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Abstract

In this article, we consider ordered metric spaces concerning generalized distance
and prove some fixed point theorems in these spaces. Our results generalize,
improve, and simplify the proof of the previous results given by some authors.
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1. Introduction and Preliminary
Recently, Nieto and Rodriguez-Lopez [1,2], Ran and Reurins [3], Petrusel and Rus [4]

presented some new results in partially ordered metric spaces. Their main idea was to

combine the ideas of iterative technique in the contractive mapping with these in

monotone technique.

Recently, Kada et al. [5,6] in 1996 introduced the concept of w-distance in a metric

space and prove some fixed point theorems. For the study of fixed point theorem con-

cerning generalized distance followed in other articles, see [5,7-15].

The aim of this article is to use the concept of w-distance to generalize the fixed

point theorems in partially ordered metric spaces. Our results not only generalize

some fixed point theorems, but also improve and simplify the previous results.

In the sequel, we state some definitions and a lemma which we will use in our main

results.

Definition 1.1. ([5,8,10]) Let (X, d) be a metric space. Then, a function p : X × X ®
[0, ∞) is called a w-distance on X if the following conditions are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z Î X;

(b) for any x Î X, p(x, .) : X ® [0, ∞) is lower semi-continuous;

(c) for any ε >0, there exists δ >0 such that p(x, z) ≤ δ and p(z, y) ≤ δ imply d(x, y)

≤ ε.

We know that a real-valued function f defined in a metric space X is said to be lower

semi-continuous at a point x0 Î X if either lim infxn→x0 f (xn) = ∞ or

f (x0) ≤ lim infxn→x0 f (xn), whenever xn Î X for each n Î N and xn ® x0.

Lemma 1.2. ([5,7]) Let (X, d) be a metric space and p be a w-distance on X. Let {xn},

{yn} be sequences in X, {an}, {bn} be sequences in [0, ∞) converging to zero and let x, y,
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z Î X. Then, the following conditions hold:

(1) If p(xn, y) ≤ an and p(xn, z) ≤ bn for any n Î N, then y = z. In particular, if p(x.

y) = 0 and p(x, z) = 0, then y = z;

(2) If p(xn, yn) ≤ an and p(xn, z) ≤ bn for any n Î N, then d(yn, z) ® 0;

(3) If p(xn, xm) ≤ an for any n, m Î N with m > n, then {xn} is a Cauchy sequence;

(4) If p(y, xn) ≤ an for any n Î N, then {xn} is a Cauchy sequence.

Let f : X ® X be an operator:

(1) I(f) is the set of all nonempty invariant subsets of f, i.e., I(f) = {Y ⊂ X : f(Y ) ⊂ Y

} and Ff = {x Î X : x = f(x)}.

(2) The operator f is called Picard operator (briefly, PO) if there exists x* Î X such

that Ff = {x*} and, for all x Î X, {fn(x)} converges to x*.

(3) The operator f is called orbitally U-continuous for any U ⊂ X × X if the follow-

ing condition holds:

For any x Î X, f ni(x) → a ∈ X as i ® ∞ and (f ni(x), a) ∈ U for any i Î N imply that

f ni+1(x) → f (a) as i ® ∞.

(4) Let (X, ≤) be a partially ordered set. Then,

X≤ = {(x, y) ∈ X × X : x ≤ y or y ≤ x}

and [x, y]≤ = {z Î X : x ≤ z ≤ y}, where x, y Î X and x ≤ y.

(5) If g : Y ® Y is an operator, then the Cartesian product of f and g is the map-

ping f × g : X × Y ® X × Y defined by (f × g)(x, y) = (f(x), g(y)) for all (x, y) Î X ×

Y.

(6) � : R+ ® R+ is said to be a comparison function if it is increasing and �n(t) ® 0

as n ® ∞. As a consequence, we also have � (t) < t for any t >0, � (0) = 0, and �

is right continuous at 0.

2. Main Results
Now, we give the main results of this article.

Theorem 2.1. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) X≤ Î I(f × f );

(b) there exists x0 Î X such that (x0, f (x0)) Î X≤;

(c) (c1) f is orbitally continuous or

(c2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)}of {f n(x0)}

such that (f nk(x0), x∗) ∈ X≤for any k Î N;

(d) there exists a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)
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for all (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(e) the metric d is complete.

Then Ff ≠ ∅.

Proof. If f(x0) = x0, then the proof is completed. Let x0 Î X be such that (x0, f (x0)) Î
X≤. By (a), since (f × f )(X≤) ⊂ X≤, we have (f × f )(x0, f (xo)) Î X≤ and so (f(x0), f

2(xo)) Î
X≤.

Continuing this process, we obtain

(f n(x0), f n+1(x0)) ∈ X≤

for any n Î N.

Now, we show that

p(f n(x0), f n+1(x0)) ≤ ϕ(p(f n−1(x0), f n(x0))) (3:1)

for any n Î N. Let p0 = p(x0, f (x0)) and pn = p(f n (x0), f
n+1 (x0)) for any n Î N.

Then we have

pn ≤ ϕ(max{pn−1, pn, pn−1,
1
2
(p(f n−1(x0), f n(x0)) + p(f n(x0), f n+1(x0)))})

≤ ϕ(max{pn−1, pn,
1
2
(pn−1 + pn)})

≤ ϕ(max{pn−1, pn})

(3:2)

for any n Î N. If max{pn-1, pn} = pn-1, then (3.1) follows. Otherwise, max{pn-1, pn} =

pn Then, by (3.2), we have pn ≤ �(pn) ≤ pn and so pn = 0 and (3.1) follows. By induc-

tion, we obtain

p(f n(x0), f n+1(x0)) ≤ ϕn(p(x0, f (x0)))

or, equivalently,

pn ≤ ϕn(p0)

for any n Î N, Now, we have

p(f n(x0), f n+2(x0)) ≤ pn + pn+1 ≤ ϕn(p0) + ϕn+1(p0) → 0

as n ® ∞.

Similarly, we have

p(f n(x0), f n+3(x0)) ≤ p(f n(x0), f n+2(x0)) + pn+2

≤ p(f n(x0), f n+2(x0)) + ϕp+2(p0) → 0

as n ® ∞ and so, by induction, we obtain

p(f n(x0), f n+k(x0)) → 0 (3:3)
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as n ® ∞ for any k >0. Therefore, {fn(x0)} is a Cauchy sequence in X. Since X is

complete, there exists x* Î X such that fn(x0) ® x* as n ® ∞.

Now, we show that x* is a fixed point. If (c1) holds, then fn+1(x0) ® f (x*) and, by

lower semi-continuity of p(fn(x0), ·), we have

p(f n(x0), x∗) ≤ lim inf
m→∞ p(f n(x0), f m(x0)) = αn,

p(f n(x0), f (x∗)) ≤ lim inf
m→∞ p(f n(x0), f m+1(x0)) = βn

and an, bn ® 0 as n ® ∞. Thus, by (3.3) and Lemma 1.2, we conclude that f (x*) =

x*.

Now, suppose that (c2) holds. Since {f nk(x0)} converges to x* and f is X≤-orbitally

continuous, it follows that f nk+1(x0) converges to f (x*). Similarly, by lower semi-conti-

nuity of p(fn(x0), ·), we conclude that f (x*) = x*. This completes the proof. □
Corollary 2.2. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) X≤ Î I(f × f );

(b) there exists x0 Î X such that (x0, f (x0)) Î X≤;

(c) (c1)) f is orbitally continuous or

(c2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)}of {fn
(x0)} such that (f nk(x0), x∗) ∈ X≤for any k Î N;

(d) and there is a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)

for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(e) the metric d is complete;

(f) if (x, y) Î X≤ and (y, z) Î X≤.vskip 1 mm

Then, Ff ≠ ∅.

Theorem 2.3. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) X≤ Î I(f × f );

(b) There exists x0 Î X such that (x0, f (x0)) Î X≤;

(c) (c1) f is orbitally continuous or

(c2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)}of {fn
(x0)} such that (f nk(x0), x∗) ∈ X≤for any k Î N;

(d) there is a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)
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for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(e) the metric d is complete;

(f) if x, y Î X with (x, y) ∉ X≤, then there exists c(x, y) Î X such that (x, c(x, y)) Î
X≤ and (y, c(x, y)) Î X≤

..

Then, f is PO.

Proof. According to Theorem 2.1, there exists x* Î X such that f(x*) = x*. Take x Î
X.

If (x, x0) Î X≤, then (f n(x), f n(x0)) Î X≤ and so

p(f n(x0), f n(x)) ≤ ϕn(p(x0, x)), p(f n(x0), x∗) ≤ ϕn(p(x0, x∗))

for any n Î N. Thus, by Lemma 1.2, fn(x) ® x* as n ® ∞.

If (x, x0) ∉ X≤, then there exists z Î X such that (x, z) Î X≤ and (x0, z) Î X≤ and so

p(f n(x0), x∗) ≤ ϕn(p(x0, x∗)), p(f n(x0), f n(z)) ≤ ϕn(p(x0, z))

for any n Î N. Thus, by Lemma 1.2, we have fn(z) ® x* as n ® ∞. Also, since (x, z)

Î X≤, we have f n(z) ® x* as n ® ∞. Consequently, f n(x) ® x* as n ® ∞.

Now, if there exist y Î X such that f(y) = y, then

p(f n(y), x∗) ≤ ϕn(p(y, x∗)), p(f n(y), y) ≤ ϕn(p(y, y))

and so, by Lemma 2.1, y = x*, i.e., Ff = {x*}. This completes the proof. □
Corollary 2.4. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) if x, y Î X with (x, y)X≤ there exists c(x, y) Î X such that (x, c(x, y)) Î X≤ and

(y, c(x, y)) Î X≤;

(b) X≤ Î I(f × f ) ;

(c) There exists x0 Î X such that (x0, f (x0)) Î X≤;

(d) (d1) f is orbitally continuous or

(d2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)}of {fn
(x0)} such that (f nk(x0), x∗) ∈ X≤ for any k Î N;

(e) there is a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)

for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(f) the metric d is complete,
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Then, f is PO.

Corollary 2.5. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) if x, y ÎX with (x, y)X≤, then there exists c(x, y) Î X such that (x, c(x, y)) Î X≤

and (y, c(x, y)) Î X≤;

(b) if (x, y) Î X≤ and (y, z) Î X≤, then (x, z) Î X≤;

(c) f is orbitally continuous (iv) there is a comparison function � : R+ ® R+ such

that

p(f (x), f (y)) ≤ ϕ(Mxy)

for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(d) the metric d is complete,

Then, f is PO.

Corollary 2.6. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that

(a) if x, y Î X with (x, y)X≤, then there exists c(x, y) Î X such that (x, c(x, y)) Î X≤

and (y, c(x, y)) Î X≤;

(b) X≤ ÎI(f × f ) ;

(c) there exists x0 Î X such that (x0, f (x0)) Î X≤;

(d) if (x, y) Î X≤ and (y, z) Î X≤, then (x, z) Î X≤;

(e) (e1) f is orbitally continuous or

(e2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)} of {fn
(x0)} such that (f nk(x0), x∗) ∈ X≤ for any k Î N;

(f) there is a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)

for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(g) the metric d is complete,

Then, f is PO.

Corollary 2.7. Let (X, d, ≤) be an ordered metric space and f : X ® X be an operator.

Let p be a w-distance on (X, d) and suppose that
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(a) if x, y Î X with (x, y)X≤, then there exists c(x, y) Î X such that (x, c(x, y)) Î X≤

and (y, c(x, y)) Î X≤;

(b) f is increasing or decreasing;

(c) there exists x0 Î X such that (x0, f (x0)) Î X≤;

(d) (d1) f is orbitally continuous or

(d2) f is orbitally X≤-continuous and there exists a subsequence {f nk(x0)}of {fn
(x0)} such that (f nk(x0), x∗) ∈ X≤for any k Î N;

(e) there is a comparison function � : R+ ® R+ such that

p(f (x), f (y)) ≤ ϕ(Mxy)

for any (x, y) Î X≤, where

Mxy = max{p(x, y), p(x, f (x)), p(y, f (y)), 1
2
(p(x, f (y)) + p(y, f (x)))};

(f) the metric d is complete,

Then, f is PO.
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