

Theorem 2.11. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist strictly concave function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with ϕ (0) = 0 and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$, ϕ (t) ≤ 1 , $\forall t > 1$, such that

$$\varphi(||Ax - x||) \le \varphi(||Ax||)\phi(||Ax + x|| \cdot ||x||^{-1}) - \varphi(||x||), \quad \forall x \in \partial\Omega,$$

$$(12)$$

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial \Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. If the operator A has a fixed point on $\partial\Omega$, then A has at least one fixed point in $\overline{\Omega}$. Now suppose that A has no fixed points on $\partial\Omega$. Next we shall prove that the condition (L-S) is satisfied.

Suppose this is not true. Then there exists $x_0 \in \partial \Omega$, $t_0 \ge 1$ such that $Ax_0 = t_0 x_0$, i.e., $x_0 = t_0^{-1} Ax_0$. It is easy to see that $||Ax_0|| \ne 0$ and $t_0 > 1$. By (12), we have

$$\varphi(||Ax_0 - t_0^{-1}Ax_0||) \le \varphi(||Ax_0||)\phi(||Ax_0 + t_0^{-1}Ax_0|| \cdot ||t_0^{-1}Ax_0||^{-1}) - \varphi(||t_0^{-1}Ax_0||),$$

which implies

$$\varphi[(1 - t_0^{-1})||Ax_0||] + \varphi(t_0^{-1}||Ax_0||) \le \varphi(||Ax_0||)\phi[(1 + t_0^{-1})t_0].$$
(13)

By strict concavity of ϕ and ϕ (0) = 0, we have (7) holds. From (7) and (13), we obtain

$$\varphi(||Ax_0||)\phi[(1+t_0^{-1})t_0] > \varphi(||Ax_0||).$$
(14)

On the other hand, by $t_0 > 1$, we have $(1 + t_0^{-1})t_0 = t_0 + 1 > 1$. Therefore, it follows from $\varphi(t) \le 1$, $\forall t > 1$ that

$$\varphi(||Ax_0||)\phi[(1+t_0^{-1})t_0] \le \varphi(||Ax_0||),$$

which contradicts (14), and so the condition (L-S) is satisfied. Therefore, it follows from Lemma 1.1 that the conclusions of Theorem 2.11 hold. \Box

Remark 2.12. If there exist convex function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, ϕ (0) = 0 and real function $\phi : \mathbb{R}^+ \to \mathbb{R}$, ϕ (*t*) > 1, $\forall t > 1$ satisfied (12), the conclusions of Theorem 2.11 also hold.

Corollary 2.13. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist $\alpha \in (-\infty, 0) \cup (1, +\infty)$ and $\beta \ge 0$ such that

$$||Ax - x||^{\alpha} ||x||^{\beta} \ge ||Ax||^{\alpha} ||Ax + x||^{\beta} - ||x||^{\alpha + \beta}, \quad \forall x \in \partial\Omega,$$
(15)

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial \Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. From (15), we have

$$||Ax - x||^{\alpha} \ge ||Ax||^{\alpha} ||Ax + x||^{\beta} ||x||^{-\beta} - ||x||^{\alpha}, \quad \forall x \in \partial \Omega.$$

Taking $\phi(t) = t^{\alpha}$, $\phi(t) = t^{\beta}$, we have $\phi(t)$ is a strictly convex function with $\phi(0) = 0$ and $\phi(t) \ge 1$, $\forall t > 1$. Therefore, from Theorem 2.9, the conclusions of Corollary 2.13 hold. \Box

Remark 2.14. 1. Corollary 2.13 generalizes Theorem 2.4 of Xu [7] from $\alpha > 1$ to $\alpha \in$ (- ∞ , 0) U (1, + ∞). Moreover, our methods are different from those in many recent works (e.g., Li [6], Xu [7]).

2. Putting $\alpha > 1$, $\beta = 0$ in Corollary 2.13, we can obtain Theorem 5 of Li [6].

Corollary 2.15. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist $\alpha \in (0, 1)$ and $\beta \leq 0$ such that

$$||Ax - x||^{\alpha} ||x||^{\beta} \le ||Ax||^{\alpha} ||Ax + x||^{\beta} - ||x||^{\alpha + \beta}, \quad \forall x \in \partial\Omega,$$

$$(16)$$

then deg(I - A, Ω , θ) = 1 if A has no fixed point on $\partial\Omega$, and so A has at least one fixed point in $\overline{\Omega}$.

Proof. From (16), we have

$$||Ax - x||^{\alpha} \le ||Ax||^{\alpha} ||Ax + x||^{\beta} ||x||^{-\beta} - ||x||^{\alpha}, \quad \forall x \in \partial \Omega.$$

Putting $\phi(t) = t^{\alpha}$, $\varphi(t) = t^{\beta}$, we have $\phi(t)$ is a strictly concave function with $\phi(0) = 0$ and $\varphi(t) \le 1$, $\forall t > 1$. Therefore, from Theorem 2.11, the conclusions of Corollary 2.15 hold. \Box

Remark 2.16. Corollary 2.15 extends Theorem 8 of Li [6]. Putting $\beta = 0$ in Corollary 2.15, we can obtain Theorem 8 of Li [6].

Theorem 2.17. Let E, Ω , A be the same as in Lemma 1.1. Moreover, if there exist $\alpha \in (-\infty, 0) \cup (1, +\infty)$, $\beta \ge 0$ and $\mu \ge 1$ such that

$$||Ax - \mu x||^{\alpha} \ge ||Ax||^{\alpha + \beta} ||\mu x||^{-\beta} - ||\mu x||^{\alpha}, \quad \forall x \in \partial \Omega,$$

then the equation $Ax = \mu x$ possesses a solution in $\overline{\Omega}$.

Proof. Without loss of generality, suppose that $\frac{1}{\mu}A$ has no fixed point on $\partial\Omega$. From (17), we have

$$\frac{1}{\mu^{\alpha}}||Ax - \mu x||^{\alpha} \geq \frac{1}{\mu^{\alpha}}||Ax||^{\alpha+\beta}||\mu x||^{-\beta} - \frac{1}{\mu^{\alpha}}||\mu x||^{\alpha}, \quad \forall x \in \partial\Omega,$$

which implies

$$||\frac{1}{\mu}Ax - x||^{\alpha} \ge ||\frac{1}{\mu}Ax||^{\alpha+\beta}||x||^{-\beta} - ||x||^{\alpha}, \quad \forall x \in \partial\Omega.$$

It is easy to see that $\frac{1}{\mu}A$ is a semi-closed 1-set-contractive operator. It follows from Corollary 2.5 that deg $(I - \frac{1}{\mu}A, \Omega, \theta) = 1 \neq 0$, and so the equation $Ax = \mu x$ possesses a solution in $\overline{\Omega}$.

Remark 2.18. Similarly, from Corollary 2.7, Corollary 2.13 or Corollary 2.15, we can obtain the equation $Ax = \mu x$ possesses a solution in $\overline{\Omega}$.

Acknowledgements

This study was supported by the Natural Science Foundation of Yancheng Teachers University under Grant (10YCKL022).

Competing interests

The authors declare that they have no competing interests.

Received: 14 November 2010 Accepted: 19 July 2011 Published: 19 July 2011

References

- Petryshyn, WV: Remark on condensing and k-set-contractive mappings. J. Math. Anal. Appl. 39, 717–741 (1972). doi:10.1016/0022-247X(72)90194-1
- Li, GZ: The fixed point index and the fixed point theorems for 1- set-contraction mappings. Proc. Am. Math. Soc. 104, 1163–1170 (1988)
- Nussbaum, RD: Degree theory for local condensing maps. J. Math. Anal. Appl. 37, 741–766 (1972). doi:10.1016/0022-247X(72)90253-3
- Amann, H: Fixed point equations and nonlinear eigenvalue problems in ordered Banach space. SIAM Rev. 18, 620–709 (1976). doi:10.1137/1018114
- Nussbaum, RD: The fixed index and asymptotic fixed point theorems for k-set-contractions. Bull. Am. Math. Soc. 75, 490–495 (1969). doi:10.1090/S0002-9904-1969-12213-5
- Li, GZ, Xu, SY, Duan, HG: Fixed point theorems for 1-set-contractive operators in Banach spaces. Appl. Math. Lett. 19, 403–412 (2006). doi:10.1016/j.aml.2005.02.035
- Xu, SY: New fixed point theorems for 1-set-contractive operators in Banach spaces. Nonlinear Anal. 67, 938–944 (2007). doi:10.1016/j.na.2006.06.051

doi:10.1186/1687-1812-2011-15

Cite this article as: Wang: The fixed point theorems of 1-set-contractive operators in Banach space. Fixed Point Theory and Applications 2011 2011:15.