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Abstract

Let E be a real Banach space and K be a nonempty, closed, and convex subset of E.
Let {Ji}Ni=1 be a finite family of Lipschitzian demi-contractive semigroups of K, with
sequences of bounded measurable functions Li : [0, ∞) ® (0, ∞) and bounded
functions li : [0, ∞) ® (0, ∞), respectively, where Ji := {Ti(t) : t ≥ 0}, i = 1,2, ..., N.
Strong convergence theorem for common fixed point for finite family {Ji}Ni=1 is
proved in a real Banch space. As an application, a new convergence theorem for
finite family of Lipschitzian demi-contractive maps is also proved.
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1. Introduction
Let E be a real Banach space and E* be the dual space of E. The normalized duality

mapping J : E → 2E
∗ is defined by, x Î E,

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x|| ||x∗||, ||x∗|| = ||x||},
where 〈., .〉 denotes the normalized duality pairing. For any x Î E, an element of

Jx is denoted by j(x).

Let K be a nonempty, closed and convex subset of E. Let T : K ® K be a map, a

point x Î K is called a fixed point of T if Tx = x, and the set of all fixed points of T is

denoted by F(T). The mapping T is called L-Lipschitzian or simply Lipschitz if ∃L >0,

such that ||Tx -Ty|| ≤ L||x - y|| ∀x, y Î K and if L = 1, then the map T is called

nonexpansive.

A one parameter family J = {T(t) : t ≥ 0} of self mapping of K is called a nonexpan-

sive semigroup if the following conditions are satisfied,

(i) T(0)x = x ∀ x Î K;

(ii) T(t + s) = T(t) ∘ T(s) ∀ t, s ≥ 0;

(iii) for each x Î K, the mapping t ® T(t)x is continuos;

(iv) for x, y Î K and t ≥ 0, ||T(t)x -T(t)y|| ≤ ||x - y||.

If the family J = {T(t) : t ≥ 0} satisfies conditions (i) - (iii), then it is called

(a) pseudocontractive semigroup if for any x, y Î K, there exists j(x - y) Î J(x - y)

such that

〈T(t)x − T(t)y, j(x − y)〉 ≤ ||x − y||2;
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(b) strictly pseudocontractive semigroup if there exists a bounded function l : [0, ∞) ®
(0, ∞) and j(x - y) Î J(x - y) such that

〈T(t)x − T(t)y, j(x − y)〉 ≤ ||x − y||2 − λ(t)||(I − T(t))x − (I − T(t))y||2

for all x, y Î K;

(c) demi-contractive semigroup if F(T(t)) ≠ ∅ ∀t ≥ 0, there exists a bounded function l :

[0, ∞) ® (0, ∞), and j(x - y) Î J(x - y) such that

〈T(t)x − q, j(x − q)〉 ≤ ||x − q||2 − λ(t)||x − T(t)x||2

for any x Î K and q Î F(T(t));

(d) Lipschitzian semigroup if there is a bounded measurable function

L : [0, ∞) ® (0, ∞) such that for x, y Î K and t ≥ 0,

||T(t)x − T(t)y|| ≤ L(t)||x − y||.

It is known that every strictly pseudocontractive semigroup is Lipschitzian, and every

strictly pseudocontractive semigroup with fixed point is demi-contractive semi-group.

Let E be a real Banach space and let K be a nonempty closed convex subset of E. A

mapping T : K ® K is demicompact if for every bounded sequence {xn} in K such that

{xn - Txn} converges, and there exists a subsequence, say {xnj}of {xn} that converges
strongly to some x* in K. T is said to be demi-contractive if F(T) ≠ ∅, and there exists l
>0 such that 〈Tx- q, j(x - q)〉 ≤ ||x - q||2 - l||x - Tx||2 ∀ x Î K, q Î F(T) and j(x - q) Î J

(x - q).

Let T1, T2, ..., TN be a family of self-mappings of K such that F := ∩N
i=1F(Ti) 
= ∅.

Then, the family is said to satisfy condition C if there exists a nondecreasing function f

: [0, ∞) ® [0, ∞) with f (0) = 0 and f (r) >0 ∀ r Î (0, ∞) such that f (d(x, F)) ≤ ||x -

Tsx|| for some s in {1, 2, ..., N} and for all x Î K, where d(x, F) = inf {||x - q|| : q Î F}.

Existence theorems for family of nonexpansive mappings are proved in [1-5] and

actually many others. Recently, Suzuki [6] proved the equivalence between the fixed

point property for nonexpansive mappings and that of the nonexpansive semi-groups.

Both implicit and explicit, Mann, Ishikawa, and Halpern-type schemes were studied

for approximation of common fixed points of family of nonexpansive semigroups and

their generalizations in various spaces; see, for example [6-13], to list but a few.

In 1998, Shoiji and Takahashi [7] introduced and studied a Halpern-type scheme for

common fixed point of a family of asymptotically nonexpansive semigroup in the fra-

mework of a real Hilbert space. Suzuki [8] proved that the implicit scheme defined by

x, x1 Î K,

xn = αnT(tn)xn + (1 − αn)x

converges strongly to a common fixed point of the family of nonexpansive semigroup

in a real Hilbert space. Xu [9] extended the result of Suzuki to a more general real uni-

formly convex Banach space having a weakly sequentially continuous duality mapping.

In 2005, Aleyner and Reich [10] proved the strong convergence of an explicit Halpern-

type scheme defined by x, x1 Î K,

xn+1 = αnT(tn)xn + (1 − αn)x
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to a common fixed point of the family {T(t) : t ≥ 0} of nonexpansive semigroup in a

reflexive Banach space with uniformly Gatéuax differentiable norm. Recently, Zhang

et al. [11] introduced and studied a composite iterative scheme defined by x, x1 Î K,

xn+1 = αnyn + (1 − αn)x; yn = βnT(tn)xn + (1 − βn)xn.

Those authors proved strong convergence of the sequence {xn} to a common fixed

point of the family {T(t) : t ≥ 0} of nonexpansive semigroup.

Very recently, Chang et al. [12] proved a strong convergence theorem which

extended and improved the results in [10,9] and some others. They proved the follow-

ing theorem.

Theorem 1.1. Chang et al. [12]Let K be a nonempty, closed, and convex subset of a

real Banach space E: Let J := {T(t) : t ≥ 0}be a Lipschitzian demi-contractive semi-

group of K with bounded measurable function L : [0, ∞) ® (0, ∞) and bounded func-

tion l : [0, ∞) ® (0, ∞) such that

L := sup
t≥0

{L(t)} < ∞, λ := inf
t≥0

{λ(t)} > 0 and F := ∩
t≥0

F(T(t)) 
= ∅.

Let {tn} be an increasing sequence in [0, ∞) and {an} be a sequence in (0,1) satisfying

the following conditions,

(i)
∑∞

n=1 (1 − αn) = ∞; (ii)
∑∞

n=1 (1 − αn)
2 < ∞. Assume that there exists a compact

subset C of E such that ∪t≥0T(t)(K) ⊂ C and for any bounded set D ⊂ K

lim
n→∞ sup

x∈D,s∈R+
||T(s + tn)x − T(tn)x|| = 0.

Let {xn} be generated by x1 Î K,

xn+1 = αnxn + (1 − αn)T(tn)xn. (1:1)

Then, the sequence {xn} converges strongly to some element in F.

The purpose in this article is to prove a strong convergence theorem for common

fixed point for finite families {Ji}Ni=1 of demi-contractive semigroups in a real Banach

space. As application, we also prove convergence theorem for finite family of demi-

contractive mappings. Our theorems generalize and improve several recent results. For

instance, Theorem 1.1, which generalized, extended and improved several recent

results, is a special case of our Theorem.

2. Preliminaries
We shall make use of the following lemmas.

Lemma 2.1. Let E be a real normed linear space. Then, the following inequality

holds:

||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉, ∀ x, y ∈ E and j(x + y) ∈ J(x + y).

Lemma 2.2. (Xu [14]) Let {an} and {bn} be sequences of nonnegative real numbers

satisfying the inequality

an+1 ≤ (1 + bn)an, n ≥ 1.

If
∑∞

n=1 bn < ∞, then lim
n→∞ anexists. If in addition {an} has a subsequence which con-

verges strongly to zero, then lim
n→∞ an = 0.
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Lemma 2.3. (Suzuki [15]) Let {xn} and {yn} be bounded sequences in a Banach space E

and let {bn} be a sequence in [0, 1] with 0 <lim inf bn ≤ lim supbn <1. Suppose xn+1 =

bnyn +(1 -bn)xn for all integers n ≥ 1 and lim sup(||yn+1 - yn|| - ||xn+1 - xn||) ≤ 0. Then,

lim ||yn - xn|| = 0.

3. Main Results
Let E be a real Banach space, and K be a nonempty, closed convex subset of E. For

some fixed i Î N, let Ji := {Ti(t) : t ≥ 0} be a Lipschitzian demi-contractive semi-

group with bounded measurable function Li : [0, ∞) ® (0, ∞) and bounded function

li : [0, ∞) ® (0, ∞) such that

Li := sup
t≥0

{Li(t)} < ∞, λi := inf
t≥0

{λi(t)} > 0 and Fi := ∩
t≥0

F(Ti(t)) 
= ∅.

Then, for x, y Î K, q Î Fi and t ≥ 0,

〈Ti(t)x − q, j(x − q)〉 ≤ ||x − q||2 − λi||x − Ti(t)x||2

and

||Ti(t)x − Ti(t)y|| ≤ Li||x − y||.

Consider a family {Ji}Ni=1 of Lipschitzian demi-contractive semigroups of K and let

L := max
1≤i≤N

{Li}, L := max
1≤i≤N

{Li} and λ := min
1≤i≤N

{λi} Clearly L <∞ and l >0 and for x, y Î

K, q ∈ F , t ≥ 0 and any i Î {1, 2, ..., N},

〈Ti(t)x − q, j(x − q)〉 ≤ ||x − q||2 − λ||x − Ti(t)x||2

and

||Ti(t)x − Ti(t)y|| ≤ L||x − y||.

For a fixed δ Î (0, 1) and t ≥ 0 define a family Si(t) : K ® K i = 1, 2, ..., N by

Si(t)x := (1 − δ2)x + δ2Ti(t)x, ∀x ∈ K. (3:1)

Then, for x, y Î K and q ∈ F ,

〈Si(t)x − q, j(x − q)〉 = (1 − δ2)〈x − q, j(x − q)〉 + δ2〈Ti(t)x − q, j(x − q)〉
≤ (1 − δ2)||x − q||2 + δ2[||x − q||2 − λ||x − Ti(t)x||2]
= ||x − q||2 − λδ2||x − Ti(t)x||2.

Let λ̄ = λδ2 > 0, then

〈Si(t)x − q, j(x − q)〉 ≤ ||x − q||2 − λ̄||x − Ti(t)x||2. (3:2)

Also,

||Si(t)x − Si(t)y|| = ||(1 − δ2)(x − y) + δ2(Ti(t)x − Ti(t)y)||
≤ (1 − δ2)||x − y|| + δ2L||x − y||
= [1 − δ2 + δ2L]||x − y||
≤ (1 + δ2L)||x − y||.

Let L̄ = 1 + δ2L.
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Then,

||Si(t)x − Si(t)y|| ≤ L̄||x − y||. (3:3)

Hence, for each i Î {1, 2, ... N}, Si is Lipschitz with Lipschitz constant L̄ > 0.

Lemma 3.1. Let E be a real Banach space and K be a nonempty closed convex subset

of E. Let {Ji}Ni=1be a finite family of Lipschitzian demi-contractive semigroups of K with

sequences of bounded measurable functions Li : [0, ∞) ® (0, ∞) and bounded functions

li : [0, ∞) ® (0, ∞) i = 1, 2, ..., N such that for each i = 1, 2, ..., N,

Li := sup
t≥0

{Li(t)} < ∞, λi := inf
t≥0

{λi(t)} > 0 and Fi := ∩
t≥0

F(Ti(t)) 
= ∅.

Let F := ∩
1≤i≤N

{ ∩
t≥0

F(Ti(t))} 
= ∅, {tn}be an increasing sequence in [0, ∞) and {an} be a

sequence in (0,1) satisfying the following conditions:

(i)
∑∞

n=1 (1 − αn) = ∞, (ii)
∑∞

n=1 (1 − αn)
2 < ∞.

Assume ∀ i Î {1,2, ..., N} for any bounded set D ⊂ K the relation

lim
n→∞ sup

x∈D,s∈R+
||Ti(s + tn)x − Ti(tn)x|| = 0 (3:4)

holds. Let {xn} be a sequence generated by x1 Î K,

xn+1 = αn+1xn + (1 − αn+1)Sn+1(tn+1)xn, n ≥ 1 (3:5)

where Tn(tn) = Tn modN (tn).

Then,

(a) lim
n→∞ ||xn − q||exists for all q ∈ F .

(b) lim inf
n→∞ ||xn − Ti(tn)xn|| = 0for all i Î {1,2,3, ..., N}.

Proof. For any fixed q ∈ F using (3.5), we have

xn+1 − q = (xn − q) + (1 − αn+1)(Sn+1(tn+1)xn − xn).

Thus,

||xn+1 − q||2 = ||(xn − q) + (1 − αn+1)(Sn+1(tn+1)xn − xn)||2
≤ ||xn − q||2 + 2(1 − αn+1)〈Sn+1(tn+1)xn − xn, j(xn+1 − q)〉
= ||xn − q||2 + 2(1 − αn+1)

[
〈Sn+1(tn+1)xn − Sn+1(tn+1)xn+1, j(xn+1 − q)〉

+〈Sn+1(tn+1)xn+1 − q, j(xn+1 − q)〉 − 〈xn+1 − q, j(xn+1 − q)〉
+〈xn+1 − xn, j(xn+1 − q)〉

]

≤ ||xn − q||2 + 2(1 − αn+1)(L̄ + 1)||xn − xn+1||xn+1 − q||
−2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2
≤ ||xn − q||2 + 2(1 − αn+1)2(1 + L̄)2||Sn+1(tn+1)xn − xn|| ||xn − q||
−2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2
≤ ||xn − q||2 + 2(1 − αn+1)2(1 + L̄)3||xn − q||2
−2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2
= (1 + σn+1)||xn − q||2 − 2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2
≤ (1 + σn+1)||xn − q||2,

(3:6)
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where σn+1 = 2(1 + L̄)3(1 − αn+1)2.

Since
∑∞

n=1 (1 − σn+1)
2 < ∞, by lemma 2.2, it follows that lim

n→∞ ||xn − q|| exists.
Hence, {xn} is bounded, which implies that {Tn(tn)xn} and {Sn(tn)xn} are also bounded.

From (3.6)

||xn+1 − q||2 ≤ ||xn − q||2 + 2(1 − αn+1)2(1 + L̄)3||xn − q||2
−2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2

≤ ||xn − q||2 − 2(1 − αn+1)λ̄||xn+1 − Tn+1(tn+1)xn+1||2 + 2(1 − αn+1)2M,

where, M := (1 + L̄)3 sup
n∈N

(||xn − q||2). Hence, for some m Î N,

2λ̄

m∑
n=1

(1 − αn+1)||xn+1 − Tn+1(tn+1)xn+1||2 ≤
m∑
n=1

(||xn − q||2 − ||xn+1 − q||2)

+ 2M
m∑
n=1

(1 − αn+1)
2

≤ ||x1 − q||2

+ 2M
m∑
n=1

(1 − αn+1)
2 < ∞.

Since m Î N is arbitrary, we have

2λ̄

∞∑
n=1

(1 − αn+1)||xn+1 − Tn+1(tn+1)xn+1||2 < ∞

which implies

lim inf
n→∞ ||xn+1 − Tn+1(tn+1)xn+1|| = 0. (3:7)

Next, we show that,

lim
n→∞ ||xn+1 − xn|| = 0.

Let {bn} and {yn} be two sequences define by bn := δ(1 - δ)an+1 + δ2 and

yn := xn+1−xn+βnxn
βn

. Then, using the definition of {bn} and {Sn} we obtain that

yn := δαn+1xn+δ2(1−αn+1)Tn+1(tn+1)xn
βn

. Then,

yn+1 − yn =
δαn+2

βn+1
[xn+1 − xn] + δ

[
αn+2

βn+1
− αn+1

βn

]
xn

+
δ2(1 − αn+2)

βn+1
[Tn+2(tn+2)xn+1 − Tn+2(tn+2)xn]

+ δ2
[
1 − αn+2

βn+1
− 1 − αn+1

βn

]
Tn+2(tn+2)xn

+
δ2(1 − αn+1)

βn
[Tn+2(tn+2)xn − Tn+1(tn+1)xn].
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Therefore,

||yn+1 − yn|| − ||xn+1 − xn|| ≤
(

δαn+2

βn+1
+

δ2L(1 − αn+2)
βn+1

− 1
)

||xn+1 − xn||

+ δ

∣∣∣∣αn+2

βn+1
− αn+1

βn

∣∣∣∣ ||xn||
+ δ2

∣∣∣∣1 − αn+2

βn+1
− 1 − αn+1

βn

∣∣∣∣ ||Tn+2(tn+2)xn||
+

δ2(1 − αn+1)
βn

||Tn+2(tn+2)xn − Tn+1(tn+1)xn||.

Hence,

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0,

and by lemma 2.3,

lim
n→∞ ||yn − xn|| = 0.

Thus,

||xn+1 − xn|| = βn||yn − xn|| → 0 as n → ∞.

This implies that,

||xn+i − xn|| → 0 as n → ∞, ∀ i ∈ {1, 2, 3, . . . ,N}.

But, for i Î {1,2,3, ..., N},

||xn − Sn+i(tn+i)xn|| ≤ δ2
[
||xn − xn+i|| + ||xn+i − Tn+i(tn+i)xn+i||

+ ||Tn+i(tn+i)xn+i − Tn+i(tn+i)xn||
]

≤ δ2[(1 + L)||xn+i − xn|| + ||xn+i − Tn+i(tn+i)xn+i||].

Therefore,

lim inf
n→∞ ||xn − Sn+i(tn+i)xn|| = 0.

Hence,

lim inf
n→∞ ||Tn+i(tn+i)xn − xn|| = lim inf

n→∞ [
1
δ2

||Sn+i(tn+i)xn − xn||] = 0.

From the relation,

||Tn+i(tn)xn − xn|| ≤ ||Tn+i(tn)xn − Tn+i((tn+i − tn) + tn)xn||
+||Tn+i(tn+i)xn − xn||

≤ sup
z∈{xn},s∈R+

||Tn+i(tn)z − Tn+i(s + tn)z|| + ||Tn+i(tn+i)xn − xn||,

and condition (3.4) we get

lim inf
n→∞ ||Tn+i(tn)xn − xn|| = 0. (3:8)

It follows from (3.8) that lim inf
n→∞ ||Tl(tn)xn − xn|| = 0∀ l ∈ {1, 2, 3, . . . ,N}. This com-

pletes the proof. □
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Theorem 3.2. Let E, K, F , {an}, {tn}, {Ji}Ni=1and {xn} be as in lemma 3.1. Assume that,

for at least one i Î {1, 2, ..., N}, there exists a compact subset C of E such that ∪t≥0Ti(t)

(K) ⊂ C. Then, the sequence {xn} converges to some element F .

Proof. By Lemma 3.1, we have lim inf
n→∞ ||Tl(tn)xn − xn|| = 0∀ l ∈ {1, 2, 3, . . . ,N}.

If ∪t≥0 Ts(t)(K) ⊂ C for some compact subet C of E and some s Î {1, 2, ..., N}, then

there exists a subsequence {xnk}, of {xn} and q* Î K, such that

xnk → q∗ and ||Ts(tnk)xnk − xnk || → 0 as n → ∞. (3:9)

Observe that for t >0,

||Ts(t)xnk − xnk || ≤ ||Ts(t)xnk − Ts(t)Ts(tnk)xnk ||
+ ||Ts(t)Ts(tnk)xnk − Ts(tnk)xnk || + ||Ts(tnk)xnk − xnk ||
≤ ||Ts(t + tnk)xnk − Ts(tnk)xnk || + (1 + L)||Ts(tnk)xnk − xnk ||.

From the above we have lim
k→∞

||Ts(t)xnk − xnk || = 0. Using (3.9) and the fact that Ts is

Lipschitzian, we get q* Î ∩t≥0F(Ts(t)).

Now, for any l Î {1,2, ...,N }, since lim inf
k→∞

||Tl(tnk)xnk − xnk || = 0, there exists a subse-

quence {xnkj } of {xnk} such that

lim
j→∞

||Tl(tnkj )xnkj − xnkj || = lim inf
k→∞

||Tl(tnk)xnk − xnk || = 0. Then, similarly for t ≥ 0, we

obtain

||Tl(t)xnkj − xnkj || ≤ ||Tl(t)xnkj − Tl(t)Tl(tnkj )xnkj ||
+||Tl(t)Tl(tnkj )xnkj − Tl(tnkj )xnkj || + ||Tl(tnkj )xnkj − xnkj ||
≤ ||Tl(t + tnkj )xnkj − Tl(tnkj )xnkj || + (1 + L)||Tl(tnkj )xnkj − xnkj ||.

This implies that lim
j→∞

||Tl(t)xnkj − xnkj || = 0 and hence q* Î ∩t≥0F(Tl(t)). Since l Î {1,

2, ... N} is arbitrarily chosen, we have q∗ ∈ F . As the limit lim
n→∞ ||xn − q∗|| exists, the

conclusion of the theorem follows immediately and this completes the proof. □
Remark 3.3. Observe that considering a single one-parameter family of demi-contrac-

tive semigroup in Theorem 3.2, we obtain the conclusion of Theorem 1.1.

Let T1, T2, ..., TN be a finite family of Lipschitzian demi-contractive self-mapping of

K with positive constants l1, l2, ..., lN and Lipschitz constants L1,L2, ..., LN ,

respectively. Let F := ∩
1≤i≤N

F(Ti) 
= ∅.
For a fixed δ Î (0, 1), define Sn : K ® K by

Snx := (1 − δ2)x + δ2Tnx, ∀ x ∈ K. (3:10)

Then, it follows that for x, y Î K and i Î F,

〈Snx − q, j(x − q)〉 ≤ ||x − q||2 − λ̄||x − Tnx||2 and
||Snx − Sny|| ≤ L̄||x − y||,

where λ̄ = λδ2 > 0, L̄ = 1 + δ2L, λ := min
1≤i≤N

{λi} and L := max
1≤i≤N

{Li}.
The following Theorem is a consequence of Lemma 3.1.

Theorem 3.4. Let E, K and {an} be as in Lemma 3.1. Let T1, T2, ..., TN : K ® K be

Lipschitzian demi-contractive mappings with Ts demicompact for at least one s Î {1, 2,
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..., N}. Let {xn] be a sequence generated by x1 Î K

xn+1 = αn+1xn + (1 − αn+1)Sn+1xn, (3:11)

where Tn = Tn modN . Then, {xn} converges strongly to a common fixed point of the

family {Ti}Ni=1.
Proof. Following the line of proof of lemma 3.1 we immediately obtain

lim
n→∞ ||xn − q||qk exists for any q Î F and lim inf

n→∞ ||Tixn − xn|| = 0, ∀i Î {1,2, ... N}. Let

{xnk} be a subsequence of {xn} such that

lim
k→∞

||Tixnk − xnk || = lim inf
n→∞ ||Tixn − xn|| = 0.

Therefore lim
k→∞

||Tsxnk − xnk || = 0 and, by demicompactness of Ts, there exists a sub-

sequence {xnkj } of {xnk} and q* Î K, such that xnkj → q∗ as j ® ∞.

Since,

0 = lim
j→∞

||Tixnkj − xnkj || = ||Ti lim
j→∞

xnkj − lim
j→∞

xnkj ||

= ||Tiq∗ − q∗||,

we obtain q* Î F. But, lim
n→∞ ||xn − q∗|| exists, thus xn ® q* Î F and this completes

the proof. □
The following corollaries follow from Theorem 3.4

Corollary 3.5. Let E, K and {an} be as in Theorem 3.4. Let T1, T2, ..., TN : K ® K be

Lipschitzian demi-contractive mappings. Suppose there exists a compact subset C in E

such that
N∪
i=1

Ti(K) ⊂ C. Let {xn} be defined by (3.11). Then, {xn} converges strongly to a

common fixed point of the family {Ti}Ni=1.
Corollary 3.6. Let E; K and {an} be as in Theorem 3.4. Let T1, T2, ..., TN : K ® K be

Lipschitzian demi-contractive mappings satisfying condition C. Let {xn} be defined by

(3.11). Then, {xn} converges strongly to a common fixed point of the family {Ti}Ni=1.
Proof. Following the line of proof of lemma 3.1, we obtain lim inf

n→∞ ||xn − Tixn|| = 0 for

all i Î {1, 2, 3, ..., N} and ||xn+1 - q||2 ≤ (1 + sn+1) ||xn - q||2, where

σn+1 = 2(1 + L̄)3(1 − αn+1)2. Since
∑∞

n=1 (1 − σn+1)
2 < ∞, by lemma 2.2 lim

n→∞ ||xn − p||
exists and consequently lim

n→∞ d(xn, F) exists. Let {xnk} be a subsequence of {xn} such

that lim
k→∞

||xnk − Tixnk || = lim inf
n→∞ ||xn − Tixn|| = 0. Then, by using condition C, there

exists s Î {1, 2, ..., N} such that 0 = lim
k→∞

||xnk − Tsxnk || ≥ lim
k→∞

f (d(xnk , F)) and, using

the property of f, we get that lim
k→∞

d(xnk , F) = 0, and since the limit lim
n→∞ d(xn, F) exists

we have that lim
n→∞ d(xn, F) = 0. We next show that {xn} is Cauchy. Let ε > 0 be given,

then there exists p* Î F and n* Î N such that ∀n ≥ n*, ||xn − p∗|| < ε
2. Hence, for n ≥

n* and k Î N, we have

||xn+k − xn|| ≤ ||xn+k − p∗|| + ||xn − p∗||
< ε.

Thus, {xn} is Cauchy and so xn ® q* Î K. We now show that q* is in F. Since

lim
n→∞ d(xn, F) = 0, there exists m0 Î N large enough and p* Î F such that for all n ≥ m0,
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and ||xn − p∗|| < ε
6(1+L). Hence,

||q∗ − Tlq∗|| ≤ ||xn − q∗|| + ||xn − p∗|| + ||p∗ − Tlq∗||
≤ ε

6(1 + L)
+

ε

6(1 + L)
+ L||p∗ − q∗||

<
ε

6(1 + L)
+

ε

6(1 + L)
+

3Lε
6(1 + L)

< ε.

Thus, q* Î F(Tl) and since l Î {1, 2, ..., N} is arbitrary, we have q* Î F. This com-

pletes the proof. □
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