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Abstract

In this paper, we introduce a new approach method to find a common element in
the intersection of the set of the solutions of a finite family of equilibrium problems
and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Under
appropriate conditions, some strong convergence theorems are established. The
results obtained in this paper are new, and a few examples illustrating these results
are given. Finally, we point out that some ‘so-called’ mixed equilibrium problems and
generalized equilibrium problems in the literature are still usual equilibrium
problems.
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1 Introduction and preliminaries
Throughout this paper, we assume that H is a real Hilbert space with zero vector θ,

whose inner product and norm are denoted by 〈·, ·〉 and || · ||, respectively. The sym-

bols N and ℝ are used to denote the sets of positive integers and real numbers, respec-

tively. Let K be a nonempty closed convex subset of H and T : K ® H be a mapping.

In this paper, the set of fixed points of T is denoted by F(T). We use symbols ® and

⇀ to denote strong and weak convergence, respectively.

For each point x Î H, there exists a unique nearest point in K, denoted by PKx, such

that

‖ x − PKx ‖ ≤ ‖ x − y ‖, ∀ y ∈ K.

The mapping PK is called the metric projection from H onto K. It is well known that

PK satisfies

〈x − y,PKx − PKy〉 ≥ ‖ PKx − PKy‖2

for every x, y Î H. Moreover, PKx is characterized by the properties: for x Î H, and z

Î K,
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z = PK(x) ⇔ 〈x − z, z − y〉 ≥ 0, ∀ y ∈ K.

Let f be a bi-function from K × K into ℝ. The classical equilibrium problem is to find

x Î K such that

f (x, y) ≥ 0, ∀ y ∈ K. (1:1)

Let EP(f) denote the set of all solutions of the problem (1.1). Since several problems

in physics, optimization, and economics reduce to find a solution of (1.1) (see, e.g.,

[1,2]), some authors had proposed some methods to find the solution of equilibrium

problem (1.1); for instance, see [1-4]. We know that a mapping S is said to be nonex-

pansive mapping if for all x, y Î K, ||Sx - Sy|| ≤ ||x - y||. Recently, some authors used

iterative method including composite iterative, CQ iterative, viscosity iterative etc. to

find a common element in the intersection of EP(f) and F(S); see, e.g., [5-11].

Let I be an index set. For each i Î I, let fi be a bi-function from K × K into ℝ. The

system of equilibrium problem is to find x Î K such that

fi(x, y) ≥ 0, ∀ y ∈ K and ∀i ∈ I. (1:2)

We know that
⋂
i∈I

EP(fi) is the set of all solutions of the system of equilibrium pro-

blem (1.2).

For each i Î I, if fi(x, y) = 〈Aix, y - x〉, where Ai : K ® K is a nonlinear operator, then

the problem (1.2) becomes the following system of variational inequality problem:

Find an element x ∈ K such that 〈Aix, y − x〉 ≥ 0, ∀ y ∈ K. (1:3)

It is obvious that the problem (1.3) is a special case of the problem (1.2).

The following Lemmas are crucial to our main results.

Lemma 1.1 (Demicloseness principle [12]) Let H be a real Hilbert space and K a

closed convex subset of H. S : K ® H is a nonexpansive mapping. Then the mapping I -

S is demiclosed on K, where I is the identity mapping, i.e., xn ⇀ x in K and (I - S)xn ®
y implies that × Î K and (I - S)x = y.

Lemma 1.2 [13] Let {xn}and {yn} be bounded sequences in a Banach space E and let

{bn} be a sequence in [0,1] with 0 < lim infn®∞ bn ≤ lim supn®∞ bn < 1. Suppose xn+1 =

bnyn + (1 - bn)xn for all integers n ≥ 0 and lim supn®∞(||yn+1 - yn|| - ||xn+1 - xn||) ≤ 0,

then limn®∞ ||yn - xn|| = 0.

Lemma 1.3 [5] Let H be a real Hilbert space. Then the following hold.

(a) ||x + y||2 ≤ ||y||2 + 2〈x, x + y〉 for all x, y Î H;

(b) ||ax + (1 - a)y||2 = a||x||2 + (1 - a) ||y||2 - a(1 - a) ||x - y||2 for all x, y Î H

and a Î ℝ;

(c) ||x - y||2 = ||x||2 + ||y||2 - 2 〈x, y〉 for all x, y Î H.

Lemma 1.4. [14] Let {an} be a sequence of nonnegative real numbers satisfying the

following relation:

an+1 ≤ (1 − λn)an + γn,n ≥ 0.

If
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(i) ln Î [0,1],
∞∑
n=0

λn = ∞or, equivalently, �∞
n=0(1 − λn) = 0;

(ii) lim supn→∞
γn

λn
≤ 0 or

∞∑
n=0

|γn| < ∞,

then lim
n→∞ an = 0.

Lemma 1.5 [1] Let K be a nonempty closed convex subset of H and F be a bi-function

of K × K into ℝ satisfying the following conditions.

(A1) F(x, x) = 0 for all × Î K;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y Î K;

(A3) for each x, y, z Î K,

lim
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each × Î K, y ® F(x, y) is convex and lower semi-continuous.Let r > 0 and ×

Î H. Then, there exists z Î K such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ K.

Lemma 1.6 [3] Let K be a nonempty closed convex subset of H and let F be a bi-

function of K × K into R satisfying (A1) - (A4). For r >0 and × Î H, define a mapping

Tr : H ® K as follows:

Tr(x) =
{
z ∈ K : F(z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ K

}

for all × Î H. Then the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is, for any x, y Î H,

‖ Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;

(iii) F(Tr) = EP (F);

(iv) EP(F) is closed and convex.

2 Main results and their applications
Let I = {1, 2,..., k} be a finite index set, where k Î N. For each i Î I, let fi be a bi-func-

tions from K × K into ℝ satisfying the conditions (A1)-(A4). Denote Ti
rn : H → K by

Ti
rn(x) =

{
z ∈ K : fi(z, y) +

1
rn

〈y − z, z − x〉 ≥ 0, ∀ y ∈ K
}
.

For each (i, n) Î I × N, applying Lemmas 1.5 and 1.6, Ti
rn is a firmly nonexpansive

single-valued mapping such that F(Ti
rn) = EP(fi) is closed and convex. For each i Î I,

let uin = Ti
rn xn, n Î N.

First, let us consider the following example.
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Example A Let fi : [-1, 0]×[-1,0] ®ℝ be defined by fi(x, y) = (1+x2i)(x - y), i = 1, 2, 3.

It is easy to see that for any i Î {1, 2, 3}, fi(x, y) satisfies the conditions (A1)-(A4) and⋂3
i=1 EP(fi) = {0}. Let Sx = x3 and gx = 1

2x, ∀ x Î [-1, 0] Then g is a 1
2-contraction from

K into itself and S : K ® K is a nonexpansive mapping with(⋂3

i=1
EP(fi))

) ⋂
F(S) = {0}. Let l Î (0, 1), {rn} ⊂ [1, + ∞) and {an} ⊂ (0,1) satisfy the

conditions (i) limn®∞ an = 0, and (ii)
∑∞

n=1 αn = +∞, or equivalently,∏∞
n=1 (1 − αn) = 0; e.g., let λ = 1

3, {an} ⊂ (0, 1) and {rn} ⊂ [1, + ∞) be given by

αn =
{
0, if n is even;
1
n , if n is odd.

and rn =
{
2, if n is even;
2 − 1

n , if n is odd.

Define a sequence {xn} by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ [−1, 0],
uin = Ti

rnxn, i = 1, 2, 3,
xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSzn,

zn =
u1n + u2n + u3n

3
, ∀n ∈ N.

(2:1)

Then the sequences {xn} and {uin}, i = 1, 2, 3, defined by (2.1) all strongly converge to

0.

Proof

(a) By Lemmas 1.5 and 1.6, (2.1) is well defined.

(b) Let K = [-1, 0]. For each i Î {1, 2, 3}, define

Li(y, z, v, r) = (z − y)
[
(1 + z2i) − 1

r
(z − v)

]
∀y, z, v ∈ K, ∀r ≥ 1.

We claim that for each v Î K and any i Î {1, 2, 3}, there exists a unique z = 0 Î K

such that

(P) Li(y, z, v, r) ≥ 0 ∀y ∈ K, ∀r ≥ 1

or, equivalently,

(1+z2i)(z−y)+
1
r
〈y−z, z−v〉 = (1+z2i)(z−y)+

1
r
(y−z)(z−v) ≥ 0 ∀y ∈ K, ∀r ≥ 1.

Obviously, z = 0 is a solution of the problem (P). On the other hand, there does not

exist z Î [-1, 0) such that z - y ≤ 0 and (1 + z2i) − 1
r (z − v) ≤ 0. So z = 0 is the unique

solution of the problem (P).

(c) We notice that (2.1) is equivalent with (2.2), where
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ [−1, 0],

fi(uin, y) +
i

rn
〈y − uin, u

i
n − xn〉 ≥ 0, ∀ y ∈ K,∀i = 1, 2, 3,

xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSzn,

zn =
u1n + u2n + u3n

3
, n ∈ N.

(2:2)
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It is easy to see that {xn} ⊂ [-1, 0], so, by (b), u1n = u2n = u3n = 0 for all n Î N. We need

to prove xn ® 0 as n ® ∞. Since zn = 0 for all n Î N, we have yn = (1 -l)xn and

xn+1 = αng(xn)+(1−αn)yn =
1
2

αnxn+(1−αn)(1−λ)xn =
[(

1 − 1
2

αn

)
− (1 − αn)λ

]
xn (2:3)

for all n Î N. For any n Î N, from (2.3), we have

|xn+1| =
[(

1 − 1
2

αn

)
− (1 − αn)λ

]
|xn| ≤

(
1 − 1

2
αn

)
|xn| . (2:4)

Hence {|xn|} is a strictly deceasing sequence and |xn| ≥ 0 for all n Î N. So lim
n→∞ |xn|

exists.

On the other hand, for any n, m Î N with n > m, using (2.4), we obtain

|xn+1| ≤
(
1 − 1

2
αn

)
|xn|

≤
(
1 − 1

2
αn

)(
1 − 1

2
αn−1

)
|xn−1|

≤ · · · ≤
n∏

j=m

(
1 − 1

2
αj

)
|xm| ,

which implies lim sup
n→∞

|xn| ≤ 0 ≤ lim inf
n→∞ |xn|. Therefore {xn} strongly converges to 0.

□
In this paper, motivated by the preceding Example A, we introduce a new iterative

algorithm for the problem of finding a common element in the set of solutions to the

system of equilibrium problem and the set of fixed points of a nonexpansive mapping.

The following new strong convergence theorem is established in the framework of a

real Hilbert space H.

Theorem 2.1 Let K be a nonempty closed convex subset of a real Hilbert space H

and I = {1, 2,..., k} be a finite index set. For each i Î I, let fi be a bi-function from K ×

K into ℝ satisfying (A1)-(A4). Let S : K ® K be a nonexpansive mapping with

� =
(⋂k

i=1 EP(fi)
)⋂

F(S) = ∅. Let l, r Î (0, 1) and g : K ® K is a r-contraction. Let

{xn} be a sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ K,
uin = Ti

rnxn, ∀i ∈ I.
xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSzn,

zn =
u1n + · · · + ukn

k
, ∀n ∈ N.

(DH)

If the above control coefficient sequences {an} ⊂ (0, 1) and {rn} ⊂ (0, +∞) satisfy the

following restrictions:

(D1) lim
n→∞ αn = 0,

∞∑
n=1

αn = +∞ and lim
n→∞ |αn+1 − αn| = 0;

(D2) lim inf
n→∞ rn > 0and lim

n→∞ |rn+1 − rn| = 0.

then the sequences {xn} and {uin}, for all i Î I, converge strongly to an element c = PΩg

(c) Î Ω. The following conclusion is immediately drawn from Theorem 2.1.
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Corollary 2.1 Let K be a nonempty closed convex subset of a real Hilbert space H.

Let f be a bi-function from K × K into ℝ satisfying (A1)-(A4) and S : K ® K be a non-

expansive mapping with Ω = EP(f) ∩F(S) ≠ ∅. Let l, r Î (0,1) and g : K ® K is a r-
contraction. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎨
⎪⎪⎩

x1 ∈ K,
un = Trnxn,
xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSun, ∀n ∈ N.

If the above control coefficient sequences {an} ⊂ (0, 1) and {rn} ⊂ (0, +∞) satisfy all

the restrictions in Theorem 2.1, then the sequences {xn} and {un} converge strongly to an

element c = PΩg(c) Î Ω, respectively.

If fi(x, y) ≡ 0 for all (x, y) Î K × K in Theorem 2.1 and all i Î I, then, from the algo-

rithm (DH), we obtain uin ≡ PK(xn), ∀ i Î I. So we have the following result.

Corollary 2.2 Let K be a nonempty closed convex subset of a real Hilbert space H.

Let S : K ® K be a nonexpansive mapping with F(S) ≠ ∅. Let l, r Î (0, 1) and g : K

® K is a r-contraction. Let {xn} be a sequence generated in the following manner:
⎧⎨
⎩
x1 ∈ K,
xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSPK(xn), ∀n ∈ N.

If the above control coefficient sequences {an} ⊂ (0, 1) satisfy lim
n→∞ αn = 0,

lim
n→∞ |αn+1 − αn| = 0and lim

n→∞ |αn+1 − αn| = 0, then the sequences {xn} converge strongly

to an element c = PΩg(c) Î F (S).

As some interesting and important applications of Theorem 2.1 for optimization pro-

blems and fixed point problems, we have the following.

Application (I) of Theorem 2.1 We will give an iterative algorithm for the following

optimization problem with a nonempty common solution set:

min
x∈K

hi(x), i ∈ {1, 2, . . . , k}, (OP)

where hi(x), i Î {1, 2,..., k}, are convex and lower semi-continuous functions defined

on a closed convex subset K of a Hilbert space H (for example, hi(x) = xi, x Î K := [0,

1], i Î {1, 2,..., k}).

If we put fi(x, y) = hi(y) - hi(x), i Î {1, 2,..., k}, then
⋂k

i=1 EP(fi) is the common solu-

tion set of the problem (OP), where
⋂k

i=1 EP(fi) denote the common solution set of the

following equilibrium:

Find x ∈ K such that fi(x, y) ≥ 0, ∀ y ∈ K and ∀ i ∈ {1, 2, . . . , k}.

For i Î {1, 2,..., k}, it is obvious that the fi(x, y) satisfies the conditions (A1)-(A4). Let

S = I (identity mapping), then from (DH), we have the following algorithm

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hi(y) − hi(uin) +
1
rn

〈y − uin, u
i
n − xn〉 ≥ 0, ∀ y ∈ K and ∀ i ∈ {1, 2, . . . , k},

xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λzn,

zn =
u1n + · · · + ukn

k
, n ≥ 1.

(2:5)
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where x1 Î K, l Î (0, 1), g : K ® K is a r-contraction. From Theorem 2.1, we know

that {xn} and {uin}, i Î{1,2,..., k}, generated by (2.5), strongly converge to an element of⋂k
i=1 EP(fi) if the coefficients {an} and {rn} satisfy the conditions of Theorem 2.1.

Application (II) of Theorem 2.1 Let H, K, I, l, r, g be the same as Theorem 2.1. Let

A1, A2,..., Ak : K ® K be k nonlinear mappings with
k⋂
i=1

F(Ai) = ∅. For any i Î I, put fi

(x, y) = 〈x - Aix, y - x〉, ∀ x, y Î K. Since
⋂k

i=1
EP(fi) =

⋂k

i=1
F(Ai), we have

k⋂
i=1

EP(fi) = ∅. Let S = I (identity mapping) in the algorithm (DH). Then the sequences

{xn} and {uin}, defined by the algorithm (DH), converge strongly to a common fixed

point of {A1, A2,..., Ak}, respectively.

The following result is important in this paper.

Lemma 2.1 Let H be a real Hilbert space. Then for any x1, x2,... xk Î H and a1, a2,...,

ak Î [0,1] with
∑k

i=1 ai = 1, k Î N, we have

∥∥∥∥∥
k∑
i=1

aixi

∥∥∥∥∥
2

=
k∑
i=1

ai ‖ xi‖2 −
k−1∑
i=1

k∑
j=i+1

aiaj ‖ xi − xj‖2. (2:6)

Proof It is obvious that (2.6) is true if aj = 1 for some j, so it suffices to show that

(2.6) is true for aj ≠ 1 for all j. The proof is by mathematic induction on k. Clearly,

(2.6) is true for k = 1. Let x1, x2 Î H and a1, a2 Î [0,1] with a1 + a2 = 1. By Lemma

1.3, we obtain

‖ a1x1 + a2x2‖2 = a1 ‖ x1‖2 + a2 ‖ x2‖2 − a1a2 ‖ x1 − x2‖2,
which means that (2.6) hold for k = 2. Suppose that (2.6) is true for k = l Î N. Let

x1, x2,..., xl, xl+1 Î H and a1, a2,..., al, al+1 Î [0, 1) with
∑l+1

i=1 ai = 1. Let y =
∑l+1

i=2
ai

1−a1
xi.

Then applying the induction hypothesis we have

∥∥∥∥∥
l+1∑
i=1

aixi

∥∥∥∥∥
2

=‖ a1x1 + (1 − a1)y‖2

= a1 ‖ x1‖2 + (1 − a1) ‖ y‖2 − a1(1 − a1) ‖ x1 − y‖2

=
l+1∑
i=1

ai ‖ xi‖2 − 1
1 − a1

l∑
i=2

l+1∑
j=i+1

aiaj ‖ xi − xj‖2

− a1(1 − a1)

∥∥∥∥∥
l+1∑
i=2

ai
1 − a1

(xi − x1)

∥∥∥∥∥
2

=
l+1∑
i=1

ai ‖ xi‖2 − 1
1 − a1

l∑
i=2

l+1∑
j=i+1

aiaj ‖ xi − xj‖2 − a1(1 − a1)
l+1∑
i=2

ai
1 − a1

‖ x1 − xi‖2

+ a1(1 − a1)
l∑

i=2

l+1∑
j=i+1

ai
1 − a1

aj
1 − a1

‖ xi − xj‖2

=
l+1∑
i=1

ai ‖ xi‖2 − 1
1 − a1

l∑
i=2

l+1∑
j=i+1

aiaj ‖ xi − xj‖2

−
l+1∑
i=2

a1ai ‖ x1 − xi‖2 + a1
1 − a1

l∑
i=2

l+1∑
j=i+1

aiaj ‖ xi − xj‖2

=
l+1∑
i=1

ai ‖ xi‖2 −
l+1∑
i=2

a1ai ‖ x1 − xi‖2 −
l∑

i=2

l+1∑
j=i+1

aiaj ‖ xi − xj‖2

=
l+1∑
i=1

ai ‖ xi‖2 −
l∑

i=1

l+1∑
j=i+1

aiaj ‖ xi − xj‖2.
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Hence, the equality (2.6) is also true for k = l + 1. This completes the induction. □

3 Proof of Theorem 2.1
We will proceed with the following steps.

Step 1: There exists a unique c Î Ω ⊂ H such that PΩg(c) = c.

Since PΩg is a r-contraction on H, Banach contraction principle ensures that there

exists a unique c Î H such that c = PΩg(c) Î Ω.

Step 2: We prove that the sequences {xn}, {yn}, {zn} and {uin}, ∀i Î I, are all bounded.

First, we notice that (DH) is equivalent with (ZH), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ K

f1(u1n, y) +
1
rn

〈y − u1n, u
1
n − xn〉 ≥ 0, ∀ y ∈ K,

f2(u2n, y) +
1
rn

〈y − u2n, u
2
n − xn〉 ≥ 0, ∀ y ∈ K,

...

fk(ukn, y) +
1
rn

〈y − ukn, u
k
n − xn〉 ≥ 0, ∀ y ∈ K,

xn+1 = αng(xn) + (1 − αn)yn,
yn = (1 − λ)xn + λSzn,

zn =
u1n + · · · + ukn

k
, n ∈ N.

(ZH)

For each i Î I, we have

||uin − c|| = ||Ti
rnxn − Ti

rn c|| ≤ ||xn − c||, ∀ n ∈ N. (3:1)

For any n Î N, from (ZH) we have

‖ zn − c ‖ ≤ ‖ xn − c ‖

and

‖ yn − c ‖ ≤ ‖ xn − c ‖ . (3:2)

Since g is a r-contraction, it follows from (3.2) that

‖ xn+1 − c ‖ ≤ αn
∥∥g(xn) − c

∥∥ + (1 − αn)
∥∥yn − c

∥∥
≤ αn

∥∥g(xn) − g(c)
∥∥ + αn

∥∥g(c) − c
∥∥ + (1 − αn)

∥∥yn − c
∥∥

≤ αnρ ‖xn − c‖ + αn
∥∥g(c) − c

∥∥ + (1 − αn) ‖xn − c‖

=
[
1 − αn(1 − ρ)

] ‖xn − c‖ + αn(1 − ρ)

∥∥g(c) − c
∥∥

1 − ρ

≤ max
{
‖ xn − c ‖, ‖ g(c) − c ‖

1 − ρ

}
, for n ∈ N.

By induction, we obtain

‖ xn − c ‖ ≤ max
{
‖ x1 − c ‖, ‖ g(c) − c ‖

1 − ρ

}
for all n ∈ N,

which shows that {xn} is bounded. Also, we know that {yn}, {zn} and {uin}, ∀i Î I, are

all

bounded.

Step 3: We prove limn®∞ ||xn+1 - xn|| = 0.
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For each i Î I, since uin−1, u
i
n ∈ K , from (ZH), we have

fi(uin, u
i
n−1) +

1
rn

〈uin−1 − uin, u
i
n − xn〉 ≥ 0, (3:3)

and

fi(uin−1, u
i
n) +

1
rn−1

〈uin − uin−1, u
i
n−1 − xn−1〉 ≥ 0. (3:4)

By (3.3) and (3.4) and (A2),

0 ≤ rn
[
fi(uin, u

i
n−1) + fi(uin−1, u

i
n)

]
+ 〈uin−1 − uin, u

i
n − xn − rn

rn−1
(uin−1 − xn−1)〉

≤ 〈uin−1 − uin, u
i
n − xn − rn

rn−1
(uin−1 − xn−1)〉,

which implies

〈uin−1 − uin, u
i
n−1 − uin + xn − xn−1 + xn−1 − uin−1 +

rn
rn−1

(uin−1 − xn−1)〉 ≤ 0. (3:5)

It follows from (3.5) that

‖ uin − uin−1 ‖ ≤ ‖ xn − xn−1 ‖ +

∣∣∣∣ rn − rn−1

rn−1

∣∣∣∣ ‖ xn−1 − uin−1 ‖ for all n ∈ N. (3:6)

Let M := 1
k

∑k
i=1 ‖ xn−1 − uin−1 ‖< ∞. For any n Î N, since zn = 1

k (u
1
n + · · · + ukn), by

(3.6), we have

‖ zn − zn−1 ‖ ≤ 1
k

k∑
i=1

‖ uin − uin−1 ‖ ≤ ‖ xn − xn−1 ‖ +M

∣∣∣∣ rn − rn−1

rn−1

∣∣∣∣ . (3:7)

Set

vn =
xn+1 − (1 − βn)xn

βn
, (3:8)

where bn = 1 - (1 - l)(1 - an), n Î N. Then for each n Î N,

xn+1 − xn = βn(vn − xn) (3:9)

and

vn =
αng(xn) + λ(1 − αn)Szn

βn
. (3:10)

For any n Î N, since

vn+1 − vn =
αn+1g(xn+1)

βn+1
− αng(xn)

βn
− λ(1 − αn)Szn

βn
+

λ(1 − αn+1)Szn+1
βn+1

=
αn+1g(xn+1)

βn+1
− αng(xn)

βn
− λ(1 − αn)(Szn − Szn+1)

βn
− λ(

1 − αn

βn
− 1 − αn+1

βn+1
)Szn+1,
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by (3.7), it follows that

‖ vn+1 − vn ‖ − ‖ xn+1 − xn ‖ ≤ αn+1 ‖ g(xn+1) ‖
βn+1

+
αn ‖ g(xn) ‖

βn
+

λ(1 − αn) ‖ zn − zn+1 ‖
βn

+

∣∣∣∣1 − αn

βn
− 1 − αn+1

βn+1

∣∣∣∣ ‖ Szn+1 ‖ − ‖ xn+1 − xn ‖

≤ αn+1 ‖ g(xn+1) ‖
βn+1

+
αn ‖ g(xn) ‖

βn
+

[
λ(1 − αn)

βn
− 1

]
‖ xn+1 − xn ‖

+
M
βn

∣∣∣∣ rn+1 − rn
rn

∣∣∣∣ +
∣∣∣∣1 − αn

βn
− 1 − αn+1

βn+1

∣∣∣∣ ‖ Szn+1 ‖ .

From this and (D1), (D2), we get

lim sup
n→∞

{‖ vn+1 − vn ‖ − ‖ xn+1 − xn ‖} ≤ 0. (3:11)

By Lemma 1.2 and (3.11),

lim
n→∞ ‖ vn − xn ‖ = 0. (3:12)

Owing to (3.9) and (3.12), we obtain

lim
n→∞ ‖ xn+1 − xn ‖ = 0. (3:13)

Step 4: We show limn→∞ ‖ Suin − uin ‖ = 0.

By (3.6), (3.13) and (D2), we have

lim
n→∞ ‖ uin+1 − uin ‖ = 0, ∀i ∈ I.

From (ZH), we get

lim
n→∞ ‖ xn+1 − yn ‖ = lim

n→∞ αn ‖ g(xn) − yn ‖ = 0. (3:14)

Since ||xn - yn|| ≤ ||xn - xn+1|| + ||xn+1 - yn||, by (3.13) and (3.14),

lim
n→∞ ‖ yn − xn ‖ = 0,

which implies that

lim
n→∞ ‖ Szn − xn ‖ = lim

n→∞
1
λ

‖ yn − xn ‖ = 0.

By Lemma 1.6,

‖ uin−c‖2 = ‖ Ti
rnxn−Ti

rn c‖2 ≤ 〈Ti
rnxn−Ti

rn c, xn−c〉 = 1
2

{‖ uin − c‖2+ ‖ xn − c‖2− ‖ uin − xn‖2
}
,

which yields that

‖ uin − c‖2 ≤ ‖ xn − c‖2− ‖ uin − xn‖2. (3:15)

From (3.15) and Lemma 2.1,

‖ zn − c‖2 =

∥∥∥∥∥
k∑
i=1

1
k

(
uin − c

)∥∥∥∥∥
2

≤ 1
k

k∑
i=1

‖ uin − c‖2 ≤ ‖ xn − c‖2 − 1
k

k∑
i=1

‖ uin − xn‖2.
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Since

‖ xn+1 − c‖2 ≤ αn ‖ g(xn) − c‖2 + (1 − αn) ‖ yn − c‖2
≤ αn ‖ xn − c‖2 + 2αnL + (1 − αn) ‖ yn − c‖2
≤ [1 − λ(1 − αn)] ‖ xn − c‖2 + 2αnL + λ(1 − αn) ‖ zn − c‖2

where

L = max{2 ‖ g(c) − c ‖‖ xn − c ‖, ‖ g(c) − c‖2} < ∞,

We have

1 − αn

k
λ

k∑
i=1

‖ uin−xn‖2 ≤ ‖ xn−c‖2− ‖ xn+1−c‖2+2αnL ≤ (‖ xn−c ‖ + ‖ xn+1−c ‖) ‖ xn−xn+1 ‖ +2αnL.(3:16)

Letting n ® ∞ in the inequality (3.16), we obtain

lim
n→∞ ‖ uin − xn ‖ = 0, ∀i ∈ I. (3:17)

Furthermore, it is easy to prove that

lim
n→∞ ‖ zn − xn ‖ = lim

n→∞ ‖ uin − zn ‖ = 0 ∀i ∈ I.

For any i Î I, since

‖ Suin − uin ‖ ≤ ‖ Suin − Szn ‖ + ‖ Szn − xn ‖ + ‖ xn − uin ‖ ,

it implies

lim
n→∞ ‖ Suin − uin ‖ = 0. (3:18)

Step 5: Prove lim supn®∞ 〈g(c) - q, xn - c〉 ≤ 0.

Take a subsequence {xn	
} of {xn} such that

lim sup
n→∞

〈g(c) − c, xn − c〉 = lim
	→∞

〈g(c) − c, xn	
− c〉. (3:19)

Since {xn	
} is bounded, there exists a subsequence of {xn	

} which is still denoted by

{xn	
} such that xn	

⇀ z as ℓ ® ∞. Notice that for each i Î I, lim
	→∞

‖ uin	
− xn	

‖ = 0 by

(3.17), so we also have uin	
⇀ z as ℓ ® ∞, ∀ i Î I.

We want to show z Î Ω. First, we show that z Î F(S). In fact, since

lim
	→∞

‖ (I − S)uin	
‖ = lim

	→∞
‖ Suin	

− uin	
‖ = 0 and uin	

⇀ z as ℓ ® ∞, by Lemma 1.1, we

have (I - S)z = θ or, equivalently, z Î F(S).

For each i Î I, since fi(uin	
, y) +

1
rn	

〈y − uin	
, uin	

− xn	
〉 ≥ 0, ∀ y Î K, it follows from

(A2) that

1
rn	

〈y − uin	
, uin	

− xn	
〉 ≥ fi(y, uin	

) + fi(uin	
, y) +

1
rn	

〈y − uin	
, uin	

− xn	
〉 ≥ fi(y, uin	

),

and hence

〈y − uin	
,
uin	

− xn	

rn	

〉 ≥ fi(y, uin	
), ∀y ∈ K.
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Applying (3.17) and (A4),

fi(y, z) ≤ 0, ∀y ∈ K. (3:20)

Let y Î K be given. Put yt = ty + (1 - t)z, t Î (0, 1). Then yt Î K and fi(yt, z) ≤ 0 for

all i Î I. By (A1) and (A4), we get

0 = fi(yt, yt) ≤ tfi(yt, y) + (1 − t)fi(yt, z) ≤ tfi(yt, y) ∀i ∈ I.

For any i Î I, by (A3), we have

fi(z, y) ≥ lim
t↓0

fi(ty + (1 − t)z, y) = lim
t↓0

fi(yt, y) ≥ 0. (3:21)

Hence, from (3.21), z ∈ ⋂k
i=1 EP(fi). Therefore, we proved

z ∈ � = (
⋂k

i=1 EP(fi))
⋂

F(S). On the other hand, by (3.19), we obtain

lim sup
n→∞

〈g(c) − c, xn − c〉 = 〈g(c) − c, z − c〉 ≤ 0. (3:22)

Step 6: Finally, we prove {xn} and {uin}, for all i Î I, converge strongly to c = PΩg(c)

Î Ω.

From (ZH) and (a) of Lemma 1.3, we have

||xn+1 − c||2 ≤ (1 − αn)2||yn − c||2 + 2αn〈g(xn) − g(c) + g(c) − c, xn+1 − c〉
≤ (1 − αn)2||xn − c||2 + 2αnρ||xn − c|| ||xn + 1 − c|| + 2αn〈g(c) − c, xn + 1 − c〉
≤ (1 − 2αn + α2

n)||xn − c||2 + 2αnρ||xn − c|| ||xn − xn + 1|| + 2αnρ||xn − c||2
+ 2αn〈g(c) − c, xn+1 − c〉

= (1 − 2(1 − ρ)αn)||xn − c||2 + α2
n ||xn − c||2 + 2αnρ||xn − c|| ||xn − xn + 1||

+ 2αn〈g(c) − c, xn+1 − c〉
= (1 − 2(1 − ρ)αn)||xn − c||2 + α2

n ||xn − c||2 + 2αnρ||xn − c|| ||xn − xn+1||
+ 2αn〈g(c) − c, xn+1 − c〉.

(3:23)

For any n Î ℤ, let

an = ||xn − c||2,
bn = αn||xn − c||2 + 2ρ||xn − c|| ||xn − xn+1|| + 2〈g(c) − c, xn+1 − c〉,

λn = 2(1 − ρ)αn,

and

γn = αnbn.

From (3.23), we have

an+1 ≤ (1 − λn)an + γn, ∀n ∈ N.

It is easy to verify that all conditions of Lemma 1.4 are satisfied. Hence, applying

Lemma 1.4, we obtain limn®∞ an = 0 which implies

lim
n→∞ ||xn − c|| = 0,

or equivalence, {xn} strongly converges to c. By (3.17), we can prove that for any i Î
I, {uin} strongly converges to c. The proof of Theorem 2.1 is completed. □
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4 Further remarks
Let K be a nonempty closed convex subset of H and f be a bi-function of K × K into ℝ.

Remark 4.1 Recently, some authors introduced the following mixed equilibrium pro-

blem (MEP, for short) (see [15-17] and references therein) and generalized equilibrium

problem (GEP, for short) (see [18-20] and references therein):

(a) Mixed equilibrium problem [15-17]:

Find an element x ∈ C such that f (x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (MEP)

where � : C ® ℝ is a real-valued function.

(b) Generalized equilibrium problem [18-20]:

Find an element x ∈ C such that f (x, y) + (Ax, y − x) ≥ 0, ∀y ∈ C. (GEP)

where A : C ® H is a nonlinear operator.

In [15-17], the authors gave some iterative methods for finding the solution of MEP

when the bi-function f(x, y) admits the conditions (A1)-(A4) and the real-valued func-

tion � satisfies the following condition:

(A5) � : C ® ℝ is a proper lower semi-continuous and convex function.

However, in this case, we argue that the problem MEP is still the equilibrium pro-

blem (1.1). In fact, if we put f1(x, y) = f(x, y), f2(x, y) = �(y) - �(x) and F(x, y) = f1(x, y)

+ f2(x, y) for each (x, y) Î C × C, then f1(x, y) satisfies the conditions (A1)-(A4), f2(x,

y) satisfies the condition (A5) and the function � must satisfy the conditions (A1)-

(A4). This shows that for each (x, y) Î C × C, F(x, y) satisfies the conditions (A1)-

(A4). So, when we study the solution of MEP, we only need to study the solution of

the equilibrium (1.1). This also shows that some “so-called” mixed equilibrium pro-

blem studied in [15-17] is still the equilibrium problem (1.1).

Remark 4. 2 Let us recall some well-known definitions. A mapping T : C ® C is said

to be

(1) v-expansive if ||Tx - Ty|| ≥ v||x - y|| for all x, y Î C. In particular, if v = 1, then

T is called expansive.

(2) v-strongly monotone if there exists a constant v >0 such that

〈Tx − Ty, x − y〉 ≥ v||x − y||2, ∀x, y ∈ C.

Clearly, any v-strongly monotone mapping is v-expansive.

(3) u-inverse strongly monotone if there exists a constant u >0 such that

〈Tx − Ty, x − y〉 ≥ u||Tx − Ty||2, ∀x, y ∈ C.

(4) L-Lipschitz continuous if ||Tx - Ty|| ≤ L||x - y|| for all x, y Î C. In particular, if

L = 1, then T is called nonexpansive.
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It is easy to see that a u-inverse strongly monotone operator is 1
u-Lipschitz

continuous.

For the problem GEP, if the nonlinear operator A : C ® H is a u-inverse strongly

monotone operator and the bi-function f(x, y) admits the conditions (A1)-(A4), we

argue that the problem GEP is still the problem (1.1) and so it is indeed not a general-

ization. In fact, if A is a u-inverse strongly monotone operator from C into H, then A

is a continuous operator. So, we obtain easily that the function (x, y) ® <Ax, y - x〉,

∀x, y Î C, satisfies the conditions (A1)-(A4). Hence, if we put F(x, y) = f(x, y) + 〈Ax, y

- x〉 ≥ 0, then the problem GEP studied in [18-20] is still the problem (1.1).

5 Conclusion
The problem MEP studied in [15-17] and the problem GEP studied in [18-20] are still

the problem (1.1) studied in the literature [5-11,21-24] and others.
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