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Abstract

In this paper, we introduce the concepts of w̃-compatible mappings, b-coupled
coincidence point and b-common coupled fixed point for mappings F, G : X × X ®
X, where (X, d) is a cone metric space. We establish b-coupled coincidence and b-
common coupled fixed point theorems in such spaces. The presented theorems
generalize and extend several well-known comparable results in the literature, in
particular the recent results of Abbas et al. [Appl. Math. Comput. 217, 195-202
(2010)]. Some examples are given to illustrate our obtained results. An application to
the study of existence of solutions for a system of non-linear integral equations is
also considered.
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1 Introduction
Ordered normed spaces and cones have applications in applied mathematics, for

instance, in using Newton’s approximation method [1-4] and in optimization theory

[5]. K-metric and K-normed spaces were introduced in the mid-20th century ([2]; see

also [3,4,6]) by using an ordered Banach space instead of the set of real numbers, as

the codomain for a metric. Huang and Zhang [7] re-introduced such spaces under the

name of cone metric spaces, and went further, defining convergent and Cauchy

sequences in the terms of interior points of the underlying cone. Afterwards, many

papers about fixed point theory in cone metric spaces were appeared (see, for example,

[8-15]).

The following definitions and results will be needed in the sequel.

Definition 1. [4,7]. Let E be a real Banach space. A subset P of E is called a cone if

and only if:

(a) P is closed, non-empty and P ≠ {0E},

(b) a, b Î ℝ, a, b ≥ 0, x, y Î P imply that ax + by Î P,

(c) P ∩ (-P) = {0E},

where 0E is the zero vector of E.

Given a cone define a partial ordering ≼ with respect to P by x ≼ y if and only if y -

x Î P. We shall write x ≪ y for y - x Î IntP, where IntP stands for interior of P. Also,

we will use x ≺ y to indicate that x ≼ y and x ≠ y. The cone P in a normed space (E,

||·||) is called normal whenever there is a number k ≥ 1 such that for all x, y Î E, 0E ≼
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x ≼ y implies ||x|| ≤ k||y||. The least positive number satisfying this norm inequality is

called the normal constant of P.

Definition 2. [7]. Let X be a non-empty set. Suppose that d : X × X ® E satisfies:

(d1) 0E ≼ d(x, y) for all x, y Î X and d(x, y) = 0E if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y Î X,

(d3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z Î X.

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 3. [7]. Let (X, d) be a cone metric space, {xn} a sequence in X and x Î X.

For every c Î E with c ≫ 0E, we say that {xn} is

(C1) a Cauchy sequence if there is some k Î N such that, for all n, m ≥ k, d(xn, xm)

≪ c,

(C2) a convergent sequence if there is some k Î N such that, for all n ≥ k, d(xn, x) ≪
c. Then x is called limit of the sequence {xn}.

Note that every convergent sequence in a cone metric space X is a Cauchy sequence.

A cone metric space X is said to be complete if every Cauchy sequence in X is conver-

gent in X.

Recently, Abbas et al. [8] introduced the concept of w-compatible mappings and

established coupled coincidence point and coupled point of coincidence theorems for

mappings satisfying a contractive condition in cone metric spaces.

In this paper, we introduce the concepts of w̃-compatible mappings, b-coupled coin-

cidence point and b-common coupled fixed point for mappings F, G : X × X ® X,

where (X, d) is a cone metric space. We establish b-coupled coincidence and b-com-

mon coupled fixed point theorems in such spaces. The presented theorems generalize

and extend several well-known comparable results in the literature, in particular the

recent results of Abbas et al. [8] and the result of Olaleru [13]. Some examples and an

application to non-linear integral equations are also considered.

2 Main results
We start by recalling some definitions.

Definition 4. [16]. An element (x, y) Î X × X is called a coupled fixed point of map-

ping F : X × X ® X if x = F(x, y) and y = F(y, x).

Definition 5. [17]. An element (x, y) Î X × X is called

(i) a coupled coincidence point of mappings F : X × X ® X and g : X ® X if gx = F

(x, y) and gy = F(y, x), and (gx, gy) is called coupled point of coincidence,

(ii) a common coupled fixed point of mappings F : X × X ® X and g : X ® X if x

= gx = F(x, y) and y = gy = F(y, x).

Note that if g is the identity mapping, then Definition 5 reduces to Definition 4.

Definition 6. [8]. The mappings F : X × X ® X and g : X ® X are called w-compati-

ble if g(F(x, y)) = F(gx, gy) whenever gx = F(x, y) and gy = F(y, x).

Now, we introduce the following definitions.

Definition 7. An element (x, y) Î X × X is called

(i) a b-coupled coincidence point of mappings F, G : X × X ® X if G(x, y) = F(x, y)

and G(y, x) = F(y, x), and (G(x, y), G(y, x)) is called b-coupled point of coincidence,
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(ii) a b-common coupled fixed point of mappings F, G : X × X ® X if x = G(x, y) =

F(x, y) and y = G(y, x) = F(y, x).

Example 1. Let × = ℝ and F, G : X × X ® X the mappings defined by

F(x, y) = (sin x) (1 + y) and G(x, y) = x2 +
(

π

2
− 2

π

)
y + 1 − π2

4

for all x, y Î X. Then, (π/2, 0) is a b-coupled coincidence point of F and G, and (1, 0)

is a b-coupled point of coincidence.

Example 2. Let X = ℝ and F, G : X × X ® X the mappings defined by

F(x, y) = 3x + 2y − 6 and G(x, y) = 4x + 3y − 9

for all x, y Î X. Then, (1, 2) is a b-common coupled fixed point of F and G.

Definition 8. The mappings F, G : X × X ® X are called w̃-compatible if

F(G(x, y),G(y, x)) = G(F(x, y), F(y, x))

whenever F(x, y) = G(x, y) and F(y, x) = G(y, x).

Example 3. Let X = ℝ and F, G : X × X ® X the mappings defined by

F(x, y) = x2 + y2 and G(x, y) = 2xy

for all x, y Î X. One can show easily that (x, y) is a b-coupled coincidence point of F

and G if and only if x = y. Moreover, we have F(G(x, x), G(x, x)) = G(F(x, x), F(x, x))

for all x Î X. Then, F and G are w̃-compatible.

If (X, d) is a cone metric space, we endow the product set X × X by the cone metric

ν defined by

ν((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ X × X.

Now, we prove our first result.

Theorem 1. Let (X, d) be a cone metric space with a cone P having non-empty

interior. Let F, G : X × X ® X be mappings satisfying

(h1) for any (x, y) Î X × X, there exists (u, v) Î X × X such that F(x, y) = G(u, v)

and F(y, x) = G(v, u),

(h2) {(G(x, y), G(y, x)): x, y Î X} is a complete subspace of (X × X, ν),

(h3) for any x, y, u, v Î X,

d(F(x, y), F(u, v)) � a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x))

+ a3d(F(u, v),G(u, v)) + a4d(F(v, u),G(v, u)) + a5d(F(u, v),G(x, y))

+ a6d(F(v, u),G(y, x)) + a7d(F(x, y),G(u, v)) + a8d(F(y, x),G(v, u))

+ a9d(G(u, v),G(x, y)) + a10d(G(v, u),G(y, x)),

where ai, i = 1, ..., 10 are nonnegative real numbers such that
∑10

i=1 ai < 1. Then F

and G have a b-coupled coincidence point (x, y) Î X × X, that is, F(x, y) = G(x, y) and

F(y, x) = G(y, x).

Proof. Let x0 and y0 be two arbitrary points in X. By (h1), there exists (x1, y1) such that

F(x0, y0) = G(x1, y1) and F(y0, x0) = G(y1, x1).

Continuing this process, we can construct two sequences {xn} and {yn} in X such that

F(xn, yn) = G(xn+1, yn+1), F(yn, xn) = G(yn+1, xn+1), ∀n ∈ N. (1)
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For any n Î N, let zn Î X and tn Î X as follows

zn := F(xn, yn) = G(xn+1, yn+1), tn := F(yn, xn) = G(yn+1, xn+1). (2)

Now, taking (x, y) = (xn, yn) and (u, v) = (xn+1, yn+1) in the considered contractive

condition and using (2), we have

d(zn, zn+1) = d(F(xn, yn), F(xn+1, yn+1))

� a1d(F(xn, yn),G(xn, yn)) + a2d(F(yn, xn),G(yn, xn))

+a3d(F(xn+1, yn+1),G(xn+1, yn+1)) + a4d(F(yn+1, xn+1),G(yn+1, xn+1))

+a5d(F(xn+1, yn+1),G(xn, yn)) + a6d(F(yn+1, xn+1),G(yn, xn))

+a7d(F(xn, yn),G(xn+1, yn+1)) + a8d(F(yn, xn),G(yn+1, xn+1))

+a9d(G(xn+1, yn+1),G(xn, yn)) + a10d(G(yn+1, xn+1),G(yn, xn))

= (a1 + a9)d(zn, zn−1) + (a2 + a10)d(tn, tn−1) + a3d(zn+1, zn)

+a4d(tn+1, tn) + a5d(zn+1, zn−1) + a6d(tn+1, tn−1).

Then, using the triangular inequality, one can write for any n Î N*

(1 − a3)d(zn, zn+1) � (a1 + a9)d(zn, zn−1) + (a2 + a10)d(tn, tn−1) + a4d(tn+1, tn)

+a5d(zn+1, zn) + a5d(zn, zn−1) + a6d(tn+1, tn) + a6d(tn, tn−1).
(3)

Therefore,

(1 − a3 − a5)d(zn, zn+1) � (a1 + a5 + a9)d(zn, zn−1) + (a2 + a6 + a10)d(tn, tn−1)

+ (a4 + a6)d(tn+1, tn).
(4)

Similarly, taking (x, y) = (yn, xn) and (u, v) = (yn+1, xn+1) and reasoning as above, we

obtain

(1 − a3 − a5)d(tn, tn+1) � (a1 + a5 + a9)d(tn, tn−1) + (a2 + a6 + a10)d(zn, zn−1)

+ (a4 + a6)d(zn+1, zn).
(5)

Adding (4) to (5), we have

(1 − a3 − a5)(d(zn, zn+1) + d(tn, tn+1)) � (a1 + a5 + a9)((d(zn, zn−1) + d(tn, tn−1))

+ (a2 + a6 + a10)(d(zn, zn−1) + d(tn, tn−1)) + (a4 + a6)(d(zn+1, zn) + d(tn+1, tn)).

Let us denote

δn = d(zn, zn+1) + d(tn, tn+1), (6)

then, we deduce that

(1 − a3 − a5)δn � (a1 + a5 + a9 + a2 + a6 + a10)δn−1 + (a4 + a6)δn. (7)

On the other hand, we have

d(zn+1, zn) = d(F(xn+1, yn+1), F(xn, yn))

� a1d(F(xn+1, yn+1),G(xn+1, yn+1)) + a2d(F(yn+1, xn+1),G(yn+1, xn+1))

+a3d(F(xn, yn),G(xn, yn)) + a4d(F(yn, xn),G(yn, xn))

+a5d(F(xn, yn),G(xn+1, yn+1)) + a6d(F(yn, xn),G(yn+1, xn+1))

+a7d(F(xn+1, yn+1),G(xn, yn)) + a8d(F(yn+1, xn+1),G(yn, xn))

+a9d(G(xn, yn),G(xn+1, yn+1)) + a10d(G(yn, xn),G(yn+1, xn+1))

= (a3 + a9)d(zn, zn−1) + (a4 + a10)d(tn, tn−1) + a1d(zn+1, zn)

+a2d(tn+1, tn) + a7d(zn+1, zn−1) + a8d(tn+1, tn−1),
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from which by the triangular inequality, it follows that

d(zn+1, zn) � (a3 + a9)d(zn, zn−1) + (a4 + a10)d(tn, tn−1) + a1d(zn+1, zn)

+ a2d(tn+1, tn) + a7d(zn+1, zn) + a7d(zn, zn−1) + a8d(tn+1, tn) + a8d(tn, tn−1).

Therefore,

(1 − a1 − a7)d(zn, zn+1) � (a3 + a7 + a9)d(zn, zn−1) + (a4 + a8 + a10)d(tn, tn−1)

+ (a2 + a8)d(tn+1, tn).
(8)

Similarly, we find

(1 − a1 − a7)d(tn, tn+1) � (a3 + a7 + a9)d(tn, tn−1) + (a4 + a8 + a10)d(zn, zn−1)

+ (a2 + a8)d(zn+1, zn).
(9)

Summing (8) to (9) and referring to (6), we get

(1 − a1 − a7)δn � (a3 + a4 + a7 + a8 + a9 + a10)δn−1 + (a2 + a8)δn. (10)

Finally, from (7) and (10), we have for any n Î N*(
2 −

8∑
i=1

ai

)
δn �

(
10∑
i=1

ai + a9 + a10

)
δn−1, (11)

that is

δn � α δn−1 ∀n ∈ N∗, (12)

where

α =

∑10
i=1 ai + a9 + a10
2 − ∑8

i=1 ai
.

Consequently, we have

0E � δn � αδn−1 � · · · � αnδ0. (13)

If δ0 = 0E, we get d(z0, z1) + d(t0, t1) = 0E, that is, z0 = z1 and t0 = t1. Therefore, from

(2) and (6), we have

F(x0, y0) = G(x1, y1) = F(x1, y1)

and

F(y0, x0) = G(y1, x1) = F(y1, x1),

meaning that (x1, y1) is a b-coupled coincidence point of F and G.

Now, assume that δ0 ≻ 0E. If m >n, we have

d(zm, zn) � d(zm, zm−1) + d(zm−1, zm−2) + · · · + d(zn+1, zn),

d(tm, tn) � d(tm, tm−1) + d(tm−1, tm−2) + · · · + d(tn+1, tn).

Summing the two above inequalities, we obtain using also (13) and (6)

d(zm, zn) + d(tm, tn) � δm−1 + δm−2 + · · · + δn

� (αm−1 + αm−1 + · · · + αn)δ0

� αn

1 − α
δ0.
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As 0 ≤ ∑10
i=1 ai < 1, we have 0 ≤ a < 1. Hence, for any c Î E with c ≫ 0E, there

exists N Î N such that for any n ≥ N, we have αn

1−α
δ0 � c. Furthermore, for any m >n

≥ N, we get

d(zm, zn) + d(tm, tn) � c.

Thus, we proved that for any c ≫ 0E, there exists n Î N such that

ν((zm, tm), (zn, tn)) � c, ∀m > n ≥ N.

This implies that {(zn, tn)} is a Cauchy sequence in the cone metric space (X × X, ν).

On the other hand, we have (zn, tn) = (G(xn+1, yn+1), G(yn+1, xn+1)) Î {(G(x, y), G(y, x)):

x, y Î X} that is a complete subspace of (X × X, ν) (from (h2)). Hence, there exists (z,

t) Î {(G(x, y), G(y, x)): x, y Î X} such that for all c ≫ 0E, there exists N ∈ N such that

ν((zn, tn), (z, t)) � c, ∀n ≥ N .

This implies that there exist x, y Î X such that z = G(x, y) and t = G(y, x) with

zn → z = G(x, y) as n → +∞ (14)

and

tn → t = G(y, x) as n → +∞. (15)

Now, we prove that F(x, y) = G(x, y) and F(y, x) = G(y, x), that is, (x, y) is a b-

coupled coincidence point of F and G. First, by the triangular inequality, we have

d(F(x, y),G(x, y)) � d(F(x, y), F(xn, yn)) + d(F(xn, yn),G(x, y))

= d(F(x, y), F(xn, yn)) + d(G(xn+1, yn+1),G(x, y)).
(16)

On the other hand, applying the contractive condition in (h3), we get

d(F(x, y), F(xn, yn)) � a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x))

+a3d(F(xn, yn),G(xn, yn)) + a4d(F(yn, xn),G(yn, xn)) + a5d(F(xn, yn),G(x, y))

+a6d(F(yn, xn),G(y, x)) + a7d(F(x, y),G(xn, yn)) + a8d(F(y, x),G(yn, xn))

+a9d(G(xn, yn),G(x, y)) + a10d(G(yn, xn),G(y, x))

= a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x)) + a3d(zn, zn−1) + a4d(tn, tn−1)

+a5d(zn,G(x, y)) + a6d(tn,G(y, x)) + a7d(F(x, y), zn−1) + a8d(F(y, x), tn−1)

+a9d(zn−1,G(x, y)) + a10d(tn−1,G(y, x)).

Combining the above inequality with (16), and using again the triangular inequality,

we get

d(F(x, y),G(x, y)) � a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x)) + a3d(zn, zn−1)

+a4d(tn, tn−1) + a5d(zn,G(x, y)) + a6d(tn,G(y, x)) + a7d(F(x, y),G(x, y))

+a7d(G(x, y), zn−1) + a8d(F(y, x),G(y, x)) + a8d(G(y, x), tn−1)

+a9d(zn−1,G(x, y)) + a10d(tn−1,G(y, x)) + d(G(xn+1, yn+1),G(x, y)).

Therefore, we have

(1 − a1 − a7)d(F(x, y),G(x, y)) − (a2 + a8)d(F(y, x),G(y, x))

� a3d(zn, zn−1) + a4d(tn, tn−1) + (a5 + 1)d(zn,G(x, y)) + a6d(tn,G(y, x))

+(a7 + a9)d(G(x, y), zn−1) + (a8 + a10)d(G(y, x), tn−1).

(17)
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Similarly, one can find

(1 − a1 − a7)d(F(y, x),G(y, x)) − (a2 + a8)d(F(x, y),G(x, y))

� a3d(tn, tn−1) + a4d(zn, zn−1) + (a5 + 1)d(tn,G(y, x)) + a6d(zn,G(x, y))

+(a7 + a9)d(G(y, x), tn−1) + (a8 + a10)d(G(x, y), zn−1).

(18)

Summing (17) and (18), we get

(1 − a1 − a2 − a7 − a8)(d(F(x, y),G(x, y)) + d(F(y, x),G(y, x)))

� (a3 + a4)δn−1 + (a5 + a6 + 1)(d(zn,G(x, y)) + d(tn,G(y, x)))

+(a7 + a8 + a9 + a10)(d(G(y, x), tn−1) + d(G(x, y), zn−1))

� δn−1 + 2d(zn,G(x, y)) + 2d(tn,G(y, x)) + d(G(y, x), tn−1) + d(G(x, y), zn−1).

Therefore, we have

d(F(x, y),G(x, y)) + d(F(y, x),G(y, x)) � αδn−1 + βd(zn,G(x, y))

+γ d(tn,G(y, x)) + θd(G(y, x), tn−1) + 	d(G(x, y), zn−1),

where

α = θ = 	 =
1

1 − a1 − a2 − a7 − a8
, β = γ =

2
1 − a1 − a2 − a7 − a8

.

From (13), (14) and (15), for any c ≫ 0E, there exists N Î N such that

δn−1 � c
5α

, d(zn,G(x, y)) �
c

5max{β ,	} , d(tn,G(y, x)) �
c

5max{γ , θ} ,

for all n ≥ N. Thus, for all n ≥ N, we have

d(F(x, y),G(x, y)) + d(F(y, x),G(y, x)) � c
5
+
c
5
+
c
5
+
c
5
+
c
5
= c.

It follows that d(F(x, y), G(x, y)) = d(F(y, x), G(y, x)) = 0E, that is, F(x, y) = G(x, y)

and F(y, x) = G(y, x). Then, we proved that (x, y) is a b-coupled coincidence point of

the mappings F and G. □
As consequences of Theorem 1, we give the following corollaries.

Corollary 1. Let (X, d) be a cone metric space with a cone P having non-empty

interior. Let F, G : X × X ® X be mappings satisfying

(h1) for any (x, y) Î X × X, there exists (u, v) Î X × X such that F(x, y) = G(u, v)

and F(y, x) = G(v, u),

(h2) {(G(x, y), G(y, x)): x, y Î X} is a complete subspace of (X × X, ν),

(h3) for any x, y, u, v Î X,

d(F(x, y), F(u, v)) � α1(d(F(x, y),G(x, y)) + d(F(y, x),G(y, x)))

+α2(d(F(u, v),G(u, v)) + d(F(v, u),G(v, u))) + α3(d(F(u, v),G(x, y))

+d(F(v, u),G(y, x))) + α4(d(F(x, y),G(u, v)) + d(F(y, x),G(v, u)))

+α5(d(G(u, v),G(x, y)) + d(G(v, u),G(y, x))),

where ai, i = 1, ..., 5 are nonnegative real numbers such that
∑5

i=1 αi < 1/2. Then F

and G have a b-coupled coincidence point (x, y) Î X × X, that is, F(x, y) = G(x, y) and

F(y, x) = G(y, x).

Corollary 2. Let (X, d) be a cone metric space with a cone P having non-empty

interior, F : X × X ® X and g : X ® X be mappings satisfying
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d(F(x, y), F(u, v)) � a1d(F(x, y), gx) + a2d(F(y, x), gy) + a3d(F(u, v), gu)

+a4d(F(v, u), gv) + a5d(F(u, v), gx) + a6d(F(v, u), gy) + a7d(F(x, y), gu)

+a8d(F(y, x), gv) + a9d(gu, gx) + a10d(gv, gy),

for all x, y, u, v Î X, where ai, i = 1, ..., 10 are nonnegative real numbers such that∑10
i=1 ai < 1. If F(X × X) ⊆ g(X) and g(X) is a complete subset of X, then F and g have a

coupled coincidence point in X, that is, there exists (x, y) Î X × X such that gx = F(x,

y) and gy = F(y, x).

Proof. Consider the mapping G : X × X ® X defined by

G(x, y) = gx, ∀x, y ∈ X. (19)

We will check that all the hypotheses of Theorem 1 are satisfied.

• Hypothesis (h1):

Let (x, y) Î X × X. Since F(X × X) ⊆ g(X), there exists u Î X such that F(x, y) = gu =

G(u, v) for any v Î X. Then, (h1) is satisfied.

• Hypothesis (h2):

Let {xn} and {yn} be two sequences in X such that {(G(xn, yn), G(yn, xn))} is a Cauchy

sequence in (X × X, ν). Then, for every c ≫ 0E, there exists N Î N such that

ν((G(xn, yn),G(yn, xn)), (G(xm, ym),G(ym, xm))) � c, ∀n,m ≥ N,

that is,

d(gxn, gxm) + d(gyn, gym) � c, ∀n,m ≥ N.

This implies that {gxn} and {gyn} are Cauchy sequences in (g(X), d). Since g(X) is

complete, there exist x, y Î X such that

gxn → gx and gyn → gy,

that is,

G(xn, yn) → G(x, y) and G(yn, xn) → G(y, x).

Therefore,

(G(xn, yn),G(yn, xn)) → (G(x, y),G(y, x)) in (X × X, ν).

Then, {(G(x, y), G(y, x)): x, y Î X} is a complete subspace of (X × X, ν), and so the

hypothesis (h2) is satisfied.

• Hypothesis (h3):

The hypothesis (h3) follows immediately from (19).

Now, all the hypotheses of Theorem 1 are satisfied. Then, F and G have a b-coupled

coincidence point (x, y) Î X × X, that is, F(x, y) = G(x, y) = gx and F(y, x) = G(y, x) =

gy. Thus, (x, y) is a coupled coincidence point of F and g □
Corollary 3. Let (X, d) be a cone metric space with a cone P having non-empty

interior, F : X × X ® X and g : X ® X be mappings satisfying

d(F(x, y), F(u, v)) � α1(d(F(x, y), gx) + d(gu, gx)) + α2(d(F(y, x), gy)

+d(F(v, u), gv)) + α3(d(F(u, v), gx) + d(F(x, y), gu)) + α4(d(F(v, u), gy)

+d(F(y, x), gv)) + α5(d(F(u, v), gu) + d(gv, gy)),
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for all x, y, u, v Î X, where ai, i = 1, ..., 5 are nonnegative real numbers such that∑5
i=1 αi < 1/2. If F(X × X) ⊆ g(X) and g(X) is a complete subset of X, then F and g

have a coupled coincidence point in X, that is, there exists (x, y) Î X × X such that gx

= F(x, y) and gy = F(y, x).

Remark 1.

• Putting a2 = a4 = a6 = a8 = 0 in Corollary 2, we obtain Theorem 2.4 of Abbas et al.

[8];

• Putting a2 = a4 = 0 in Corollary 3, we obtain Corollary 2.5 of [8].

Now, we are ready to state and prove a result of b-common coupled fixed point.

Theorem 2. Let F, G : X × X ® X be two mappings which satisfy all the conditions

of Theorem 1. If F and G are w̃-compatible, then F and G have a unique b-common

coupled fixed point. Moreover, the b-common coupled fixed point of F and G is of the

form (u, u) for some u Î X.

Proof. First, we’ll show that the b-coupled point of coincidence is unique. Suppose

that (x, y) and (x*, y*) Î X × X with G(x, y) = F(x, y), G(y, x) = F(y, x), F(x*, y*) = G(x*,

y*) and F(y*, x*) = G(y*, x*). Using (h3), we get

d(G(x, y),G(x∗, y∗)) = d(F(x, y), F(x∗, y∗))
� a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x)) + a3d(F(x∗, y∗),G(x∗, y∗))
+a4d(F(y∗, x∗),G(y∗, x∗)) + a5d(F(x∗, y∗),G(x, y)) + a6d(F(y∗, x∗),G(y, x))
+a7d(F(x, y),G(x∗, y∗)) + a8d(F(y, x),G(y∗, x∗)) + a9d(G(x∗, y∗),G(x, y))
+a10d(G(y∗, x∗),G(y, x))
= (a5 + a7 + a9)d(G(x, y),G(x∗, y∗)) + (a6 + a8 + a10)d(G(y, x),G(y∗, x∗)).

Similarly, we obtain

d(G(y, x),G(y∗, x∗)) � (a5 + a7 + a9)d(G(y, x),G(y∗, x∗))
+ (a6 + a8 + a10)d(G(x, y),G(x∗, y∗)).

Therefore, summing the two previous inequalities, we get

d(G(x, y),G(x∗, y∗)) + d(G(y, x),G(y∗, x∗))
� (a5 + a6 + a7 + a8 + a9 + a10)(d(G(y, x),G(y∗, x∗)) + d(G(x, y),G(x∗, y∗))).

Since a5 + a6 + a7 + a8 + a9 + a10 < 1, we obtain

d(G(x, y),G(x∗, y∗)) + d(G(y, x),G(y∗, x∗)) = 0E,

which implies that

G(x, y) = G(x∗, y∗), G(y, x) = G(y∗, x∗), (20)

meaning the uniqueness of the b-coupled point of coincidence of F and G, that is, (G

(x, y), G(y, x)).
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Again, using (h3), we have

d(G(x, y),G(y∗, x∗)) = d(F(x, y), F(y∗, x∗))
� a1d(F(x, y),G(x, y)) + a2d(F(y, x),G(y, x)) + a3d(F(y∗, x∗),G(y∗, x∗))
+a4d(F(x∗, y∗),G(x∗, y∗)) + a5d(F(y∗, x∗),G(x, y)) + a6d(F(x∗, y∗),G(y, x))
+a7d(F(x, y),G(y∗, x∗)) + a8d(F(y, x),G(x∗, y∗)) + a9d(G(y∗, x∗),G(x, y))
+a10d(G(x∗, y∗),G(y, x))
= (a5 + a7 + a9)d(G(x, y),G(y∗, x∗)) + (a6 + a8 + a10)d(G(y, x),G(x∗, y∗)).

Similarly,

d(G(y, x),G(x∗, y∗)) � (a5 + a7 + a9)d(G(y, x),G(x∗, y∗))
+(a6 + a8 + a10)d(G(x, y),G(y∗, x∗)).

A summation gives

d(G(x, y),G(y∗, x∗)) + d(G(y, x),G(x∗, y∗))
� (a5 + a6 + a7 + a8 + a9 + a10)(d(G(y, x),G(x∗, y∗)) + d(G(x, y),G(y∗, x∗))).

The fact that a5 + a6 + a7 + a8 + a9 + a10 < 1 yields that

G(x, y) = G(y∗, x∗), G(y, x) = G(x∗, y∗). (21)

In view of (20) and (21), one can assert that

G(x, y) = G(y, x). (22)

This means that the unique b-coupled point of coincidence of F and G is (G(x, y), G

(x, y)).

Now, let u = G(x, y), then we have u = G(x, y) = F(x, y) = G(y, x) = F(y, x). Since F

and G are w̃-compatible, we have

F(G(x, y),G(y, x)) = G(F(x, y), F(y, x)),

that is, thanks to (22)

F(u, u) = F(G(x, y),G(x, y)) = F(G(x, y),G(y, x)) = G(F(x, y), F(y, x))

= G(G(x, y),G(y, x)) = G(G(x, y),G(x, y))

= G(u, u).

Consequently, (u, u) is a b-coupled coincidence point of F and G, and so (G(u, u), G

(u, u)) is a b-coupled point of coincidence of F and G, and by its uniqueness, we get G

(u, u) = G(x, y). Thus, we obtain

u = G(x, y) = G(u, u) = F(u, u).

Hence, (u, u) is the unique b-common coupled fixed point of F and G. This makes

end to the proof. □
Corollary 4. Let F : X × X ® X and g : X ® X be two mappings which satisfy all the

conditions of Corollary 2. If F and g are w-compatible, then F and g have a unique

common coupled fixed point. Moreover, the common fixed point of F and g is of the

form (u, u) for some u Î X.

Proof. From the proof of Corollary 2 and the result given by Theorem 2, we have

only to show that F and G are w̃-compatible, where G : X × X ® X is defined by G(x,
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y) = gx for all x, y Î X. Let (x, y) Î X × X such that F(x, y) = G(x, y) and F(y, x) = G(y,

x). From the definition of G, we get F(x, y) = gx and F(y, x) = gy. Since F and g are w-

compatible, this implies that

g(F(x, y)) = F(gx, gy). (23)

Using (23), we have

F(G(x, y),G(y, x)) = F(gx, gy) = g(F(x, y)) = G(F(x, y), F(y, x)).

Thus, we proved that F and G are w̃-compatible mappings, and the desired result fol-

lows immediately from Theorem 2. □
Remark 2. Corollary 4 generalizes Theorem 2.11 of [8].

Corollary 5. [13]. Let (X, d) be a cone metric space and f, g : X ® X be mappings

such that

d(fx, fu) �a1d(fx, gx) + a2d(fu, gu) + a3d(fu, gx)

+ a4d(fx, gu) + a5d(gu, gx)
(24)

for all x, u Î X, where ai Î [0, 1), i = 1, ..., 5 and
∑5

i=1 αi < 1. Suppose that f and g

are weakly compatible, f(X) ⊆ g(X) and g(X) is a complete subspace of X. Then the

mappings f and g have a unique common fixed point.

Proof. Consider the mappings F, G : X × X ® X defined by F(x, y) = fx and G(x, y) =

gx for all x, y Î X. Then, the contractive condition (24) implies that

d(F(x, y), F(u, v)) � a1d(F(x, y),G(x, y)) + a2d(F(u, v),G(u, v))

+a3d(F(u, v),G(x, y)) + a4d(F(x, y),G(u, v)) + a5d(G(u, v),G(x, y)).

Then, F and G satisfy the hypothesis (h3) of Theorem 1. Clearly, hypothesis (h1) of

Theorem 1 is satisfied since f(X) ⊆ g(X). The hypothesis (h2) is also satisfied since g(X)

is a complete subspace of X.

Now, we will show that F and G are w̃-compatible mappings. Let (x, y) Î X × X such

that F(x, y) = G(x, y) and F(y, x) = G(y, x). This implies that fx = gx. Since f and g are

weakly compatible, we have f(gx) = g(fx). Then, we have

F(G(x, y),G(y, x)) = F(gx, gy) = f (gx) = g(fx) = g(F(x, y)) = G(F(x, y), F(y, x)).

Thus, we proved that F and G are w̃-compatible mappings. Therefore, from Theorem

2, F and G have a unique b-common coupled fixed point (u, u) Î X × X such that u =

F(u, u) = G(u, u), that is, u = fu = gu. This makes end to the proof. □
Now, we give an example to illustrate our obtained results.

Example 4. Let X = [0, 1] endowed with the standard metric d(x, y) = |x - y| for all

x, y Î X. Define the mappings G, F : X × X ® X by

G(x, y) =
{
x − y if x ≥ y
0 if x < y

and F(x, y) =
{ x−y

3 if x ≥ y
0 if x < y

·

We will check that all the hypotheses of Theorem 1 are satisfied.

• Hypothesis (h1):
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Let us prove that for any x, y Î X, there exist u, v Î X such that{
F(x, y) = G(u, v)
F(y, x) = G(v, u)

·

Let (x, y) Î X × X be fixed. We consider the following cases.

Case-1: x = y.

In this case, F(x, y) = 0 = G(x, y) and F(y, x) = 0 = G(y, x).

Case-2: x >y.

In this case, we have

F(x, y) =
x − y
3

= G(x
/
3, y

/
3) and F(y, x) = 0 = G(y

/
3, x

/
3).

Case-3: x <y.

In this case, we have

F(x, y) = 0 = G(x
/
3, y

/
3) and F(y, x) =

y − x
3

= G(y
/
3, x

/
3).

Thus, we proved that (h1) is satisfied.

• Hypothesis (h2):

Let us prove that Λ := {(G(x, y), G(y, x)): x, y Î [0, 1]} is a complete subspace of ([0,

1] × [0, 1], ν). Define the function � : [0, 1] × [0, 1] ® ℝ2 by

ϕ(x, y) = (G(x, y),G(y, x)) for all x, y ∈ [0, 1].

Since � is continuous and [0, 1] is compact, then Λ = �([0, 1] × [0, 1]) is compact. On

the other hand, ([0, 1] × [0, 1], ν) is complete. Then, we deduce that Λ is complete.

• Hypothesis (h3):

For all x, y, u, v Î X, we have

d(F(x, y), F(u, v)) = |F(x, y) − F(u, v)|
≤ 1

3
|G(x, y) − G(u, v)|

=
1
3
d(G(x, y),G(u, v)).

Then, (h3) is satisfied with a1 = a2 = ... = a8 = a10 = 0 and a9 = 1/3.

All the required hypotheses of Theorem 1 are satisfied. Consequently, F and G have a

b-coupled coincidence point.

In this case, for any x, y Î [0, 1], (x, y) is a b-coupled coincidence point if and only if

x = y. Moreover, we have

F(G(x, x),G(x, x)) = F(0, 0) = 0 = G(0, 0) = G(F(x, x), F(x, x)).

This implies that F and G are w̃-compatible. Applying our Theorem 2, we obtain the

existence and uniqueness of b-common coupled fixed point of F and G. In this example,

(0, 0) is the unique b-common coupled fixed point.

3 Application
In this section, we study the existence of solutions of a system of nonlinear integral

equations using the results proved in Section 2.

Aydi et al. Fixed Point Theory and Applications 2011, 2011:27
http://www.fixedpointtheoryandapplications.com/content/2011/1/27

Page 12 of 15



Consider the following system of integral equations:

F(x, y)(t) =
∫ T

0
k(t, s)f (s, x(s), y(s)) ds + a(t), (25)

F(y, x)(t) =
∫ T

0
k(t, s)f (s, y(s), x(s)) ds + a(t), (26)

where t Î [0, T], T > 0.

Let X = C([0, T], ℝ) be the set of continuous functions defined on [0, T] endowed

with the metric given by

d(u, v) = sup
t∈[0,T]

|u(t) − v(t)| for all u, v ∈ X.

We consider the following assumptions:

(a) k : [0, T] × [0, T] ® ℝ is a continuous function,

(b) a Î C([0, T], ℝ),

(c) f : [0, T] × ℝ × ℝ ® ℝ is a continuous function,

(d) G : C([0, T], ℝ) × C([0, T], ℝ) ® C([0, T], ℝ) is a mapping satisfying:

(d.1) For all x, y Î C([0, T], ℝ), there exist u, v Î C([0, T], ℝ) such that

G(u, v)(t) =
∫ T

0
k(t, s)f (s, x(s), y(s)) ds + a(t),

G(v, u)(t) =
∫ T

0
k(t, s)f (s, y(s), x(s)) ds + a(t),

for all t Î [0, T],

(d.2) The set {(G(x, y), G(y, x)): x, y Î C([0, T], ℝ)} is closed,

(e) For all t Î [0, T], for all x, y, u, v Î X, we have

|f (t, x(t), y(t)) − f (t, u(t), v(t))| ≤ |G(x, y)(t) − G(u, v)(t)|,

(f) sup
s,t∈I

|k(t, s)| = M < 1
/
T.

Now, we formulate our result.

Theorem 3. Under hypotheses (a) - (f), system (25)-(26) has at least one solution in C

([0, T], ℝ).

Proof. We consider the operator F : X × X ® X defined by

F(x, y)(t) =
∫ T

0
k(t, s)f (s, x(s), y(s)) ds + a(t), t ∈ [0,T].

It is easy to show that (x, y) is a solution to (25)-(26) if and only if (x, y) is a b-

coupled coincidence point of F and G. To establish the existence of such a point, we

will use our Theorem 1. Then, we have to check that all the hypotheses of Theorem 1

are satisfied.

• Hypotheses (h1)-(h2) follow immediately from assumption (d).

• Hypothesis (h3): Let x, y, u, v Î X. For all t Î [0, T], we have

|F(x, y)(t) − F(u, v)(t)| ≤
∫ T

0
|k(t, s)| |f (t, x(s), y(s)) − f (t, u(s), v(s))| ds.
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Using condition (e), we get

∣∣F(x, y)(t) − F(u, v)(t)
∣∣ ≤

∫ T

0
|k(t, s)||G(x, y)(s) − G(u, v)(s)| ds

≤
(∫ T

0
|k(t, s)|ds

)
d(G(x, y),G(u, v)).

Using condition (f), we obtain

|F(x, y)(t) − F(u, v)(t)| ≤ MT d(G(x, y),G(u, v)).

This implies that

d(F(x, y), F(u, v)) ≤ MT d(G(x, y),G(u, v))

for all x, y, u, v Î X. Then, hypothesis (h3) is satisfied with a9 = MT < 1 (from con-

dition (f)) and a1 = a2 = ... = a8 = a10 = 0.

Now, applying Theorem 2, we obtain the existence of a solution to system (25)-

(26). □
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