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Abstract
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(with the underlying cone which is not normal) under contractive conditions
expressed in the terms of c-distance are obtained. Respective results concerning
mappings without periodic points are also deduced. Examples are given to
distinguish these results from the known ones.
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1 Introduction
Cone metric spaces were considered by Huang and Zhang in [1], who reintroduced the

concept which has been known since the middle of 20th century (see, e.g., [2-4]).

Topological vector space-valued version of these spaces was treated in [5-13]; see also

[14] for a survey of fixed point results in these spaces.

Fixed point theorems in metric spaces with the so-called w-distance were obtained

for the first time by Kada et al. in [15] where nonconvex minimization problems were

treated. Further results were given, e.g., in [16-18]. Cone metric version of this notion

(usually called a c-distance) was used, e.g., in [19,20].

In this paper, we consider fixed point and common fixed point results for mappings

in tvs-cone metric spaces (with the underlying cone which is not normal) under con-

tractive conditions expressed in the terms of c-distance. Respective results concerning

mappings without periodic points are also deduced. Examples are given to distinguish

these results from the known ones.

2 Preliminaries
Let E be a real Hausdorff topological vector space (tvs for short) with the zero vector

θ. A proper nonempty and closed subset P of E is called a cone if P + P ⊂ P, lP ⊂ P

for l ≥ 0 and P ∩ (-P) = {θ}. We shall always assume that the cone P has a nonempty

interior int P (such cones are called solid).

Each cone P induces a partial order ≼ on E by x ≼ y ⇔ y - × Î P. x π y will stand for

(x ≼ y and x ≠ y), while x ≪ y will stand for y - × Î int P. The pair (E, P) is an ordered

topological vector space.

Đorđević et al. Fixed Point Theory and Applications 2011, 2011:29
http://www.fixedpointtheoryandapplications.com/content/2011/1/29

© 2011 Đorđevićć et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:radens@beotel.net
mailto:radens@beotel.net
http://creativecommons.org/licenses/by/2.0


For a pair of elements x, y in E such that x ≼ y, put [x, y] = {z Î E : x ≼ z ≼ y}. A

subset A of E is said to be order-convex if [x, y] ⊂ A, whenever x, y Î A and x ≼ y.

Ordered topological vector space (E, P) is order-convex if it has a base of neighbor-

hoods of θ consisting of order-convex subsets. In this case, the cone P is said to be

normal. If E is a normed space, this condition means that the unit ball is order-convex,

which is equivalent to the condition that there is a number k such that x, y Î E and 0

≼ x ≼ y implies that ||x|| ≤ k||y||. A proof of the following assertion can be found, e.g.,

in [2].

Theorem 1 If the underlying cone of an ordered tvs is solid and normal, then such tvs

must be an ordered normed space.

Note that completions of cone metric spaces in the case of nonnormal underlying

cone were treated in [21].

From [1,5-7], we give the following

Definition 1 Let X be a nonempty set and (E, P) an ordered tvs. A function d : X ×

X ® E is called a tvs-cone metric and (X, d) is called a tvs-cone metric space if the fol-

lowing conditions hold:

(c1) θ ≼ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y;

(c2) d(x, y) = d(y, x) for all x, y Î X;

(c3) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z Î X.

Taking into account Theorem 1, proper generalizations when passing from norm-

valued cone metric spaces of [1] to tvs-cone metric spaces can be obtained only in the

case of nonnormal cones. We shall make use of the following properties:

(p1) If u, v, w Î E, u ≼ v and v ≪ w then u ≪ w.

(p2) If u Î E and θ ≼ u ≪ c for each c Î int P then u = θ.

(p3) If un, vn, u, v Î E, θ ≼ un ≼ vn for each n Î N, and un ® u, vn ® v (n ® ∞),

then θ ≼ u ≼ v.

(p4) If xn, x Î X, un Î E, d(xn, x) ≼ un and un ® θ (n ® ∞), then xn ® x (n ® ∞).

(p5) If u ≼ lu, where u Î P and 0 ≤ l <1, then u = θ.

(p6) If c ≫ θ and un Î E, un ® θ (n ® ∞), then there exists n0 such that un ≪ c for

all n ≥ n0.

In the sequel, E will always denote a topological vector space, with the zero vector θ

and with order relation ≼, generated by a solid cone P. For notions such as convergent

and Cauchy sequences, completeness, continuity etc. in (tvs)-cone metric spaces, we

refer to [1,7,14] and references therein.

Kada et al. [15] introduced the notion of w-distance in metric spaces and proved

some fixed point results using this notion (see also [16-18]). Cho et al. [19] transferred

it to the setting of cone metric spaces (see also [20]).

Definition 2 [19] Let (X, d) be a tvs-cone metric space. A function q : X × X ® E is

called a c-distance in X if:

(q1) θ ≼ q(x, y) for all x, y Î X;

(q2) q(x, z) ≼ q(x, y) + q(y, z) for all x, y, z Î X;

(q3) If a sequence {yn} in X converges to a point y Î X, and for some x Î X and u =

ux Î P, q(x, yn) ≼ u holds for each n Î N, then q(x, y) ≼ u;

(q4) For each c Î E with θ ≪ c, there exists e Î E with θ ≼ e, such that q(z, x) ≪ e

and q(z, y) ≪ e implies d(x, y) ≪ c.
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Each w-distance q in a metric space (X, d) (in the sense of [15]) is a c-distance in the

tvs-cone metric space (X, d) (with E = ℝ and P = [0, +∞)). Indeed, only property (q3)

has to be checked. Let yn Î X, yn ® y in the cone metric d (n ® ∞), and let q(x, yn) ≤

ux Î [0, +∞). Since q is (as a w-distance) lower semi-continuous, we have that q(x, y)

≤ lim infn ® ∞ q(x, yn) ≤ lim infn ® ∞ ux = ux, i.e., q(x, y) ≤ ux holds true.

The first two of the following examples are variations of [[19], Examples 2.7, 2.8],

adjusted to the case of a tvs-cone metric.

Example 1 Let (X, d) be a tvs-cone metric space such that the metric d(·,·) is a con-

tinuous function in second variable. Then, q(x, y) = d(x, y) is a c-distance. Indeed, only

property (q3) is nontrivial and it follows from q(x, yn) = d(x, yn) ≼ u, passing to the

limit when n ® ∞ and using continuity of d.

Example 2 Let (X, d) be a tvs-cone metric space, and let u Î X be fixed. Then, q(x,

y) = d(u, y) defines a c-distance on X. Indeed, (q1) and (q3) are clear. (q2) follows

from q(x, z) = d(u, z) ≼ d(u, y) + d(u, z) = q(x, y) + q(y, z). Finally, (q4) is obtained by

taking e = c/2.

Example 3 Consider the Banach space E = C[0, 1] of real-valued continuous func-

tions with the max-norm and ordered by the cone P = {f Î E : f(t) ≥ 0 for t Î [0, 1]}.

This cone is normal in the Banach-space topology on E. Let τ* be the strongest locally

convex topology on the vector space E. Then, the cone P is solid, but it is not normal

in the topology τ*. Indeed, if this were the case, Theorem 1 would imply that the

topology τ* is normed, which is impossible since an infinite dimensional space with the

strongest locally convex topology cannot be metrizable (see, e.g., [14]).

Let now X = [0, + ∞) and d : X × X ® (E, τ*) be defined by d(x, y)(t) = |x - y|�(t) for

a fixed element � Î P. Then, (X, d) is a tvs-cone metric space which is not a cone

metric space in the sense of [1]. We can introduce two c-distances on this space:

q1(x, y)(t) = x · ϕ(t), and q2(x, y)(t) = y · ϕ(t).

They are the examples of c-distances in tvs-cone metric spaces which are not c-dis-

tances in cone metric spaces of [19,20].

These examples show, among other things, that for a c-distance q:

1. q(x, y) = q(y, x) does not necessarily hold for all x, y Î X;

2. q(x, y) = θ is not necessarily equivalent to x = y.

3 Results
3.1 Fixed point and common fixed point results under c-distance

We will call a sequence {un} in P a c-sequence if for each c ≫ θ there exists n0 Î N

such that un ≪ c for n ≥ n0. It is easy to show that if {un} and {vn} are c-sequences in

E and a, b >0, then { aun + bvn} is a c-sequence.

Note that in the case that the cone P is normal, a sequence in E is a c-sequence iff it

is a θ -sequence (see property (p6)). However, when the cone is not normal, a c-

sequence need not be a θ -sequence (see [7,14]). Also, from [7], we know that the

cone metric d need not be a continuous function.

The following lemma is a tvs-cone metric version of lemmas from [15,19].

Lemma 1 Let (X, d) be a tvs-cone metric space and let q be a c-distance on X. Let

{xn} and {yn} be sequences in × and x, y, z Î X. Suppose that {un} and {vn} are c-

sequences in P. Then the following hold:
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(1) If q(xn, y) ≼ un and q(xn, z) ≼ vn for n Î N, then y = z. In particular, if q(x, y) = θ

and q(x, z) = θ, then y = z.

(2) If q(xn, yn) ≼ un and q(xn, z) ≼ vn for n Î N, then {yn} converges to z.

(3) If q(xn, xm) ≼ un for m > n > n0, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) ≼ un for n Î N, then {xn} is a Cauchy sequence in X.

Proof We will prove assertions (1) and (2). Proofs of the other two are similar.

(1) In order to prove that y = z, according to (p2), it is enough to show that d(y, z)

≪ c for each c ≫ θ. For the given c choose e ≫ θ such that property (q4) is satisfied.

Choose then n0 Î N such that un ≪ e and vn ≪ e for n ≥ n0. Then, by property (p1),

we get that q(xn, y) ≪ e and q(xn, z) ≪ e and (q4) imply that d(y, z) ≪ c.

(2) Let again c ≪ θ be arbitrary and choose a corresponding e ≫ θ satisfying prop-

erty (q4). If n0 Î N is such that un ≪ e and vn ≪ e for n ≥ n0, then (p1) implies that q

(xn, yn) ≪ e and q(xn, z) ≪ e for n ≥ n0. Then, by (q4), d(yn, z) ≪ c and yn ® z (n ®
∞). ■
Our first result is the following theorem of Hardy-Rogers type.

Theorem 2 Let (X, d) be a complete tvs-cone metric space and let q be a c-distance

on X. Suppose that a continuous self-map f : X ® X satisfies the following two condi-

tions:

q(fx, fy) � Aq(x, y) + Bq(x, fx) + Cq(y, fy) +Dq(x, fy) + Eq(y, fx), (3:1)

q(fy, fx) � Aq(y, x) + Bq(fx, x) + Cq(fy, y) +Dq(fy, x) + Eq(fx, y) (3:2)

for all x, y Î X, where A, B, C, D, E are nonnegative constants such that A + B + C +

2D + 2E <1. Then f has a fixed point in X. If fu = u, then q(u, u) = θ.

Proof Let x0 Î X be arbitrary and form the sequence {xn} with xn = fnx0. In order to

prove that it is a Cauchy sequence, put x = xn and y = xn - 1 in (3.1) to get

q(xn+1, xn) � Aq(xn, xn−1) + Bq(xn, xn+1) + Cq(xn−1, xn)

+Dq(xn, xn) + Eq(xn−1, xn+1)

� Aq(xn, xn−1) + (B +D + E)q(xn, xn+1)

+ (C + E)q(xn−1, xn) +Dq(xn+1, xn).

(3:3)

Similarly, putting y = xn - 1 and x = xn in (3.2), one obtains

q(xn, xn+1) � Aq(xn−1, xn) + Bq(xn+1, xn) + Cq(xn, xn−1)

+Dq(xn, xn) + Eq(xn+1, xn−1)

� Aq(xn−1, xn) + (B +D + E)q(xn+1, xn)

+ (C + E)q(xn, xn−1) +Dq(xn, xn+1).

(3:4)

Denote un = q(xn+1, xn)+ q(xn, xn+1). Adding up (3.3) and (3.4), we get that

un � (A + C + E)un−1 + (B + 2D + E)un,

i.e. un ≼ hun - 1 with

0 ≤ h =
A + C + E

1 − B − 2D − E
< 1,

since A + B + C + 2D + 2E <1 and, e.g., A + C + E >0.
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By induction, un ≼ hnu0 and q(xn, xn+1) ≼ un ≼ hn(q(x1, x0) + q(x0, x1)). In the usual

way, it follows that

q(xn, xm) �
hn

1 − h
(q(x1, x0) + q(x0, x1)) = vn

for m > n, where {vn} is a c-sequence. Lemma 1.(3) implies that {xn} is a Cauchy

sequence in X and, since X is complete, xn ® x* Î X (n ® ∞). Continuity of f implies

that xn+1 = fxn ® fx*, and since the limit of a sequence in tvs-cone metric space in

unique, we get that fx* = x*.

Suppose that fu = u. Then, (3.1) implies that

q(u, u) = q(fu, fu) � Aq(u, u) + Bq(u, u) + Cq(u, u) +Dq(u, u) + Eq(u, u)

= (A + B + C +D + E)q(u, u),

which is, by property (p5) and A + B + C + D + E < A + B + C +2D +2E <1, possible

only if q(u, u) = θ. ■
Some special cases of the previous theorem, for example Banach-type and Kannan-

type fixed point results, need only one condition:

q(fx, fy) � λq(x, y), λ ∈ [0, 1),

and

q(fx, fy) � λ(q(x, fx) + q(y, fy)), λ ∈ [0, 1/2),

respectively.

Remark 1 If the underlying cone P of the given tvs-cone metric space (X, d) is nor-

mal (and, hence, this space is a cone metric space in the sense of [1], see Theorem

2.1), then continuity of f in Theorem 2 can be replaced by the condition

inf{||q(x, y)|| + ||q(x, fx)|| : x ∈ X} > 0 for all y ∈ X with y �= fy.

It may be of interest to note that in this case, property (q3) of c-distance has to be

used in the course of the proof (see, e.g., the respective procedure in ordered cone

metric spaces in [19]), while in our case (when f is continuous), this property is not

needed.

The next is a result including two mappings and the existence of their common fixed

point.

Theorem 3 Let (X, d) be a complete tvs-cone metric space and let q be a c-distance

on X. Suppose that continuous self-maps f, g : X ® X satisfy the following two condi-

tions:

q(fx, gy) � Aq(x, y) + B[q(x, fx) + q(y, gy)] +D[q(x, gy) + q(y, fx)], (3:5)

q(gy, fx) � Aq(y, x) + B[q(fx, x) + q(gy, y)] +D[q(gy, x) + q(fx, y)] (3:6)

for all x, y Î X, where A, B, D are nonnegative constants, such that A + 2B + 4D <1.

Then f and g have a common fixed point in X. If fu = gu = u, then q(u, u) = θ.

Proof Let x0 Î X be arbitrary and form the sequence {xn} such that x2n+1 = fx2n and

x2n+2 = gx2n+1 for n ≥ 0. Denote un = q(x2n, x2n+1)+q(x2n+1, x2n) and vn = q(x2n+1, x2n+2)

+ q(x2n+2, x2n+1).
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Putting x = x2n+2, y = x2n+1 in (3.5) we obtain that

q(x2n+3, x2n+2) � Aq(x2n+2, x2n+1) + B[q(x2n+2, x2n+3) + q(x2n+1, x2n+2)]

+D[q(x2n+2, x2n+2) + q(x2n+1, x2n+3)]

� Aq(x2n+2, x2n+1) + (B + 2D)q(x2n+2, x2n+3)

+ (B +D)q(x2n+1, x2n+2) +Dq(x2n+3, x2n+2).

(3:7)

Similarly, putting the same values for x, y in (3.6), we get

q(x2n+2, x2n+3) � Aq(x2n+1, x2n+2) + B[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)]

+D[q(x2n+2, x2n+2) + q(x2n+3, x2n+1)]

� Aq(x2n+1, x2n+2) + (B + 2D)q(x2n+3, x2n+2)

+ (B +D)q(x2n+2, x2n+1) +Dq(x2n+2, x2n+3).

(3:8)

It follows by adding up (3.7) and (3.8) that

un+1 � (A + B +D)vn + (B + 3D)un+1,

i.e.,

un+1 � hvn, n ∈ N,

where 0 < h =
A + B +D
1 − B − 3D

< 1, since A + B + D >0 and A + 2B + 4D <1.

By a similar procedure, starting with x = x2n and y = x2n+1, one can get

vn � hun, n ∈ N.

Combining the last two inequalities, it follows that

un+1 � h2un and vn � h2vn−1,

and we get that {un} and {vn} are c-sequences. We have that q(x2n, x2n+1) ≼ un, q(x2n

+1, x2n+2) ≼ vn and it follows that q(xn, xn+1) ≼ un + vn, where un + vn is a c-sequence.

Using Lemma 1.(3), we obtain that {xn} is a Cauchy sequence in X. Hence, xn ® x* Î
X (n ® ∞). Since f and g are continuous, it easily follows from the definition of {xn}

that fx* = gx* = x*.

Thus, mappings f and g have a common fixed point. Suppose that u Î X is any point

satisfying fu = gu = u. Then, (3.5) implies that

q(u, u) = q(fu, gu) � Aq(u, u) + B[q(u, u) + q(u, u)] +D[q(u, u) + q(u, u)]

= (A + 2B + 2D)q(u, u)

and, since 0 < A + 2B + 2D < A + 2B + 4D <1, property (p5) implies that q(u, u) =

θ. ■
As corollaries, we obtain, for example, common fixed point result for self-maps f and

g satisfying

q(fx, gy) � Aq(x, y), q(gy, fx) � Aq(y, x), 0 < A < 1, (3:9)

or for a self-map f satisfying

q(f nx, f my) � Aq(x, y) + B[q(x, f nx) + q(y, f my)] +D[q(x, f my) + q(y, f nx)],

q(f my, f nx) � Aq(y, x) + B[q(f nx, x) + q(f my, y)] +D[q(f my, x) + q(f nx, y)],

where m, n Î N, A + 2B + 4D <1.
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Remark 2 Similarly as in Remark 1, we note that if the cone P is normal, then conti-

nuity of mappings f and g in Theorem 3 can be replaced by conditions

inf{||q(x, y)|| + ||q(x, fx)|| : x ∈ X} > 0 for all y ∈ X with y �= fy,

inf{||q(x, y)|| + ||q(x, gx)|| : x ∈ X} > 0 for all y ∈ X with y �= gy.

Example 4 Let E = ℝ and P = [0, +∞). Let X = [0, +∞), d(x, y) = |x - y| and define q

(x, y) = x. It is easy to check that q is a c-distance on a cone metric space (X, d).

Take functions f, g : X ® X defined by fx = x
4 and gx = x

2. If x = 5, y = 15
2 , then

d(fx, gy) = d
( 5
4 ,

15
4

)
= 5

2 and d(x, y) = d
(
5, 152

)
= 5

2. Hence, there is no A Î (0, 1) (and

hence no triple (A, B, D)) such that d(fx, gy) ≤ Ad(x, y) for each x, y Î [0, +∞), i.e., the

existence of a common fixed point of f and g cannot be deduced from the well-known

metric version of Theorem 3.

However, conditions of the c-distance version (Theorem 3) are satisfied. Indeed, take

arbitrary A, 1
2 ≤ A < 1 and B = D = 0. Then, for each x, y Î [0, +∞),

q(fx, gy) = fx = x
4 ≤ Ax = Aq(x, y) and q(gy, fx) = gy = y

2 ≤ Ay = Aq(y, x) (see (3.9)). Note

that f and g have a (trivial) common fixed point u = 0 and that q(u, u) = q(0, 0) = 0.

This example can be easily modified to the tvs-cone metric case. It is enough to

define tvs-cone metric on X by d(x, y)(t) = |x - y|�(t) with fixed � Î P = {f Î C[0, 1] :

f(t) ≥ 0 for t Î [0, 1]} and take c-distance q1(x, y)(t) = x · � (t) (see Example 3).

3.2 Mappings without periodic points

The first part of the following result was given with an incorrect proof in [20] (using

lim inf which may not be defined in the case of an arbitrary cone metric space).

Recall that a map f : X ® X is said to have property (P) if it satisfies F(f) = F(fn) for

each n Î N, where F(f) stands for the set of all fixed points of f [22].

Theorem 4 Let (X, d) be a tvs-cone metric space and q : X × X ® E be a c-distance

on X. Suppose that a continuous self-map f : X ® X satisfies

q(fx, f 2x) � λq(x, fx) (3:10)

for some l Î (0, 1) and each × Î X. Then:

1. f has a fixed point and if fu = u, then q(u, u) = θ;

2. f has property (P).

Proof (1) Let x0 Î X and xn+1 = fxn, n ≥ 0. If xn0 + 1 = xn0 for some n0 Î N0, then xn0
is a fixed point of f. Otherwise, we get from (3.10) that

q(xn, xn+1) = q(f xn−1, f 2xn−1) � λq(xn−1, f xn−1) = λq(f xn−2, f 2xn−2)

� λ2q(xn−2, f xn−2) � · · · � λnq(x0, x1).

Using Lemma 1.(3) again, one obtains that {xn} is a Cauchy sequence in X.

Hence, xn ® x*, and continuity of f implies that xn+1 = fxn ® fx* and fx* = x*.

(2) Obviously, F(f) ⊆ F(fn) for each n Î N. Let u Î F(fn), i.e., fnu = u. Then, (3.10)

implies that

q(u, fu) = q(f f n−1u, f 2f n−1u) � λq(f n−1u, f nu) = λq(f f n−2u, f 2f n−2u)

� λ2q(f n−2u, f n−1u) � · · · � λnq(u, fu).

By property (p5), it follows that q(u, fu) = θ.
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Now, for arbitrary k Î {1, 2,..., n}, we have that q(fku, fk+1u) ≼ lkq(u, fu) θ and so q

(fku, fk+1u) = θ. It follows that q(u, f 2u) ≼ q(u, fu)+q(fu, f 2u) = θ, i.e., q(u, f 2u) = θ

and, similarly,

q(u, fu) = q(u, f 2u) = q(u, f 3u) = · · · = q(u, f nu) = θ .

From q(u, fu) = θ = q(u, fnu) = q(u, u) and Lemma 1.(1), we conclude that fu = u, i.

e., u Î F(f). ■
Another way to obtain property (P) is the following.

Theorem 5 Let (X, d) be a tvs-cone metric space and q : X × X ® E be a c-distance

on X. Suppose that a continuous self-map f : X ® X satisfies

q(fx, f 2x) + q(f 2x, fx) � λ[q(x, fx) + q(fx, x)] (3:11)

for some l Î (0, 1) and each × Î X. Then f has property (P).

Proof Denote z1(x) = q(x, fx)+ q(fx, x) and z2(x) = q(fx, f 2x)+ q(f 2x, fx).

Then, the given condition is written as z2(x) ≼ lz1(x) for each x Î X. Suppose that

fnu = u. Then,

z1(u) = q(u, fu) + q(fu, u) = q(f nu, f f nu) + q(f f nu, f nu) = z2(f n−1u)

� λz1(f n−1u) = λz2(f n−2u) � λ2z1(f n−2u) � · · · � λnz1(u).

Since 0 < ln <1, property (p5) implies that z1(u) = q(u, fu) + q(fu, u) = θ. Again, the

triangle inequality (q2) implies that q(u, u) = q(fu, fu) = θ, and by Lemma 1.(1), we get

that fu = u. ■
Corollary 1 Let q be a c-distance on a tvs-cone metric space (X, d) and let f : X ® X

be continuous and such that for some nonnegative A, B, C, D, E such that A + B + C +

2D + 2E <1, inequalities (3.1) and (3.2) hold for all x, y Î X. Then f has property (P).

Proof Putting x = x and y = fx in conditions (3.1) and (3.2) leads to the following

inequalities:

q(fx, f 2x) � (A + B +D)q(x, fx) + (C +D + E)q(fx, f 2x) + Eq(f 2x, fx),

q(f 2x, fx) � (A + B +D)q(fx, x) + (C +D + E)q(f 2x, fx) + Eq(fx, f 2x).

Adding up, one obtains inequality (3.11) with 0 < λ =
A + B +D

1 − C − D − 2E
< 1, since A

+ B + C + 2D + 2E <1. ■
Similar results concerning property (Q) of two self-mappings f and g (i.e., property

that F(f) ∩ F(g) = F(fn) ∩ F(gn) for each n Î N) can be obtained.
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