
RESEARCH Open Access

A new modified block iterative algorithm for
uniformly quasi-j-asymptotically nonexpansive
mappings and a system of generalized mixed
equilibrium problems
Siwaporn Saewan and Poom Kumam*

* Correspondence: poom.
kum@kmutt.ac.th
Department of Mathematics,
Faculty of Science, King Mongkut’s
University of Technology Thonburi
(KMUTT), Bangmod, Bangkok
10140, Thailand

Abstract

In this paper, we introduce a new modified block iterative algorithm for finding a
common element of the set of common fixed points of an infinite family of closed
and uniformly quasi-j-asymptotically nonexpansive mappings, the set of the
variational inequality for an a-inverse-strongly monotone operator, and the set of
solutions of a system of generalized mixed equilibrium problems. We obtain a strong
convergence theorem for the sequences generated by this process in a 2-uniformly
convex and uniformly smooth Banach space. Our results extend and improve ones
from several earlier works.
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1 Introduction
Let C be a nonempty closed convex subset of a real Banach space E with ||·|| and let

E* be the dual space of E. Let {fi}iÎΓ : C × C ® ℝ be a bifunction, {�i}iÎΓ : C ® ℝ be a

real-valued function, and {Bi}iÎΓ : C ® E* be a monotone mapping, where Γ is an arbi-

trary index set. The system of generalized mixed equilibrium problems is to find x Î C

such that

fi(x, y) + 〈Bix, y − x〉 + ϕi(y) − ϕi(x) ≥ 0, i ∈ �, ∀y ∈ C. (1:1)

If Γ is a singleton, then problem (1.1) reduces to the generalized mixed equilibrium

problem, which is to find x Î C such that

f (x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:2)

The set of solutions to (1.2) is denoted by GMEP(f, B, � ), i.e.,

GMEP(f ,B,ϕ) = {x ∈ C : f (x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C}. (1:3)

Saewan and Kumam Fixed Point Theory and Applications 2011, 2011:35
http://www.fixedpointtheoryandapplications.com/content/2011/1/35

© 2011 Saewan and Kumam; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:poom.kum@kmutt.ac.th
mailto:poom.kum@kmutt.ac.th
http://creativecommons.org/licenses/by/2.0


If B ≡ 0, the problem (1.2) reduces into the mixed equilibrium problem for f, denoted

by MEP (f, �), which is to find x Î C such that

f (x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:4)

If f ≡ 0, the problem (1.2) reduces into the mixed variational inequality of Browder

type, denoted by VI(C, B, �), which is to find x Î C such that

〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:5)

If B ≡ 0 and � ≡ 0 the problem (1.2) reduces into the equilibrium problem for f,

denoted by EP(f ), which is to find x Î C such that

f (x, y) ≥ 0, ∀y ∈ C. (1:6)

If f ≡ 0, the problem (1.4) reduces into the minimize problem, denoted by Argmin(�),

which is to find x Î C such that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:7)

The above formulation (1.5) was shown in [1] to cover monotone inclusion pro-

blems, saddle point problems, variational inequality problems, minimization problems,

optimization problems, vector equilibrium problems, Nash equilibria in noncooperative

games. In addition, there are several other problems, for example, the complementarity

problem, fixed point problem and optimization problem, which can also be written in

the form of an EP(f). In other words, the EP(f) is an unifying model for several

problems arising in physics, engineering, science, optimization, economics, etc. In the

last two decades, many papers have appeared in the literature on the existence of solu-

tions of EP(f); see, for example [1,2] and references therein. Some solution methods

have been proposed to solve the EP(f); see, for example, [1-15] and references therein.

The normalized duality mapping J : E ® 2E* is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖ x‖2, ‖ x∗ ‖= ‖ x ‖}

for all x Î E. If E is a Hilbert space, then J = I, where I is the identity mapping.

Consider the functional defined by

φ(x, y) = ‖ x‖2 − 2〈x, Jy〉 + ‖ y‖2, ∀x, y ∈ E. (1:8)

As well known that if C is a nonempty closed convex subset of a Hilbert space H

and PC : H ® C is the metric projection of H onto C, then PC is nonexpansive. This

fact actually characterizes Hilbert spaces and consequently, it is not available in more

general Banach spaces. It is obvious from the definition of function j that

(‖ x ‖ − ‖ y ‖)2 ≤ φ(x, y) ≤ (‖ x ‖ + ‖ y ‖)2, ∀x, y ∈ E. (1:9)

If E is a Hilbert space, then j(x, y) = ||x - y||2, for all x, y Î E. On the other hand,

the generalized projection [16] ΠC : E ® C is a map that assigns to an arbitrary point x

Î E the minimum point of the functional j(x, y), that is, �Cx = x̄, where x̄ is the

solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x), (1:10)
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existence and uniqueness of the operator ΠC follows from the properties of the func-

tional j(x, y) and strict monotonicity of the mapping J (see, for example, [16-20]).

Remark 1.1. If E is a reflexive, strictly convex, and smooth Banach space, then for x,

y Î E, j(x, y) = 0 if and only if x = y. It is sufficient to show that if j(x, y) = 0 then x

= y. From (1.8), we have ||x|| = ||y||. This implies that 〈x, Jy〉 = ||x||2 = ||Jy||2. From

the definition of J, one has Jx = Jy. Therefore, we have x = y; see [18,20] for more

details.

Let C be a closed convex subset of E, a mapping T : C ® C is said to be L-Lipschitz

continuous if ||Tx - Ty|| ≤ L||x - y||, ∀x, y Î C and a mapping T is said to be nonex-

pansive if ||Tx - Ty|| ≤ ||x - y||, ∀x, y Î C. A point x Î C is a fixed point of T pro-

vided Tx = x. Denote by F(T) the set of fixed points of T; that is, F(T) = {x Î C : Tx =

x}. Recall that a point p in C is said to be an asymptotic fixed point of T [21] if C con-

tains a sequence {xn} which converges weakly to p such that limn®∞ ||xn - Txn|| = 0.

The set of asymptotic fixed points of T will be denoted by F̃(T).

A mapping T from C into itself is said to be relatively nonexpansive [22-24] if

F̃(T) = F(T) and j(p, Tx) ≤ j(p, x) for all x Î C and p Î F(T). T is said to be relatively

quasi-nonexpansive if F(T) ≠ ∅ and j(p, Tx) ≤ j(p, x) for all x Î C and p Î F(T). T is

said to be j-nonexpansive, if j(Tx, Ty) ≤ j(x, y) for x, y Î C. T is said to be quasi-j-
asymptotically nonexpansive if F(T) ≠ ∅ and there exists a real sequence {kn} ⊂ [1, ∞)

with kn ® 1 such that j(p, Tnx) ≤ knj(p, x) for all n ≥ 1 x Î C and p Î F(T). The

asymptotic behavior of a relatively nonexpansive mapping was studied in [25-27].

We note that the class of relatively quasi-nonexpansive mappings is more general

than the class of relatively nonexpansive mappings [25-29] which requires the strong

restriction: F(T) = F̃(T). A mapping T is said to be closed if for any sequence {xn} ⊂ C

with xn ® x and Txn ® y, then Tx = y. It is easy to know that each relatively nonex-

pansive mapping is closed.

Definition 1.2. (Chang et al. [30]) (1) Let {Ti}∞i=1 : C → C be a sequence of mapping.
{Ti}∞i=1 is said to be a family of uniformly quasi-j-asymptotically nonexpansive map-

pings, if F := ∩∞
i=1F(Ti) 
= ∅, and there exists a sequence {kn} ⊂ [1, ∞) with kn ® 1 such

that for each i ≥ 1

φ(p,Tn
i x) ≤ knφ(p, x), ∀p ∈ F , x ∈ C, ∀n ≥ 1. (1:11)

(2) A mapping T : C ® C is said to be uniformly L-Lipschitz continuous, if there

exists a constant L >0 such that

‖ Tnx − Tny ‖ ≤ L ‖ x − y ‖, ∀x, y ∈ C. (1:12)

Recall that let A : C ® E* be a mapping. Then A is called

(i) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C,

(ii) a-inverse-strongly monotone if there exists a constant a >0 such that

〈Ax − Ay, x − y〉 ≥ α ‖ Ax − Ay‖2, ∀x, y ∈ C.

Remark 1.3. It is easy to see that an a-inverse-strongly monotone is monotone and
1
α
-Lipschitz continuous.
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In 2004, Matsushita and Takahashi [31] introduced the following iteration: a

sequence {xn} defined by

xn+1 = �CJ
−1(αnJxn + (1 − αn)JTxn), (1:13)

where the initial guess element x0 Î C is arbitrary, {an} is a real sequence in [0, 1], T

is a relatively nonexpansive mapping and ΠC denotes the generalized projection from E

onto a closed convex subset C of E. They proved that the sequence {xn} converges

weakly to a fixed point of T.

In 2005, Matsushita and Takahashi [28] proposed the following hybrid iteration

method (it is also called the CQ method) with generalized projection for relatively

nonexpansive mapping T in a Banach space E:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qnx0.

(1:14)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized

projection from C onto F(T).

In 2008, Iiduka and Takahashi [32] introduced the following iterative scheme for

finding a solution of the variational inequality problem for an inverse-strongly mono-

tone operator A in a 2-uniformly convex and uniformly smooth Banach space E : x1 =

x Î C and

xn+1 = �CJ
−1(Jxn − λnAxn), (1:15)

for every n = 1, 2, 3, ..., where ΠC is the generalized metric projection from E onto C,

J is the duality mapping from E into E* and {ln} is a sequence of positive real numbers.

They proved that the sequence {xn} generated by (1.15) converges weakly to some ele-

ment of VI(A, C). Takahashi and Zembayashi [33,34] studied the problem of finding a

common element of the set of fixed points of a nonexpansive mapping and the set of

solutions of an equilibrium problem in the framework of Banach spaces.

In 2009, Wattanawitoon and Kumam [14] using the idea of Takahashi and Zembaya-

shi [33] extended the notion from relatively nonexpansive mappings or j-nonexpansive
mappings to two relatively quasi-nonexpansive mappings and also proved some strong

convergence theorems to approximate a common fixed point of relatively quasi-nonex-

pansive mappings and the set of solutions of an equilibrium problem in the framework

of Banach spaces. Cholamjiak [35] studied the following iterative algorithm:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αnJxn + βnJTxn + γnJSzn),

un ∈ C such that f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0,

(1:16)

where J is the duality mapping on E. Assume that {an}, {bn} and {gn} are sequences in

[0, 1]. Then, he proved that {xn} converges strongly to q = ΠFx0, where F := F (T ) ∩ F

(S) ∩ EP(f ) ∩ VI(A, C).
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In 2010, Saewan et al. [29] introduced a new hybrid projection iterative scheme

which is difference from the algorithm (1.16) of Cholamjiak in [[35], Theorem 3.1] for

two relatively quasi-nonexpansive mappings in a Banach space. Motivated by the

results of Takahashi and Zembayashi [34], Cholumjiak and Suantai [36] proved the fol-

lowing strong convergence theorem by the hybrid iterative scheme for approximation

of common fixed point of countable families of relatively quasi-nonexpansive mappings

in a uniformly convex and uniformly smooth Banach space: x0 Î E, x1 = �C1x0, C1 = C⎧⎪⎪⎨
⎪⎪⎩
yn,i = J−1(αnJxn + (1 − αn)JTxn),

un,i = Tfm
rm,nT

fm−1
rm−1,n · · ·Tf1

r1,n yn,i,
Cn+1 = {z ∈ Cn : supi>1φ(z, Jun,i) ≤ φ(w, Jxn)},
xn+1 = �Cn+1x0,n ≥ 1.

(1:17)

Then, they proved that under certain appropriate conditions imposed on {an}, and

{rn, i}, the sequence {xn} converges strongly to ΠF(T)∩EP(f)x0.

We note that the block iterative method is a method which often used by many

authors to solve the convex feasibility problem (see, [37,38], etc.). In 2008, Plubtieng

and Ungchittrakool [39] established strong convergence theorems of block iterative

methods for a finite family of relatively nonexpansive mappings in a Banach space

by using the hybrid method in mathematical programming. Chang et al. [30] pro-

posed the modified block iterative algorithm for solving the convex feasibility pro-

blems for an infinite family of closed and uniformly quasi-j-asymptotically

nonexpansive mapping, and they obtained the strong convergence theorems in a

Banach space.

In 2010, Saewan and Kumam [40] obtained the following result for the set of solu-

tions of the generalized equilibrium problems and the set of common fixed points of

an infinite family of closed and uniformly quasi-j-asymptotically nonexpansive map-

pings in a uniformly smooth and strictly convex Banach space E with Kadec-Klee

property.

Theorem SK Let C be a nonempty closed and convex subset of a uniformly smooth

and strictly convex Banach space E with the Kadec-Klee property. Let f be a bifunction

from C × C to ℝ satisfying (A1)-(A4). Let B be a continuous monotone mapping of C

into E*. Let {Si}∞i=1 : C → C be an infinite family of closed uniformly Li-Lipschitz con-

tinuous and uniformly quasi-j-asymptotically nonexpansive mappings with a sequence

{kn} ⊂ [1, ∞), kn ® 1 such that F := ∩∞
i=1F(Si) ∩ GEP(f ,B)is a nonempty and bounded

subset in C. For an initial point x0 Î E with x1 = �C1x0 and C1 = C, we define the

sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn = J−1(βnJxn + (1 − βn)Jzn),
zn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni xn),

un ∈ C such that f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(1:18)

where J is the duality mapping on E, θn = supqÎF (kn - 1)j(q, xn), {an, i}, {bn} are
sequences in [0, 1] and {rn} ⊂ [a, ∞) for some a >0. If

∑∞
i=0 αn,i = 1for all n ≥ 0

and lim infn ® ∞ an, 0an, i > 0 for all i ≥ 1, then {xn} converges strongly to p Î F ,

where p = ΠFx0.
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Quite recently, Qin et al. [9] purposed the problem of approximating a common

fixed point of two asymptotically quasi-j-nonexpansive mappings based on hybrid

projection methods. Strong convergence theorems are established in a real Banach

space. Zegeye et al. [15] introduced an iterative process which converges strongly to a

common element of set of common fixed points of countably infinite family of closed

relatively quasi- nonexpansive mappings, the solution set of generalized

equilibrium problem and the solution set of the variational inequality problem for an

a-inverse-strongly monotone mapping in Banach spaces.

Motivated and inspired by the work of Chang et al. [30], Qin et al. [7], Takahashi

and Zembayashi [33], Wattanawitoon and Kumam [14], Zegeye [41] and Saewan and

Kumam [40], we introduce a new modified block hybrid projection algorithm for find-

ing a common element of the set of the variational inequality for an a-inverse-strongly
monotone operator, the set of solutions of the system of generalized mixed equilibrium

problems and the set of common fixed points of an infinite family of closed and uni-

formly quasi-j-asymptotically nonexpansive mappings in the framework Banach

spaces. The results presented in this paper improve and generalize some well-known

results in the literature.

2 Preliminaries

A Banach space E is said to be strictly convex if ‖ x+y
2 ‖< 1 for all x, y Î E with ||x|| =

||y|| = 1 and x ≠ y. Let U = {x Î E : ||x|| = 1} be the unit sphere of E. Then a Banach

space E is said to be smooth if the limit

lim
t→0

‖ x + ty ‖ − ‖ x ‖
t

exists for each x, y Î U. It is also said to be uniformly smooth if the limit is attained

uniformly for x, y Î U. Let E be a Banach space. The modulus of convexity of E is the

function δ : [0, 2] ® [0, 1] defined by

δ(ε) = inf
{
1− ‖ x + y

2
‖: x, y ∈ E, ‖ x ‖=‖ y ‖= 1, ‖ x − y ‖≥ ε

}
.

A Banach space E is uniformly convex if and only if δ(ε) >0 for all ε Î (0, 2]. Let p be

a fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if

there exists a constant c >0 such that δ(ε) ≥ cεp for all ε Î [0, 2]; see [42,43] for more

details. Observe that every p-uniformly convex is uniformly convex. One should note

that no a Banach space is p-uniformly convex for 1 < p <2. It is well known that a

Hilbert space is 2-uniformly convex, uniformly smooth. It is also known that if E is

uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded

subset of E.

Remark 2.1. The following basic properties can be found in Cioranescu [18].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each

bounded subset of E.

(ii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized

duality mapping J : E ® 2E* is single-valued, one-to-one, and onto.

(iii) A Banach space E is uniformly smooth if and only if E* is uniformly convex.

(iv) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for

any sequence {xn} ⊂ E, if xn ⇀ x Î E and ||xn|| ® ||x||, then xn ® x.
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We also need the following lemmas for the proof of our main results.

Lemma 2.2. (Beauzamy [44] and Xu [45]). If E be a 2-uniformly convex Banach

space, then for all x, y Î E we have

‖ x − y ‖≤ 2
c2

‖ Jx − Jy ‖,

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1
c in lemma is called the p-uniformly convex constant of E.

Lemma 2.3. (Beauzamy [44] and Zalinescu [46]). If E be a p-uniformly convex

Banach space and let p be a given real number with p ≥ 2, then for all x, y Î E, jx Î Jp
(x) and jy Î Jp(y)

〈x − y, jx − jy〉 ≥ cp

2p−2p
‖ x − y‖p,

where Jp is the generalized duality mapping of E and 1
cis the p-uniformly convexity

constant of E.

Lemma 2.4. (Kamimura and Takahashi [19]). Let E be a uniformly convex and

smooth Banach space and let {xn} and {yn} be two sequences of E. If j(xn, yn) ® 0 and

either {xn} or {yn} is bounded, then ||xn -yn|| ® 0.

Lemma 2.5. (Alber [16]). Let C be a nonempty closed convex subset of a smooth

Banach space and x Î E. Then x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.6. (Alber [[16], Lemma 2.4]). Let E be a reflexive, strictly convex and

smooth Banach space, and let C be a nonempty closed convex subset of E and let x Î
E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Let E be a reflexive, strictly convex, smooth Banach space and J is the duality map-

ping from E into E*. Then J-1 is also single value, one-to-one, surjective, and it is the

duality mapping from E* into E. We make use of the following mapping V studied in

Alber [16]:

V(x, x∗) = ‖ x‖2 − 2〈x, x∗〉 + ‖ x∗‖2, (2:1)

for all x Î E and x* Î E*, that is, V (x, x*) = j(x, J-1(x*)).
Lemma 2.7. (Alber [16]). Let E be a reflexive, strictly convex smooth Banach space

and let V be as in (2.1). Then

V(x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗),

for all x Î E and x*, y* Î E*.

A set valued mapping U : E ⇉ E* with graph G(U) = (x, x*) : x* Î Ux}, domain D(U)

= {x Î E : Ux ≠ ∅}, and range R(U) = ∪{Ux : x Î D(U)}. U is said to be monotone if 〈x

- y, x* -y*〉 ≥ 0 whenever (x, x*) Î G(U), (y, y*) Î G(U). We denote a set valued opera-

tor U from E to E* by U ⊂ E × E*. A monotone U is said to be maximal if its graph is

not property contained in the graph of any other monotone operator. If U is maximal

monotone, then the solution set U-10 is closed and convex. Let E be a reflexive, strictly
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convex and smooth Banach space, and it is known that U is a maximal monotone if

and only if R(J + rU) = E* for all r >0. Define the resolvent of U by Jrx = xr. In other

words, Jr = (J + rU)-1 for all r >0. Jr is a single-valued mapping from E to D(U). Also,

U-1(0) = F(Jr) for all r >0, where F(Jr) is the set of all fixed points of Jr. Define, for r

>0, the Yosida approximation of U by Trx = (Jx - JJrx)/r for all x Î C: We know that

Trx Î U (Jrx) for all r >0 and x Î E.

Let A be an inverse-strongly monotone mapping of C into E* which is said to be

hemicontinuous if for all x, y Î C, and the mapping F of [0, 1] into E*, defined by F(t)

= A(tx + (1 - t)y), is continuous with respect to the weak* topology of E*. We define

by NC(v) the normal cone for C at a point v Î C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2:2)

Lemma 2.8. (Rockafellar [47]). Let C be a nonempty, closed convex subset of a

Banach space E, and A is a monotone, hemicontinuous operator of C into E*. Let U ⊂
E × E* be an operator defined as follows:

Uv =
{
Av +NC(v), v ∈ C;
∅ otherwise.

(2:3)

Then U is maximal monotone and U -10 = VI(A, C).

Lemma 2.9. (Chang et al. [30]). Let E be a uniformly convex Banach space, r >0 be a

positive number and Br(0) be a closed ball of E. Then, for any given sequence

{xi}∞i=1 ⊂ Br(0)and for any given sequence {λi}∞i=1 of positive number with
∑∞

n=1 λn = 1,

there exists a continuous, strictly increasing, and convex function g : [0, 2r) ® [0, ∞)

with g(0) = 0 such that, for any positive integer i, j with i < j,∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn ‖ xn‖2 − λiλjg(‖ xi − xj ‖). (2:4)

Lemma 2.10. (Chang et al. [30]). Let E be a real uniformly smooth and strictly con-

vex Banach space, and C be a nonempty closed convex subset of E. Let T : C ® C be a

closed and quasi-j-asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1, ∞),

kn ® 1. Then F (T ) is a closed convex subset of C:

For solving the equilibrium problem for a bifunction f : C × C ® ℝ, let us assume

that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x Î C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim
t↓0

f (tz + (1 − t)x, y) ≤ f (x, y);

(A4) for each x Î C, y a f(x, y) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E* and define

f (x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.

Then, f satisfies (A1)-(A4). The following result is in Blum and Oettli [1].

Motivated by Combettes and Hirstoaga [2] in a Hilbert space and Takahashi and

Zembayashi [33] in a Banach space, Zhang [48] obtained the following lemma.
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Lemma 2.11. (Zhang [[48], Lemma 1.5]). Let C be a closed convex subset of a

smooth, strictly convex and reflexive Banach space E. Assume that f be a bifunction

from C × C to ℝ satisfying (A1)-(A4), A : C ® E* be a continuous and monotone map-

ping and � : C ® ℝ be a semicontinuous and convex functional. For r >0 and let x Î
E. Then, there exists z Î C such that

Q(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C,

where Q(z, y) = f(z, y) + 〈Bz, y - z〉 + �(y) �(z), x, y Î C. Furthermore, define a map-

ping Tr : E ® C as follows:

Trx =
{
z ∈ C : Q(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

Then the following hold:

1. Tr is single-valued;

2. Tr is firmly nonexpansive, i.e., for all x, y Î E, 〈Trx - Try, JTrx - JTry〉 ≤ 〈Trx -

Try, Jx -Jy〉;

3. F(Tr) = ˜F(Tr) = GMEP(f ,B,ϕ);

4. GMEP(f, B, �) is closed and convex;

5. j(p, Trz) + j(Trz, z) ≤ j(p, z), ∀p Î F(Tr) and z Î E.

3 Main results
In this section, we prove the new convergence theorems for finding the set of solutions

of system of generalized mixed equilibrium problems, the common fixed point set of a

family of closed and uniformly quasi-j-asymptotically nonexpansive mappings, and the

solution set of variational inequalities for an a-inverse strongly monotone mapping in

a 2-uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction from C

× C to ℝ which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and monotone

mapping and �j : C i® ℝ be a lower semicontinuous and convex function. Let A be an a-
inverse-strongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and

u Î VI(A, C) ≠ ∅. Let {Si}∞i=1 : C → Cbe an infinite family of closed uniformly Li-Lipschitz

continuous and uniformly quasi-j-asymptotically nonexpansive mappings with a sequence

{kn} ⊂ [1, ∞), kn ® 1 such that F := (∩∞
i=1F(Si)) ∩ (∩m

j=1GMEP(fj,Bj,ϕj))(∩VI(A,C)) is a
nonempty and bounded subset in C. For an initial point x0 Î E with x1 = �C1x0and C1 =

C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni vn),

yn = J−1(βnJxn + (1 − βn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:1)

where θn = supqÎF(kn -1)j(q, xn), for each i ≥ 0, {an,i} and {bn} are sequences in [0, 1],

{rj, n} ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2a/2,
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where 1
cis the 2-uniformly convexity constant of E. If

∑∞
i=0 αn,i = 1for all n ≥ 0, lim infn

® ∞ (1 - bn) > 0 and lim infn®∞ an,0an, i > 0 for all i ≥ 1, then {xn} converges strongly

to p Î F, where p = ΠF x0.

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly, C1 = C is

closed and convex. Suppose that Cn is closed and convex for each n Î N. Since for any

z Î Cn, we know j(z, un) ≤ j(z, xn) + θn is equivalent to 2〈z, Jxn - Jun〉 ≤ ||xn||
2 - ||

un||
2 + θn. So, Cn+1 is closed and convex.

Next, we show that F ⊂ Cn for all n ≥ 0. Since un = 
m
n yn, when



j
n = T

Qj
rj,nT

Qj−1
rj−1,n · · ·TQ2

r2,nT
Q1
r1,n, j = 1, 2, 3, ..., m, 
0

n = I, by the convexity of ||·||2, property of

j, Lemma 2.9 and by uniformly quasi-j-asymptotically nonexpansive of Sn for each q

Î F ⊂ Cn, we have

φ(q, un) = φ(q,
m
n yn)

≤ φ(q, yn)
= φ(q, J−1(βnJxn + (1 − βn)Jzn)
= ‖ q‖2 − 2〈q,βnJxn + (1 − βn)Jzn〉+ ‖ βnJxn + (1 − βn)Jzn‖2
≤ ‖ q‖2 − 2βn〈q, Jxn〉 − 2(1 − βn)〈q, Jzn〉 + βn ‖ xn‖2 + (1 − βn) ‖ zn‖2
= βnφ(q, xn) + (1 − βn)φ(q, zn)

(3:2)

and

φ(q, zn) = φ(q, J−1(αn,0Jxn +
∑∞

i=1 αn,iJSni vn))
= ‖ q‖2 − 2〈q,αn,0Jxn +

∑∞
i=1 αn,iJSni vn〉 + ‖ αn,0Jxn +

∑∞
i=1 αn,iJSni vn‖2

= ‖ q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSni vn〉 + ‖ αn,0Jxn +
∑∞

i=1 αn,iJSni vn‖2
≤ ‖ q‖2 − 2αn,0〈q, Jxn〉 − 2

∑∞
i=1 αn,i〈q, JSni vn〉 + αn,0 ‖ Jxn‖2 +

∑∞
i=1 αn,i ‖ JSni vn‖2

−αn,0αn,jg ‖ Jvn − JSnj vn ‖
= ‖ q‖2 − 2αn,0〈q, Jxn〉 + αn,0 ‖ Jxn‖2 − 2

∑∞
i=1 αn,i〈q, JSni vn〉

+
∑∞

i=1 αn,i ‖ JSni vn‖2 − αn,0αn,jg ‖ Jvn − JSnj vn ‖
= αn,0φ(q, xn) +

∑∞
i=1 αn,iφ(q, Sni vn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖

≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, vn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖ .

(3:3)

It follows from Lemma 2.7 that

φ(q, vn) = φ(q,�CJ−1(Jxn − λnAxn))
≤ φ(q, J−1(Jxn − λnAxn))
= V(q, Jxn − λnAxn)
≤ V(q, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − q,λnAxn〉
= V(q, Jxn) − 2λn〈J−1(Jxn − λnAxn) − q,Axn〉
= φ(q, xn) − 2λn〈xn − q,Axn〉 + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉.

(3:4)

Since q ÎVI(A, C) and A is an a-inverse-strongly monotone mapping, we have

−2λn〈xn − q,Axn〉 = −2λn〈xn − q,Axn − Aq〉 − 2λn〈xn − q,Aq〉
≤ −2λn〈xn − q,Axn − Aq〉
≤ −2αλn ‖ Axn − Aq‖2.

(3:5)

From Lemma 2.2 and ||Axn|| ≤ ||Axn - Aq||, ∀q Î VI(A, C), we also have

2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn〉
≤ 2 ‖ J−1(Jxn − λnAxn) − J−1(Jxn) ‖‖ λnAxn ‖
≤ 4

c2
‖ JJ−1(Jxn − λnAxn) − JJ−1(Jxn) ‖‖ λnAxn ‖

=
4
c2

‖ Jxn − λnAxn − Jxn ‖‖ λnAxn ‖
=

4
c2

‖ λnAxn‖2

=
4
c2

λ2
n ‖ Axn‖2

≤ 4
c2

λ2
n ‖ Axn − Aq‖2.

(3:6)
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Substituting (3.5) and (3.6) into (3.4), we obtain

φ(q, vn) ≤ φ(q, xn) − 2αλn ‖ Axn − Aq‖2 + 4
c2 λ

2
n ‖ Axn − Aq‖2

= φ(q, xn) + 2λn(
2
c2

λn − α) ‖ Axn − Aq‖2
≤ φ(q, xn).

Substituting (3.7) into (3.3), we also have

φ(q, zn) ≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖
≤ αn,0knφ(q, xn) +

∑∞
i=1 αn,iknφ(q, xn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖

= knφ(q, xn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖
≤ φ(q, xn) + supq∈F(kn − 1)φ(q, xn) − αn,0αn,jg ‖ Jvn − JSnj vn ‖
= φ(q, xn) + θn − αn,0αn,jg ‖ Jvn − JSnj vn ‖
≤ φ(q, xn) + θn.

(3:8)

and substituting (3.8) into (3.2), we also have

φ(q, un) ≤ φ(q, xn) + θn. (3:9)

This shows that q Î Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n ≥ 0. This

implies that the sequence {xn} is well defined. From definition of Cn+1 that xn = �Cnx0
and xn+1 = �Cn+1x0,∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3:10)

By Lemma 2.6, we get

φ(xn, x0) = φ(�Cnx0, x0)
≤ φ(q, x0) − φ(q, xn)
≤ φ(q, x0), ∀q ∈ F.

(3:11)

From (3.10) and (3.11), then {j(xn, x0)} are nondecreasing and bounded. So, we

obtain that limn→∞ φ(xn, x0) exists. In particular, by (1.9), the sequence {(||xn|| - ||x0||)
2 is

bounded. This implies {xn} is also bounded. Denote

M = sup
n≥0

{‖ xn ‖} < ∞. (3:12)

Moreover, by the definition of θn and (3.12), it follows that

θn → 0 as n → ∞. (3:13)

Next, we show that {xn} is a Cauchy sequence in C. Since xm = �Cmx0 ∈ Cm ⊂ Cn, for

m > n, by Lemma 2.6, we have

φ(xm, xn) = φ(xm,�Cnx0)
≤ φ(xm, x0) − φ(�Cnx0, x0)
= φ(xm, x0) − φ(xn, x0).

Since limn®∞ j(xn, x0) exists and we take m, n ® ∞, we get j(xm, xn) ® 0. From

Lemma 2.4, we have limn®∞ ||xm - xn|| = 0. Thus, {xn} is a Cauchy sequence, and by

the completeness of E, there exists a point p Î C such that xn ® p as n ® ∞.

Now, we claim that ||Jun - Jxn|| ® 0, as n ® ∞. By definition of xn = �Cnx0, we have

φ(xn+1, xn) = φ(xn+1,�Cnx0)
≤ φ(xn+1, x0) − φ(�Cnx0, x0)
= φ(xn+1, x0) − φ(xn, x0).
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Since limn®∞ j(xn, x0) exists, we also have

lim
n→∞ φ(xn+1, xn) = 0. (3:14)

Again from Lemma 2.4 that

lim
n→∞ ‖ xn+1 − xn ‖= 0. (3:15)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞ ‖ Jxn+1 − Jxn ‖= 0. (3:16)

Since xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn.

By (3.13) and (3.14) that

lim
n→∞ φ(xn+1, un) = 0. (3:17)

Again applying Lemma 2.4, we have

lim
n→∞ ‖ xn+1 − un ‖= 0. (3:18)

Since

‖ un − xn ‖ = ‖ un − xn+1 + xn+1 − xn ‖
≤ ‖ un − xn+1 ‖ + ‖ xn+1 − xn ‖ .

It follows from (3.15) and (3.18) that

lim
n→∞ ‖ un − xn ‖= 0. (3:19)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also

have

lim
n→∞ ‖ Jun − Jxn ‖= 0. (3:20)

Next, we will show that p ∈ F := ∩m
j=1GMEP(fj,Bj,ϕj) ∩ (∩∞

i=1F(Si)) ∩ VI(A,C).

(a) We show that p ∈ ∩∞
i=1F(Si). Since xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, it follow from

(3.8), we have

φ(xn+1, zn) ≤ φ(xn+1, xn) + θn,

by (3.13) and (3.14), we get

lim
n→∞ φ(xn+1, zn) = 0 (3:21)

again from Lemma 2.4 that

lim
n→∞ ‖ xn+1 − zn ‖= 0. (3:22)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ‖ Jxn+1 − Jzn ‖= 0. (3:23)
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From (3.50), we note that

‖ Jxn+1 − Jzn ‖ =‖ Jxn+1 − (αn,0Jxn +
∑∞

i=1
αn,iJSni vn) ‖

=‖ αn,0Jxn+1 − αn,0Jxn +
∑∞

i=1
αn,iJxn+1 −

∑∞
i=1

αn,iJSni vn ‖
=‖ αn,0(Jxn+1 − Jxn) +

∑∞
i=1

αn,i(Jxn+1 − JSni vn) ‖
=‖

∑∞
i=1

αn,i(Jxn+1 − JSni vn) − αn,0(Jxn − Jxn+1) ‖
≥

∑∞
i=1

αn,i ‖ Jxn+1 − JSni vn ‖ −αn,0 ‖ Jxn − Jxn+1 ‖,

and hence

‖ Jxn+1 − JSni vn ‖≤ 1∑∞
i=1 αn,i

(‖ Jxn+1 − Jzn ‖ +αn,0 ‖ Jxn − Jxn+1 ‖). (3:24)

From (3.16), (3.23) and lim inf n→∞
∑∞

i=1 αn,i > 0, we obtain that

lim
n→∞ ||Jxn+1 − JSni vn|| = 0. (3:25)

Since J-1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖ xn+1 − Sni vn ‖= 0. (3:26)

Using the triangle inequality that

‖ xn − Sni vn ‖ = ‖ xn − xn+1 + xn+1 − Sni vn ‖
≤ ‖ xn − xn+1 ‖ + ‖ xn+1 − Sni vn ‖ .

From (3.15) and (3.26), we have

lim
n→∞ ‖ xn − Sni vn ‖= 0. (3:27)

On the other hand, we note that

φ(q, xn) − φ(q, un) + θn = ‖ xn‖2− ‖ un‖2 − 2〈q, Jxn − Jun〉 + θn
≤ ‖ xn − un ‖ (‖ xn ‖ + ‖ un ‖) + 2 ‖ q ‖‖ Jxn − Jun ‖ + θn.

It follows from θn ® 0, ||xn - un|| ® 0 and ||Jxn - Jun|| ® 0, that

φ(q, xn) − φ(q, un) + θn → 0 as n → ∞. (3:28)

From (3.2), (3.3) and (3.7) that

φ(q, un) ≤ φ(q, yn)

≤ βnφ(q, xn) + (1 − βn)φ(q, zn)

≤ βnφ(q, xn) + (1 − βn)[αn,0φ(q, xn) +
∑∞

i=1
αn,iknφ(q, vn)

− αn,0αn,jg ‖ Jvn − JSnj vn ‖]
= βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)

∑∞
i=1

αn,iknφ(q, vn)

− (1 − βn)αn,0αn,jg ‖ Jvn − JSnj vn ‖
≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)

∑∞
i=1

αn,iknφ(q, vn)

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)
∑∞

i=1
αn,ikn[φ(q, xn) − 2λn(α − 2

c2 λn) ‖ Axn − Aq‖2]
≤ βnφ(q, xn) + (1 − βn)αn,0knφ(q, xn) + (1 − βn)

∑∞
i=1

αn,iknφ(q, xn)

− (1 − βn)
∑∞

i=1
αn,ikn2λn(α − 2

c2 λn) ‖ Axn − Aq‖2

≤ βnknφ(q, xn) + (1 − βn)knφ(q, xn) − (1 − βn)
∑∞

i=1
αn,ikn2λn(α − 2

c2 λn) ‖ Axn − Aq‖2

= knφ(q, xn) − (1 − βn)
∑∞

i=1
αn,ikn2λn(α − 2

c2 λn) ‖ Axn − Aq‖2]
≤ φ(q, xn) + sup

q∈F
(kn − 1)φ(q, xn) − (1 − βn)

∑∞
i=1

αn,ikn2λn(α − 2
c2 λn) ‖ Axn − Aq‖2

= φ(q, xn) + θn − (1 − βn)
∑∞

i=1
αn,ikn2λn(α − 2

c2 λn) ‖ Axn − Aq‖2,
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and hence

2a(α − 2b
c2 ) ‖ Axn − Aq‖2 ≤ 2λn(α − 2

c2 λn) ‖ Axn − Aq‖2

≤ 1
(1 − βn)

∑∞
i=1 αn,ikn

(φ(q, xn) − φ(q, un) + θn).
(3:29)

From (3.28), {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2 a/2, lim infn ®∞(1 - bn)
>0 and lim infn ® ∞ an,0an, i > 0, for i ≥ 0 and kn ® 1 as n ® ∞, we obtain that

lim
n→∞ ‖ Axn − Aq ‖ = 0. (3:30)

From Lemmas 2.6, 2.7 and (3.6), we compute

φ(xn, vn) = φ(xn,�CJ−1(Jxn − λnAxn))
≤ φ(xn, J−1(Jxn − λnAxn))
= V(xn, Jxn − λnAxn)
≤ V(xn, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − xn,λnAxn〉
= φ(xn, xn) + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉
= 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉
≤ 4λ2

n
c2 ‖ Axn − Aq‖2

≤ 4b2
c2 ‖ Axn − Aq‖2.

Applying Lemma 2.4 and (3.30) that

lim
n→∞ ‖ xn − vn ‖= 0 (3:31)

and we also obtain

lim
n→∞ ||Jxn − Jvn|| = 0. (3:32)

Since Sni is continuous, for any i ≥ 1

lim
n→∞ ‖ Sni xn − Sni vn ‖= 0. (3:33)

Again by the triangle inequality, we get

‖ xn − Sni xn ‖ ≤ ‖ xn − Sni vn ‖ + ‖ Sni vn − Sni xn ‖ .

From (3.27) and (3.33), we have

lim
n→∞ ‖ xn − Sni xn ‖= 0, ∀i ≥ 1. (3:34)

By using triangle inequality, we get

‖ Sni xn − p ‖≤‖ Sni xn − xn ‖ + ‖ xn − p ‖, ∀i ≥ 1.

We know that xn ® p as n ® ∞ and from (3.34)

Sni xn → p for each i ≥ 1.

Moreover, by the assumption that ∀i ≥ 1, Si is uniformly Li-Lipschitz continuous, and

hence we have.

‖ Sn+1i xn − Sni xn ‖ ≤ ‖ Sn+1i xn − Sn+1i xn+1 ‖ + ‖ Sn+1i xn+1 − xn+1 ‖ + ‖ xn+1 − xn ‖ + ‖ xn − Sni xn ‖
≤ (Li + 1) ‖ xn+1 − xn ‖ + ‖ Sn+1i xn+1 − xn+1 ‖ + ‖ xn − Sni xn ‖ . (3:35)

By (3.15) and (3.34), it yields that ‖ Sn+1i xn − Sni xn ‖→ 0. From Sni xn → p, we have

Sn+1i xn → p, that is SiSni xn → p. In view of closeness of Si, we have Sip = p, for all i ≥ 1.

This implies that p ∈ ∩∞
i=1F(Si).
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(b) We show that p ∈ ∩m
j=1GMEP(fj,Bj,ϕj).

Let un = 
m
n yn, when 


j
n = T

Qj
rj,nT

Qj−1
rj−1,n · · ·TQ2

r2,nT
Q1
r1,n, j = 1,2,3, ..., m and 
0

n = I, we obtain

φ(q, un) = φ(q,
m
n yn)

≤ φ(q,
m−1
n yn)

≤ φ(q,
m−2
n yn)

...
≤ φ(q,
j

nyn).

(3:36)

By Lemma (2.11)(5), we have for j = 1, 2, 3, ..., m

φ(
j
nyn, yn) + θn ≤ φ(q, yn) − φ(q,
j

nyn) + θn

≤ φ(q, xn) − φ(q,
j
nyn) + θn

≤ φ(q, xn) − φ(q, un) + θn.

(3:37)

From (3.13) and (3.28), we get φ(
j
nyn, yn) → 0as n ® ∞, for j = 1, 2, 3, ..., m and

Lemma 2.4 implies that

lim
n→∞ ‖ 


j
nyn − yn ‖= 0,∀j = 1, 2, 3, . . . ,m. (3:38)

Since xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, it follows from (3.2) and (3.8) that

φ(xn+1, yn) ≤ φ(xn+1, xn) + θn.

By (3.13) and (3.14), we have

lim
n→∞ φ(xn+1, yn) = 0.

Applying Lemma 2.4 that

lim
n→∞ ‖ xn+1 − yn ‖= 0. (3:39)

Using the triangle inequality, we obtain

‖ xn − yn ‖ ≤ ‖ xn − xn+1 ‖ + ‖ xn+1 − yn ‖ .

From (3.15) and (3.39), we get

lim
n→∞ ‖ xn − yn ‖= 0.

Since xn ® p and ||xn - yn|| ® 0, we have yn ® p as n ® ∞.

Again by using the triangle inequality, we have for j = 1, 2, 3, ..., m

‖ p − 

j
nyn ‖ ≤ ‖ p − yn ‖ + ‖ yn − 


j
nyn ‖ .

From (3.38) and yn ® p as n ® ∞, we get

lim
n→∞ ‖ p − 


j
nyn ‖= 0,∀j = 1, 2, 3, . . . ,m. (3:41)

By using the triangle inequality, we obtain

‖ 

j
nyn − 


j−1
n yn ‖ ≤ ‖ 


j
nyn − p ‖ + ‖ p − 


j−1
n yn ‖ .

From (3.41), we have

lim
n→∞ ‖ 


j
nyn − 


j−1
n yn ‖= 0,∀j = 1, 2, 3, . . . ,m. (3:42)
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Since {rj, n} ⊂ [d, ∞) and J is uniformly continuous on any bounded subset of E,

lim
n→∞

‖ J
j
nyn − J
j−1

n yn ‖
rj,n

= 0, ∀j = 1, 2, 3, . . . ,m. (3:43)

From Lemma 2.11, we get for j = 1, 2, 3, ..., m

Qj(

j
nyn, y) +

1
rj,n

〈y − 

j
nyn, J


j
nyn − J
j−1

n yn〉 ≥ 0, ∀y ∈ C.

From (A2),

1
rj,n

〈y − 

j
nyn, J


j
nyn − J
j−1

n yn〉 ≥ Qj(y,

j
nyn), ∀y ∈ C, ∀j = 1, 2, 3, . . . ,m.

From (3.41) and (3.43), we have

0 ≥ Qj(y, p), ∀y ∈ C, ∀j = 1, 2, 3, . . . ,m. (3:44)

For t with 0 < t ≤ 1 and y Î C; let yt = ty + (1 - t)p. Then, we get that yt Î C. From

(3.44), and it follows that

Qj(yt, p) ≤ 0, ∀y ∈ C, ∀j = 1, 2, 3, . . . ,m. (3:45)

By the conditions (A1) and (A4), we have for j = 1, 2, 3, ..., m

0 = Qj(yt, yt)
≤ tQj(yt, y) + (1 − t)Qj(yt, p)
≤ tQj(yt, y)
= Qj(yt, y).

(3:46)

From (A3) and letting t ® 0, This implies that p Î GMEP(fj, Bj, �j), ∀j = 1, 2, 3, ...,

m. Therefore p ∈ ∩m
j=1GMEP(fj,Bj,ϕj)

(c) We show that p Î VI(A, C). Indeed, define U ⊂ E × E* by

Uv =
{
Av +NC(v), v ∈ C;
∅, v /∈ C.

(3:47)

By Lemma 2.8, U is maximal monotone and U-10 = VI(A, C). Let (v, w) Î G(U).

Since w Î Uv = Av + NC(v), we get w - Av Î NC(v).

From vn Î C, we have

〈v − vn,w − Av〉 ≥ 0. (3:48)

On the other hand, since vn = �CJ−1(Jxn − λnAxn). Then, by Lemma 2.5, we have

〈v − vn, Jvn − (Jxn − λnAxn)〉 ≥ 0,

and thus〈
v − vn,

Jxn − Jvn
λn

− Axn

〉
≤ 0. (3:49)
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It follows from (3.48), (3.49) and A is monotone and 1
α
-Lipschitz continuous that

〈v − vn,w〉 ≥ 〈v − vn,Av〉
≥ 〈v − vn,Av〉 +

〈
v − vn,

Jxn − Jvn
λn

− Axn

〉
= 〈v − vn,Av − Axn〉 +

〈
v − zvn,

Jxn − Jvn
λn

〉
= 〈v − vn,Av − Avn〉 + 〈v − vn,Avn − Axn〉 +

〈
v − vn,

Jxn − Jvn
λn

〉
≥ − ‖ v − vn ‖ ‖ vn − xn ‖

α
− ‖ v − vn ‖ ‖ Jxn − Jvn ‖

a

≥ −H
(‖ vn − xn ‖

α
+

‖ Jxn − Jvn ‖
a

)
,

where H = supn≥1 ||v - vn||. Take the limit as n i® ∞, (3.31) and (3.32), we obtain 〈v

- p, w〉 ≥ 0. By the maximality of B we have p Î B-10, that is p Î VI(A, C). Hence,

from (a), (b) and (c), we obtain p Î F.

Finally, we show that p = ΠFx0. From xn = �Cnx0, we have 〈Jx0 - Jxn, xn - z〉 ≥ 0, ∀z Î
Cn. Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ F.

Taking limit n ® ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ F.

By Lemma 2.5, we can conclude that p = ΠFx0 and xn ® p as n ® ∞. This com-

pletes the proof. □
If Si = S for each i Î N, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction

from C × C to ℝ which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and

monotone mapping and �j : C ® ℝ be a lower semicontinuous and convex function.

Let A be an a-inverse-strongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay -

Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let S : C ® C be a closed L-Lipschitz continuous

and quasi-j-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn
® 1 such that F := F(S) ∩ (∩m

j=1GMEP(fj,Bj,ϕj)) ∩ VI(A,C)is a nonempty and bounded

subset in C. For an initial point x0 Î E with x1 = �C1x0and C1 = C, we define the

sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JSnvn),
yn = J−1(βnJxn + (1 − βn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:50)

where θn = supqÎF (kn - 1)j(q, xn), {an}, {bn} are sequences in [0, 1], {rj, n} ⊂ [d, ∞) for

some d >0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2a/2, where 1
cc is the 2-

uniformly convexity constant of E. If lim infn®∞(1 - bn) >0 and lim infn®∞(1 - an) >0,

then {xn} converges strongly to p Î F, where p = ΠF x0.
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For a special case that i = 1, 2, we can obtain the following results on a pair of quasi-

_-asymptotically nonexpansive mappings immediately from Theorem 3.1.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction

from C × C to ℝ which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and

monotone mapping and �j : C ® ℝ be a lower semicontinuous and convex function.

Let A be an a-inversestrongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay -

Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let S, T : C ® C be two closed quasi-j-asymptoti-

cally nonexpansive mappings and LS, LT -Lipschitz continuous, respectively with a

sequence {kn} ⊂ [1, ∞), kn ® 1 such that

F := F(S) ∩ F(T) ∩ (∩m
j=1GMEP(fj,Bj,ϕj)) ∩ VI(A,C) is a nonempty and bounded subset

in C. For an initial point x0 Î E with x1 = �C1x0and C1 = C, we define the sequence

{xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + βnJSnvn + γnJTnvn),
yn = J−1(δnJxn + (1 − δn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3:51)

where θn = supqÎF (kn - 1)j(q, xn), {an}, {bn}, {gn} and {δn} are sequences in [0, 1], {rj,

n} ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2a/2,
where 1

cis the 2-uniformly convexity constant of E. If an + bn + gn = 1 for all n ≥ 0 and

lim infn ®∞ anbn >0, lim infn ®∞ angn >0, lim infn ®∞ bngn >0 and lim infn ®∞(1 - δn)

>0, then {xn} converges strongly to p Î F, where p = ΠFx0.

Corollary 3.4. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction

from C × C to ℝ which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and

monotone mapping and �j : C ® ℝ be a lower semicontinuous and convex function.

Let A be an a-inverse-strongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay -

Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let {Si}∞i=1 : C → Cbe an infinite family of closed

quasi-j- nonexpansive mappings such that

F := ∩∞
i=1F(Si) ∩ (∩m

j=1GMEP(fj,Bj,ϕj)) ∩ VI(A,C) 
= ∅.For an initial point x0 Î E with

x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSivn),

yn = J−1(βnJxn + (1 − βn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn),
xn+1 = �Cn+1x0, ∀n ≥ 0,

(3:52)

where {an, i} and {bn} are sequences in [0, 1], {rj, n} ⊂ [d, ∞) for some d >0 and {ln} ⊂
[a, b] for some a, b with 0 < a < b < c2a/2, where 1

cis the 2-uniformly convexity con-

stant of E. If
∑∞

i=0 αn,i = 1for all n ≥ 0, lim infn ®∞(1 -bn) >0 and lim infn ®∞ an, 0an, i

> 0 for all i ≥ 1, then {xn} converges strongly to p Î F, where p = ΠFx0.

Proof. Since {Si}∞i=1 : C → C is an infinite family of closed quasi-j-nonexpansive map-

pings, it is an infinite family of closed and uniformly quasi-j-asymptotically
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nonexpansive mappings with sequence kn = 1. Hence, the conditions appearing in The-

orem 3.1 F is a bounded subset in C and for each i ≥ 1, Si is uniformly Li-Lipschitz

continuous are of no use here. By virtue of the closeness of mapping Si for each i ≥ 1,

it yields that p Î F (Si) for each i ≥ 1, that is, p ∈ ∩∞
i=1F(Si). Therefore, all conditions in

Theorem 3.1 are satisfied. The conclusion of Corollary 3.4 is obtained from Theorem

3.1 immediately. □

4 Deduced theorems
Corollary 4.1. [[41], Theorem 3.2] Let C be a nonempty closed and convex subset of a

2-uniformly convex and uniformly smooth Banach space E. Let f be a bifunction from C

× C to ℝ satisfying (A1)-(A4) and � : C ® ℝ is convex and lower semicontinuous. Let

A be an a-inverse-strongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay -

Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let {Si}Ni=1 : C → Cbe a finite family of closed

quasi-j- nonexpansive mappings such that

F := ∩N
i=1F(Si) ∩ GMEP(f ,B,ϕ) ∩ VI(A,C) 
= ∅. For an initial point x0 Î E with 1

cand C1

= C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zn = �CJ−1(Jxn − λnAxn),
yn = J−1(α0Jxn +

∑N
i=1 αiJSizn),

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn),
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:1)

where {ai} is sequence in [0, 1], {rn} ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for some

a, b with 0 < a < b < c2a/2, where 1
cc is the 2-uniformly convexity constant of E. If ai Î

(0, 1) such that
∑N

i=0 αi = 1then {xn} converges strongly to p Î F, where p = ΠF x0.

Remark 4.2. Theorems 3.1, Corollaries 3.4 and 4.1 improve and extend the corre-

sponding results of Wattanawitoon and Kumam [14] and Zegeye [41] in the following

senses:

• from a solution of the classical equilibrium problem to the generalized mixed

equilibrium problem with an infinite family of quasi-j-asymptotically mappings;

• for the mappings, we extend the mappings from nonexpansive mappings, rela-

tively quasi-nonexpansive mappings or quasi-j-nonexpansive mappings and a finite

family of closed relatively quasi-nonexpansive mappings to an infinite family of

quasi-j-asymptotically nonex-pansive mappings.

Corollary 4.3. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let f be a bifunction from C × C to ℝ satisfying

(A1)-(A4) and � : C ® ℝ is convex and lower semicontinuous. Let B be a continuous

monotone mapping of C into E*. Let {Si}∞i=1 : C → Cbe an infinite family of closed and

uniformly quasi-j-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞),

kn ® 1 and uniformly Li-Lipschitz continuous such that F := ∩∞
i=1F(Si) ∩ GMEP(f ,B,ϕ)

is a nonempty and bounded subset in C. For an initial point x0 Î E with
x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJSni xn),

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:2)

where θn = supqÎF (kn - 1)j(q, xn), {an,i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some a

>0. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an, 0 an, i >0 for all i ≥ 1, then {xn} con-

verges strongly to p Î F, where p = ΠF x0.

Proof. Put A ≡ 0 in Theorem 3.1 Then, we get that zn = xn. Thus, the method of

proof of Theorem 3.1 gives the required assertion without the requirement that E be

2-uniformly convex. □
If setting B ≡ 0 and � ≡ 0 in Corollary 4.3, then we have the following corollary.

Corollary 4.4. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let f be a bifunction from C × C to ℝ satisfying

(A1)-(A4) and � : C ® ℝ is convex and lower semicontinuous. Let {Si}∞i=1 : C → Cbe an

infinite family of closed and uniformly quasi-j-asymptotically nonexpansive mappings

with a sequence {kn} ⊂ [1, ∞), kn ® 1 and uniformly Li-Lipschitz continuous such that

F := ∩∞
i=1F(Si) ∩ EP(f ) is a nonempty and bounded subset in C. For an initial point x0

Î E with x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJSni xn),

f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:3)

where θn = supqÎF (kn - 1)j(q, xn), {an, i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some a

>0. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an, 0 an, i >0 for all i ≥ 1, then {xn} con-

verges strongly to p Î F, where p = ΠF x0.

Remark 4.5. Corollaries 4.3 and 4.4 improve and extend the corresponding results of

Zegeye [41] and Wattanawitoon and Kumam [14] in the sense from a finite family of

closed relatively quasi-nonexpansive mappings and closed relatively quasi-nonexpansive

mappings to more general than an infinite family of closed and uniformly quasi-j-
asymptotically nonexpansive mappings.

Remark 4.6. Moreover, Our theorems improve, generalize, unify and extend Qin et

al. [9], Zeg-eye et al. [15], Zegeye [41] and Wattanawitoon and Kumam [14,49] and

several results recently announced.

5 Applications
5.1 Application to complementarity problems

Let K be a nonempty, closed convex cone in E. We define the polar K* of K as follows:

K∗ = {y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0,∀x ∈ K}. (5:1)

If A : K ® E* is an operator, then an element u Î K is called a solution of the com-

plementarity problem [20] if

Au ∈ K∗ and 〈u,Au〉 = 0. (5:2)

The set of solutions of the complementarity problem is denoted by CP(A, K).
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Theorem 5.1. Let K be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction

from C × C to ℝ which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and

monotone mapping and �j : C ® ℝ be a lower semicontinuous and convex function.

Let A be an a-inverse-strongly monotone mapping of K into E* satisfying ||Ay|| ≤ ||Ay -

Au||, ∀y Î K and u Î CP(A, K) ≠ ∅. Let {Si}∞i=1 : K → K be an infinite family of closed

uniformly Li-Lipschitz continuous and uniformly quasi-j-asymptotically nonexpansive

mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 such that

F := ∩∞
i=1F(Si) ∩ (∩m

j=1GMEP(fj,Bj,ϕj)) ∩ CP(A,K) is a nonempty and bounded subset in

K. For an initial point x0 Î E with x1 = �C1x0and K1 = K, we define the sequence {xn}

as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn = �KJ−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni vn),

yn = J−1(βnJxn + (1 − βn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Kn+1 = {z ∈ Kn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Kn+1x0, ∀n ≥ 0,

(5:3)

where J is the duality mapping on E, θn = supqÎF (kn - 1)j(q, xn), for each i ≥ 0, {an,

i} and {bn} are sequences in [0, 1], {rj, n} ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for

some a, b with 0 < a < b < c2a/2, where 1
cis the 2-uniformly convexity constant of E. If∑∞

i=0 αn,i = 1for all n ≥ 0, lim infn®∞(1 - bn) >0 and lim infn ® ∞ an, 0an, i > 0 for all i

≥ 1, then {xn} converges strongly to p Î F, where p = ΠF x0.

Proof. As in the proof of Takahashi in [[20], Lemma 7.11], we get that VI(A, K) = CP

(A, K). So, we obtain the result. □

5.2 Application to zero points

Next, we consider the problem of finding a zero point of an inverse-strongly monotone

operator of E into E*. Assume that A satisfies the conditions:

(C1) A is a-inverse-strongly monotone,

(C2) A -10 = {u Î E : Au = 0} ≠ ∅.

Theorem 5.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. For each j = 1, 2, ..., m let fj be a bifunction

from C × C to R which satisfies conditions (A1)-(A4), Bj : C ® E* be a continuous and

monotone mapping and �j : C ® ℝ be a lower semicontinuous and convex function.

Let A be an operator of E into E* satisfying (C1) and (C2). Let {Si}∞i=1 : C → Cbe an infi-

nite family of closed uniformly Li- Lipschitz continuous and uniformly quasi-j-asympto-

tically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 such that

F := ∩∞
i=1F(Si) ∩ (∩m

j=1GMEP(fj,Bj,ϕj)) ∩ A−10

is a nonempty and bounded subset in C: For an initial point x0 Î E with
x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vn = �CJ−1(Jxn − λnAxn),
zn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni vn),

yn = J−1(βnJxn + (1 − βn)Jzn),
un = TQm

rm,nT
Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(5:4)
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where J is the duality mapping on E, θn = supqÎF (kn - 1)j(q, xn), for each i ≥ 0, {an,

i} and {bn} are sequences in [0, 1], {rj, n] ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for

some a, b with 0 < a < b < c2a/2, where 1
cis the 2-uniformly convexity constant of E. If∑∞

i=0 αn,i = 1for all n ≥ 0, lim infn®∞(1 - bn) >0 and lim infn ®∞ an, 0 an, i > 0 for all i

≥ 1, then {xn} converges strongly to p Î F, where p = ΠF x0.

Proof. Setting C = E in Corollary 3.4, we also get ΠE = I. We also have VI(A, C) = VI

(A, E) {x Î E : Ax = 0} ≠ ∅ and then the condition ||Ay|| ≤ ||Ay - Au|| holds for all y

Î E and u Î A- 10. So, we obtain the result. □

5.3 Application to Hilbert spaces

If E = H, a Hilbert space, then E is 2-uniformly convex (we can choose c = 1) and uni-

formly smooth real Banach space and closed relatively quasi-nonexpansive map

reduces to closed quasi-nonexpansive map. Moreover, J = I, identity operator on H

and ΠC = PC, projection mapping from H into C: Thus, the following corollaries hold.

Theorem 5.3. Let C be a nonempty closed and convex subset of a Hilbert space H.

For each j = 1, 2, ..., m let fj be a bifunction from C × C to ℝ which satisfies conditions

(A1)-(A4), Bj : C ® E* be a continuous and monotone mapping and �j : C ® ℝ be a

lower semicontinuous and convex function. Let A be an a-inverse-strongly monotone

mapping of C into H satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let
{Si}∞i=1 : C → Cbe an infinite family of closed and uniformly quasi-j-asymptotically

nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 and uniformly Li-

Lipschitz continuous such that F := ∩∞
i=1F(Si) ∩ (∩m

j=1GMEP(fj,Bj,ϕj)) ∩ VI(A,C) is a

nonempty and bounded subset in C. For an initial point x0 Î H with x1 = PC1x0 and

C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn = PC(xn − λnAxn),
yn = αn,0xn +

∑∞
i=1 αn,iSni zn,

un = TQm
rm,nT

Qm−1
rm−1,n · · ·TQ2

r2,nT
Q1
r1,n yn,

Cn+1 = {z ∈ Cn : ‖ z − un ‖≤‖ z − xn ‖ +θn},
xn+1 = PCn+1x0, ∀n ≥ 0,

(5:5)

where θn = supqÎF (kn - 1)|||q -xn||, {an, i} is sequence in [0, 1], {rj, n} ⊂ [a, ∞) for some

a >0 and {ln} ⊂ [a, b] for some a; b with 0 < a < b < a/2. If
∑∞

i=0 αn,i = 1for all n ≥ 0

and lim infn ®∞an,0an, i > 0 for all i ≥ 1, then {xn} converges strongly to p Î F, where p

= ΠF x0.

Remark 5.4. Theorem 5.3 improves and extends the Corollary 3.7 in Zegeye [41] in

the aspect for the mappings, and we extend the mappings from a finite family of closed

relatively quasi-nonexpansive mappings to a more general infinite family of closed and

uniformly quasi-j-asymptotically nonexpansive mappings.
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