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Abstract

Uniformly convex W-hyperbolic spaces with monotone modulus of uniform
convexity are a natural generalization of both uniformly convexnormed spaces and
CAT(0) spaces. In this article, we discuss the existence of fixed points and demiclosed
principle for mappings of asymptotically non-expansive type in uniformly convex W-
hyperbolic spaces with monotone modulus of uniform convexity. We also obtain a
Δ-convergence theorem of Krasnoselski-Mann iteration for continuous mappings of
asymptotically nonexpansive type in CAT(0) spaces.
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1. Introduction
In 1974, Kirk [1] introduced the mappings of asymptotically nonexpansive type and

proved the existence of fixed points in uniformly convex Banach spaces. In 1993,

Bruck et al [2] introduced the notion of mappings which are asymptotically nonexpan-

sive in the intermediate sense (continuous mappings of asymptotically nonexpansive

type) and obtained the weak convergence theorems of averaging iteration for mappings

of asymptotically nonexpansive in the intermediate sense in uniformly convex Banach

space with the Opial property. Since then many authors have studied on the existence

and convergence theorems of fixed points for these two classes of mappings in Banach

spaces, for example, Xu [3], Kaczor [4,5], Rhoades [6], etc.

In this work, we consider to extend some results to uniformly convex W-hyperbolic

spaces which are a natural generalization of both uniformly convex normed spaces and

CAT(0) spaces. We prove the existence of fixed points and demiclosed principle for

mappings of asymptotically nonexpansive type in uniformly convex W-hyperbolic

spaces with monotone modulus of uniform convexity.

In 1976, Lim [7] introduced a concept of convergence in a general metric space set-

ting which he called “Δ-convergence.” In 2008, Kirk and Panyanak [8] specialized

Lim’s concept to CAT(0) spaces and showed that many Banach space results involving

weak convergence have precise analogs in this setting. Since then the notion of Δ-con-

vergence has been widely studied and a number of articles have appeared (e.g., [9-12]).
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In this article, we also obtain a Δ-convergence theorem of Krasnoselski-Mann iteration

for continuous mappings of asymptotically nonexpansive type in CAT(0) spaces.

2. Preliminaries
First let us start by making some basic definitions. Let (M, d) be a metric space.

Asymptotically nonexpansive mappings in Banach spaces were introduced by Geobel

and Kirk in 1972 [1].

Definition 2.1. Let C be bounded subset of M. A mapping T : C ® C is called

asymptotically nonexpansive if there exists a sequence {kn} of positive real numbers

with kn® 1 as n ® ∞ for which

d(Tnx,Tny) ≤ knd(x, y), for all x, y ∈ C.

The mappings of asymptotically nonexpansive type in Banach spaces were defined in

1974 by Kirk [2].

Definition 2.2. Let C be bounded subset of M. A mapping T : C ® C is called

asymptotically nonexpansive type if T satisfies

lim sup
n→∞

sup
y∈C

(d(Tnx,Tny) − d(x, y)) ≤ 0

for each x Î C, and TN is continuous for some N ≥ 1.

Obviously, asymptotically nonexpansive mappings are the mappings of asymptotically

nonexpansive type.

We work in the setting of hyperbolic space as introduced by Kohlenbach [13]. In

order to distinguish them from Gromov hyperbolic spaces [14] or from other notions

of “hyperbolic space” which can be found in the literature (e.g., [15-17]), we shall call

them W-hyperbolic spaces.

A W-hyperbolic space (X, d, W) is a metric space (X, d) together with a convexity

mapping W : X × X × [0, 1] ® X is satisfying

(W1) d(z, W(x, y, l)) ≤ (1 - l)d(z, x) + ld(z, y);
(W2) d(W(x, y, λ), W(x, y, λ̃)) = |λ − λ̃| · d(x, y);

(W3) W(x, y, l) = W(y, x, 1 - l);
(W4) d(W(x, z, l), W(y, w, l)) ≤ (1 - l)d(x, y) + ld(z, w).
The convexity mapping W was First considered by Takahashi in [18], where a triple

(X, d, W) satisfying (W1) is called a convex metric space. If (X, d, W) satisfying (W1) -

(W3), then we get the notion of space of hyperbolic type in the sense of Goebel and

Kirk [16]. (W4) was already considered by Itoh [19] under the name “condition III”,

and it is used by Reich and Shafrir [17] and Kirk [15] to define their notions of hyper-

bolic space. We refer the readers to [[20], pp. 384-387] for a detailed discussion.

The class of W-hyperbolic spaces includes normed spaces and convex subsets

thereof, the Hilbert ball [21] as well as CAT(0) spaces in the sense of Gromov (see

[14] for a detailed treatment).

If x, y Î X and l Î [0, 1], then we use the notation (1 - l)x ⊕ ly for W(x, y, l). It is
easy to see that for any x, y Î X and l Î [0, 1],

d(x, (1 − λ)x ⊕ λy) = λd(x, y) and d(y, (1 − λ)x ⊕ λy) = (1 − λ)d(x, y). (2:1)

As a consequence, 1x⊕0y = x, 0x⊕1y = y and (1 - l)x⊕lx = lx⊕(1 - l)x = x.
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We shall denote by [x, y] the set {(1 - l)x ⊕ ly : l Î [0, 1]}. Thus, [x, x] = {x} and

for x ≠ y, the mapping

γxy : [0, d(x, y)] → R, γxy(α) =
(
1 − α

d(x, y)

)
x ⊕ α

d(x, y)
y

is a geodesic satisfying gxy([0, d(x, y)]) = [x, y]. That is, any W-hyperbolic space is a

geodesic space.

A nonempty subset C ⊂ X is convex if [x, y] Î C for all x, y Î C. For any x Î X, r

>0, the open (closed) ball with center x and radius r is denoted with U(x, r) (respec-

tively Ū(x, r)). It is easy to see that open and closed balls are convex. Moreover, using

(W4), we get that the closure of a convex subset of a hyperbolic spaces is again convex.

A very important class of W-hyperbolic spaces are the CAT(0) spaces. Thus, a W-

hyperbolic space is a CAT(0) space if and only if it satisfies the so-called CN-inequality

of Bruhat and Tits [22]: For all x, y, z Î X,

d
(
z,

1
2
x ⊕ 1

2
y
)2

≤ 1
2
d(z, x)2 +

1
2
d(z, y)2 − 1

4
d(x, y)2.

In the following, (X, d, W) is a W-hyperbolic space.

Following [18], (X, d, W) is called strictly convex, if for any x, y Î X and l Î [0, 1],

there exists a unique element z Î X such that

d(z, x) = λd(x, y) and d(z, y) = (1 − λ)d(x, y).

Recently, Leustean [23] defined uniform convexity for W-hyperbolic spaces. A W-

hyperbolic space (X, d, W) is uniformly convex if for any r >0 and any ε Î (0, 2] there

exists θ Î (0, 1] such that for all a, x, y Î X,

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≥ εr

⎫⎪⎬
⎪⎭ ⇒ d

(
1
2
x ⊕ 1

2
y, a

)
≤ (1 − θ)r. (2:2)

A mapping h : (0, ∞) × (0, 2] ® (0, 1] providing such a θ := h(r, ε) for given r >0

and ε Î (0, 2] is called a modulus of uniform convexity. h is called monotone, if it

decreases with r (for a fixed ε).

Lemma 2.3. [[23], Lemma [7]] Let (X, d, W) be a UCW-hyperbolic space with modu-

lus of uniform convexity h. For any r >0, ε Î (0, 2], l Î [0, 1], and a, x, y Î X,

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≥ εr

⎫⎪⎬
⎪⎭ ⇒ d((1 − λ)x ⊕ λy, a) ≤ (1 − 2λ(1 − λ)η(r, ε))r.

We shall refer uniformly convex W-hyperbolic spaces as UCW-hyperbolic spaces. It

turns out that any UCW-hyperbolic space is strictly convex (see [23]). It is known that

CAT(0) spaces are UCW-hyperbolic spaces with modulus of uniform convexity h(r, ε)
= ε2/8 quadratic in ε (refer to [23] for details). Thus, UCW-hyperbolic spaces are a nat-

ural generalization of both uniformly convex-normed spaces and CAT(0) spaces. The

following proposition can be found in [24].
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Proposition 2.4. Let (X, d, W) be a complete UCW-hyperbolic space with a monotone

modulus of uniform convexity. Then the intersection of any decreasing sequence of none-

mpty bounded closed convex subsets of X is nonempty.

3. Fixed point theorem for mappings of asymptotically nonexpansive type
The First main result of this article is the existence of fixed points for the mappings of

asymptotically nonexpansive type in UCW-hyperbolic space with a monotone modulus

of uniform convexity.

Theorem 3.1. Let (X, d, W) be a complete UCW-hyperbolic space with a monotone

modulus of uniform convexity. Let C be a bounded closed nonempty convex subset of X.

Then, every mapping of asymptotically nonexpansive type T : C ® C has a fixed point.

PROOF. For any y Î C, we consider

By := {b ∈ R+ : there exist x ∈ C, k ∈ N such that d(Tiy, x) ≤ b for all i ≥ k}.

It is easy to see that diam(C) Î By, hence Byis nonempty. Let by:= inf By, then for

any θ >0, there exists bθÎ Bysuch that bθ < by+ θ, and so there exists x Î K and k Î
N such that

d(Tiy, x) ≤ bθ < βy + θ , ∀i ≥ k. (3:1)

Obviously, by≥ 0. We distinguish two cases:

Case 1. by= 0.

Let ε >0. Applying (3.1) with θ = ε/2, we get the existence of x Î C and k Î N such

that for all m, n ≥ k

d(Tmy,Tny) ≤ d(Tmy, x) + d(Tny, x) <
ε

2
+

ε

2
= ε.

Hence, the sequence {Tny} is a Cauchy sequence, and, hence, convergent to some z Î
C. Let ζ >0 and using the Definition of T choose M so that i ≥ M implies

sup
x∈C

(d(Tiz,Tix) − d(z, x)) ≤ 1
3

ζ .

Given i ≥ M, since Tn(y) ® z, there exists m > i such that d(Tmy, z) ≤ 1
3 ζ and

d(Tm−iy, z) ≤ 1
3ζ. Thus, if i ≥ M,

d(z,Tiz) ≤ d(z,Tmy) + d(Tmy,Tiz)

≤ d(z,Tmy) + d(Tiz, Ti(Tm−iy)) − d(z,Tm−iy) + d(z,Tm−iy)

≤ 1
3

ζ + sup
x∈C

(d(Tiz,Tix) − d(z, x)) +
1
3

ζ

≤ ζ .

This proves Tnz ® z as n ® ∞. By the continuity of TN, we have TNz = z. Thus,

Tz = T(TiNz) = TiN+1z → z as i → ∞,

and Tz = z, i.e., z is a fixed point of T.
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Case 2. by >0. For any n ≥ 1, we define

Cn :=
⋃
k≥1

⋂
i≥k

Ū
(
Tiy, βy +

1
n

)
, Dn := Cn ∩ C.

By (3.1) with θ = 1
n, there exist x Î C, k ≥ 1 such that x ∈ ⋂

i≥k
Ū(Tiy,βy + 1

n); hence,

Dnis nonempty. Moreover, {Dn} is a decreasing sequence of nonempty-bounded closed

convex subsets of X, hence, we can apply Proposition 2.4 to derive that

D :=
⋂
n≥1

Dn �= ∅.

For any x Î D and θ >0, take N Î N such that 2
N ≤ θ. Since x Î D, we have x ∈ CN ,

and so there exists a sequence {xNn } in CNsuch that limn→∞xNn = x. Let P ≥ 1 be such

that d(x, xNn ) ≤ 1
N for all n ≥ P, and K ≥ 1 such that xNP ∈ ⋂

i≥K Ū(Tiy, βy + 1
N ). It fol-

lows that for all i ≥ K

d(Tiy, x) ≤ d(Tiy, xNP ) + d(xNP , x) ≤ βy +
1
N

+
1
N

≤ βy + θ . (3:2)

In the sequel, we shall prove that any point of D is a fixed point of T. Let x Î D and

assume by contradiction that Tx ≠ x. Noticing the last part of Case 1, then {Tnx} does

not converge to x, and so we can find ε >0; for any k Î N, there exists n ≥ k such that

d(Tnx, x) ≥ ε. (3:3)

We can assume that ε Î (0, 2]. Then,
ε

βy+1
∈ (0, 2] and there exits θyÎ (0, 1] such

that

1 − η

(
βy + 1,

ε

βy + 1

)
≤ βy − θy

βy + θy
.

Applying (3.2) with θ = θy
2
, there exists K Î N such that

d(Tiy, x) ≤ βy +
θy

2
, ∀i ≥ K. (3:4)

By the Definition of T, there exists N such that if m ≥ N, then

sup
z∈C

(d(Tmx,Tmz) − d(x, z)) ≤ θy

2
. (3:5)

Applying (3.3) with k = N, we get N ≥ N such that

d(TNx, x) ≥ ε. (3:6)

Let now m Î N be such that m ≥ N + K. Then, by (3.4)-(3.6), we have

d(x,Tmy) ≤ βy +
θy

2
< βy + θy;

d(TNx,Tmy) = {d(TNx,TN(Tm−Ny)) − d(x,Tm−Ny)} + d(x,Tm−Ny)

≤ θy

2
+ βy +

θy

2
= βy + θy.

d(TNx, x) ≥ ε =
ε

βy + θy
· (βy + θy) ≥ ε

βy + 1
· (βy + θy).
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Now applying the fact that X is uniformly convex and h is monotone, we get that

d
(
x ⊕ TNx

2
, Tmy

)
≤

(
1 − η

(
βy + θy,

ε

βy + 1

))
(βy + θy)

≤
(
1 − η

(
βy + 1,

ε

βy + 1

))
(βy + θy)

≤ βy − θy

βy + θy
· (βy + θy) = βy − θy.

Thus, there exist k := N + K and z := x⊕TNx
2 ∈ C such that for all m ≥ k, d(z, Tmy) ≤

by- θy. This means that by- θyÎ By, which contradict with by= inf By. It follows x is a

fixed point of T. □
Since CAT(0) spaces are UCW-hyperbolic spaces with a monotone modulus of uni-

form convexity, we have the following Corollary.

Corollary 3.2. Let X be a complete CAT(0) space and C be a bounded closed none-

mpty convex subset of X. Then every mapping of asymptotically nonexpansive type T :

C ® C has a fixed point.

In the following, we shall prove that a continuous mapping of asymptotically nonex-

pansive type in UCW-hyperbolic space with a monotone modulus of uniform convexity

is demiclosed as it was noticed by Cöhde [25] for non-expansive mapping in uniformly

convex Banach spaces. Before we state the next result, we need the following notation:

{xn} → ω if and only if �(ω) = inf
x∈C

�(x),

where C is a closed convex subset which contains the bounded sequence {xn} and F
(x) = lim supn®∞d(xn, x).

Theorem 3.3. Let (X, d, W) be a complete UCW-hyperbolic space with a monotone

modulus of uniform convexity and C be a bounded closed nonempty convex subset of X.

Let T : C ® C be a continuous mapping of asymptotically nonexpansive type. Let {xn}

⊂ C be an approximate fixed point sequence, i.e., limn®∞d(xn, Txn) = 0, and {xn} ⇀ ω.

Then, we have T(ω) = ω.

PROOF. We denote

cn = max{0, sup
x,y∈C

(d(Tnx,Tny) − d(x, y))}.

Since {xn} is an approximate fixed point sequence, then we have

�(x) = lim sup
n→∞

d(Tmxn, x)

for any m ≥ 1. Hence, for each x Î C

�(Tmx) = lim sup
n→∞

d(Tmxn,Tmx) ≤ �(x) + cm,

In particular, noticing that lim supm®∞cm= 0, we have

lim
m→∞ �(Tmω) ≤ �(ω). (3:7)

Assume by contradiction that Tω ≠ ω. Then, {Tmω} does not converge to ω, so we

can find ε0>0, for any k Î N, there exists m ≥ k such that d(Tmω, ω) ≥ ε0. We can

assume ε0 Î (0, 2]. Then,
ε0

�(ω)+1 ∈ (0, 2] and there exists θ Î (0, 1] such that
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1 − η

(
�(ω) + 1,

ε0

�(ω) + 1

)
≤ �(ω) − θ

�(ω) + θ
. (3:8)

By the definition of F and (3.7), for the above θ, there exists N, M Î N, such that

d(ω, xn) ≤ �(ω) + θ , ∀n ≥ N;

d(Tmω, xn) ≤ �(ω) + θ , ∀n ≥ N, ∀m ≥ M.

For M, there exists m ≥ M such that

d(Tmω,ω) ≥ ε0 =
ε0

�(ω) + θ
· (�(ω) + θ) ≥ ε0

�(ω) + 1
· (�(ω) + θ).

Since X is uniformly convex and h is monotone, applying (3.8) we have

d
(

ω ⊕ Tmω

2
, xn

)
≤

(
1 − η

(
�(ω) + θ ,

ε0

�(ω) + 1

))
· (�(ω) + θ)

≤ �(ω) − θ

�(ω) + θ
· (�(ω) + θ)

= �(ω) − θ .

Since z :=
ω ⊕ Tmω

2
∈ C and z ≠ ω, we have got a contradiction with F(ω) = infxÎC

F(x). It follows that Tω = ω. □
Corollary 3.4. Let X be a complete CAT(0) metric space and C be a bounded closed

nonempty convex subset of X. Let T : C ® C be a continuous mapping of asymptotically

nonexpansive type. Let {xn} ⊂ C be an approximate fixed point sequence and {xn} ⇀ ω.

Then, we have Tω = ω.

4. Δ-convergence theorems for continuous mappings of asymptotically
nonexpansive type in CAT(0) spaces
Let (X, d) be a metric space, {xn} be a bounded sequence in X and C ⊂ X be a none-

mpty subset of X. The asymptotic radius of {xn} with respect to C is defined by

r(C, {xn}) = inf
{
lim sup
n→∞

d(x, xn) : x ∈ C
}
.

The asymptotic radius of {xn}, denoted by r({xn}), is the asymptotic radius of {xn}

with respect to X. The asymptotic center of {xn} with respect to C is defined by

A(C, {xn}) =
{
z ∈ C : lim sup

n→∞
d(z, xn) = r({C, xn})

}
.

When C = X, we call the asymptotic center of {xn} and use the notation A({xn}) for A

(C, {xn}).

The following proposition was proved in [26].

Proposition 4.1. If {xn} is a bounded sequence in a complete CAT(0) space X and if

C is a closed convex subset of X, then there exists a unique point u Î C such that

r(u, {xn}) = inf
x∈C

r(x, {xn}).

The above immediately yields the following proposition.

Proposition 4.2. Let {xn}, C and X be as in Proposition 4.1. Then, A({xn}) and A(C,

{xn}) are singletons.
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The following lemma can be found in [27].

Lemma 4.3. If C is a closed convex subset of X and {xn} is a bounded sequence in C,

then the asymptotic center of {xn} is in C.

Definition 4.4. [7,8] A sequence {xn} in X is said to Δ-converge to x Î X if x is the

unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we

write Δ - limn®∞xn= x and call x the Δ-limit of {xn}.

Lemma 4.5. (see [8]) Every bounded sequence in a complete CAT(0) space always has

a Δ-convergent subsequence.

There exists a connection between “ ⇀ “ and Δ-convergence.

Proposition 4.6. (see [28]) Let {xn} be a bounded sequence in a CAT(0) space X and

let C be a closed convex subset of X which contains {xn}. Then,

(1) Δ - limn®∞xn= x implies {xn} ⇀ x;

(2) if {xn} is regular, then {xn} ⇀ x implies Δ - limn®∞xn= x.

The following concept for Banach spaces is due to Schu [29]. Let C be a nonempty

closed subset of a CAT(0) space X and let T : C ® C be an asymptotically nonexpan-

sive mapping. The Krasnoselski-Mann iteration starting from x1 Î C is defined by

xn+1 = αnT
n(xn) ⊕ (1 − αn)xn, n ≥ 1, (4:1)

where {an} is a sequence in [0, 1]. In the sequel, we consider the convergence of the

above iteration for continuous mappings of asymptotically nonexpansive type. The fol-

lowing Lemma (also see [3]) is trivial.

Lemma 4.7. Suppose {rk} is a bounded sequence of real numbers and {ak,m} is a dou-

bly indexed sequence of real numbers which satisfy

lim sup
k→∞

lim sup
m→∞

ak,m ≤ 0, rk+m ≤ rk + ak,m for each k, m ≥ 1.

Then {rk} converges to an r Î R; if ak,m can be taken to be independent of k, i.e. ak,m ≡

am, then r ≤ rk for each k.

Lemma 4.8. Let (X, d, W) be a complete UCW-hyperbolic space with a monotone

modulus of uniform convexity and C be a bounded closed nonempty convex subset of X.

Let T : C ® C be a continuous mapping of asymptotically nonexpansive type. Put

cn = max{0, sup
x,y∈C

(d(Tnx,Tny) − d(x, y))}.

If
∑∞

n=1 cn < ∞and {an} is a sequence in [a, b] for some a, b Î (0, 1). Suppose that x1
Î C and {xn} generated by (4.1) for n ≥ 1, Then limn®∞d(xn, p) exists for each p Î Fix

(T).

PROOF. Let p Î Fix(T). From (4.1), we have

d(xn+1, p) = d(αnTnxn ⊕ (1 − αn)xn, p)

≤ αnd(Tnxn, p) + (1 − αn)d(xn, p) by (W1)

= αnd(Tnxn,Tnp) + (1 − αn)d(xn, p)

≤ αn(d(xn, p) + cn) + (1 − αn)d(xn, p)

≤ d(xn, p) + cn,
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and hence that

d(xk+m, p) ≤ d(xk, p) +
k+m−1∑
n=k

cn.

Applying Lemma 4.7 with rk= d(xk, p) and ak,m =
∑k+m−1

n=k cn, we get that limn®∞d(xn,

p) exists. □
Lemma 4.9. Let (X, d, W) be a complete UCW-hyperbolic space with a monotone

modulus of uniform convexity and C be a bounded closed nonempty convex subset of X.

Let T : C ® C be a continuous mapping of asymptotically nonexpansive type. Put

cn = max{0, sup
x,y∈C

(d(Tnx,Tny) − d(x, y))}.

If
∑∞

n=1 cn < ∞and {an} is a sequence in [a, b] for some a, b Î (0, 1). Suppose that x1
Î C and {xn} generated by (4.1) for n ≥ 1. Then,

lim
n→∞ d(xn,Txn) = 0.

PROOF. It follows from Theorem 3.1, T has at least one fixed point p in C. In view

of Lemma 4.8 we can let limn®∞d(xn, p) = r for some r in ℝ.

If r = 0, then we immediately obtain

d(xn,Txn) ≤ d(xn, p) + d(Txn, p) = d(xn, p) + d(Txn,Tp),

and hence by the uniform continuity of T, we have limn®∞d(xn, Txn) = 0.

If r >0, then we shall prove that

lim
n→∞ d(Tnxn, p) = lim

n→∞ d(αnT
nxn ⊕ (1 − αn)xn, p) = r (4:2)

by showing that for any increasing sequence {ni} of positive integers for which the

limits in (4.2) exist, and it follows that the limit is r. Without loss of generality we may

assume that the corresponding subsequence
{
αni

}
converges to some a; we shall have

a >0 because
{
αni

}
is assumed to be bounded away from 0. Thus, we have

r = lim
n→∞ d(xn, p) = lim

i→∞
d(xni+1, p) = lim

i→∞
d(αniT

nixni ⊕ (1 − αni)xni , p)

≤ lim
i→∞

(αnid(T
ni xni , p) + (1 − αni)d(xni , p)) by (W1)

≤ α lim sup
i→∞

d(Tni xni , p) + (1 − α)r

≤ α lim sup
i→∞

(
d(xni , p) + cni

)
+ (1 − α)r

≤ α lim sup
i→∞

d(xni , p) + (1 − α)r = r.

It follows that (4.2) holds.

In the sequel, we shall prove limn®∞d(T
nxn, xn) = 0. Assume by contradiction that

{Tnxn} does not converge to xn, and so we can find ε >0 and {nk} ⊂ N such that

d(Tnkxnk , xnk) ≥ ε.

We can assume that ε Î (0, 2]. Then,
ε

r + 1
∈ (0, 2]. Since {an} is a sequence in [a, b]

for some a, b Î (0, 1), we may assume that limk→∞ min{αnk , (1 − αnk)} exists, denoted
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by a0, then a0>0. Choose θ Î (0, 1] such that

1 − α0η
(
r + 1,

ε

r + 1

)
≤ r − θ

r + θ
.

For the above θ >0, there exists N Î N such that

d(xnk , p) ≤ r + θ and d(Tnk xnk , p) ≤ r + θ , ∀k ≥ N.

For k ≥ N, we also have that

d(Tnkxnk , xnk) ≥ ε =
ε

r + θ
· (r + θ) ≥ ε

r + 1
· (r + θ).

Now applying the fact that X is uniformly convex and h is monotone, by Lemma 2.3,

we get that

d(αnkT
nkxnk ⊕ (1 − αnk)xnk , p)

≤
(
1 − 2αnk(1 − αnk)η

(
r + θ ,

ε

r + 1

))
(r + θ)

≤
(
1 − 2αnk(1 − αnk)η

(
r + 1,

ε

r + 1

))
(r + θ)

≤
(
1 − 2min{αnk , (1 − αnk)}η

(
r + 1,

ε

r + 1

))
(r + θ).

Let k ® ∞, we obtain that

r ≤ (1 − 2α0)η
(
r + 1,

ε

r + 1

)
(r + θ) ≤ r − θ

r + θ
· (r + θ) = r − θ .

Hence, we get a contradiction, and therefore

lim
n→∞ d(Tnxn, xn) = 0. (4:3)

This is equivalent to

lim
n→∞ d(xn, xn+1) = 0. (4:4)

Thus, we have

d(xn,Txn) ≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)

+ d(Tn+1xn+1,Tn+1xn) + d(T(Tnxn), Txn)

≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)

+ d(xn+1, xn) + cn+1 + d(T(Tnxn), Txn).

By (4.3), (4.4) and the uniform continuity of T, we conclude that d(xn, Txn) ® 0 as n

® ∞. □
The following lemma can be found in [9].

Lemma 4.10. If {xn} is a bounded sequence in a CAT(0) space X with A({xn}) = {x}

and {un} is a subsequence of {un} with A({un}) = {u} and the sequence {d(xn, u)} con-

verges, then x = u.

Lemma 4.11. Let X be a complete CAT(0) space. Let C be a closed convex subset of

X, and let T : C ® C be a continuous mapping of asymptotically nonexpansive type.

Suppose that {xn} is a bounded sequence in C such that limn®∞d(xn, Txn) = 0 and d(xn,

p) converges for each p Î Fix(T ), then ωw(xn) ⊂ Fix(T ). Here ωw (xn) =
⋃

A ({un}),
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where the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of

exactly one point.

PROOF. Let u Î ωw(xn), then there exists a subsequence {un} of {xn} such that A

({un}) = {u}. Since {un} is bounded sequence, by Lemma 4.5 and 4.3 there exists a sub-

sequence {vn} of {un} such that Δ - limn®∞vn= v Î C. By Corollary 3.4, we have v Î
Fix(T). By Lemma 4.10, u = v. This shows that ωw(xn) ⊂ Fix(T). Next, we show that

ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with A({un}) =

u, and let A({xn}) = x. Since u Î ωw(xn) ⊂ Fix(T), {d(xn, u)} converges. By Lemma 4.10,

x = u. This completes the proof. □
Theorem 4.12. Let X be a complete CAT(0) space. Let C be a bounded closed convex

subset of X, and let T : C ® C be a continuous mapping of asymptotically nonexpan-

sive type with
∑∞

n=1 cn < ∞, Where

cn = max{0, sup
x,y∈C

(d(Tnx,Tny) − d(x, y))}.

Suppose that x1 Î C and {an} is a sequence in [a, b] for some a, b Î (0, 1). Then, the

sequence {xn} given by (4.1) Δ-converges to a fixed point of T.

PROOF. It follows from Corollary 3.2 that Fix(T) is nonempty. Since CAT(0) spaces

are UCW-hyperbolic spaces with a monotone modulus of uniform convexity, by

Lemma 4.8, {d(xn, p)} is convergent for each p Î Fix(T ). By Lemma 4.9, we have

limn®∞d(xn, Txn) = 0. By Lemma 4.11, ωw(xn) consists of exactly one point and is con-

tained in Fix(T). This shows that {xn} Δ-converges to an element of Fix(T). □
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