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Abstract

In this article we obtain a Suzuki-type generalization of a fixed point theorem for
generalized multivalued mappings of Ćirić (Matematićki Vesnik, 9(24), 265-272, 1972).
The obtained results extend furthermore the recently developed Kikkawa-Suzuki-type
contractions. Applications to certain functional equations arising in dynamic
programming are also considered.
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1 Introduction and preliminaries
In 2008 Suzuki [1] introduced a new type of mappings which generalize the well-

known Banach contraction principle [2]. Some others [3] generalized Kannan mappings

[4].

Theorem 1.1. (Kikkawa and Suzuki [3]) Let T be a mapping on complete metric

space (X, d) and let � be a non-increasing function from [0, 1) into (1/2, 1] defined by

ϕ (r) =

⎧⎪⎨
⎪⎩
1, if 0 ≤ r ≤ 1√

2
,

1
1 + r

, if
1√
2

≤ r < 1.

Let a Î [0, 1/2) and r = a/(1 - a) Î [0, 1). Suppose that

ϕ(r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ αd(x,Tx) + αd(y,Ty) (1)

for all x, y Î X. Then, T has a unique fixed point z, and limn Tnx = z holds for every

x Î X.

Theorem 1.2. (Kikkawa and Suzuki [3]) Let T be a mapping on complete metric

space (X, d) and θ be a nonincreasing function from [0, 1) onto (1/2, 1] defined by

θ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 0 ≤ r ≤ 1
2
(
√
5 − 1),

1 − r

r2
if

1
2
(
√
5 − 1) ≤ r ≤ 1√

2
,

1
1 + r

if
1√
2

≤ r < 1.
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Suppose that there exists r Î [0, 1) such that

θ(r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ rmax
{
d(x,Tx), d(y,Ty)

}
(2)

for all x, y Î X. Then, T has a unique fixed point z, and limn Tnx = z holds for every

x Î X.

On the other hand, Nadler [5] proved multivalued extension of the Banach contrac-

tion theorem.

Theorem 1.3. (Nadler [5]) Let (X, d) be a complete metric space and let T be a map-

ping from X into CB(X). Assume that there exists r Î [0, 1) such that

H(Tx,Ty) ≤ rd(x, y)

for all x, y Î X. Then, there exists z Î X such that z Î Tz.

Many fixed point theorems have been proved by various authors as generalizations of

the Nadler’s theorem (see [6-9]). One of the general fixed point theorems for a gener-

alized multivalued mappings appears in [10].

The following result is a generalization of Nadler [5].

Theorem 1.4. (Kikkawa and Suzuki [11]) Let (X, d) be a complete metric space, and

let T be a mapping from X into CB(X). Define a strictly decreasing function h from [0,

1) onto (1/2, 1] by

η(r) =
1

1 + r

and assume that there exists r Î [0, 1) such that

η(r)d(x,Tx) ≤ d(x, y) implies H(Tx,Ty) ≤ rd(x, y)

for all x, y Î X. Then, there exists z Î X such that z Î Tz.

In this article we obtain a Kikkawa-Suzuki-type fixed point theorem for generalized

multivalued mappings considered in [10]. The result obtained here complement and

extend some previous theorems about multivalued contractions. In addition, using our

result, we proved the existence and uniqueness of solutions for certain class of func-

tional equations arising in dynamic programming.

2 Main results
Let (X, d) be a metric space. We denote by CB(X) the family of all nonempty, closed,

bounded subsets of X. Let H(·, ·) be the Hausdorff metric, that is,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

for A, B Î CB(X), where d(x, B) = infyÎB d(x, y).

Now, we will prove our main result.

Theorem 2.1. Define a nonincreasing function � from [0, 1) into (0, 1] by

ϕ (r) =

⎧⎪⎨
⎪⎩
1, if 0 ≤ r <

1
2
,

1 − r, if
1
2

≤ r < 1.

Let (X, d) be a complete metric space and T be a mapping from X into CB(X).

Assume that there exists r Î [0, 1) such that �(r)d(x, Tx) ≤ d(x, y) implies
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H(Tx,Ty) ≤ r · max
{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(y,Tx)
2

}
(3)

for all x, y Î X. Then, there exists z Î X such that z Î Tz.

Proof.

1. Let r1 be such a real number that 0 ≤ r < r1 <1, and u1 Î X and u2ÎTu1 be arbi-

trary. Since u2ÎTu1, then d(u2, Tu2) ≤ H(Tu1, Tu2) and, as �(r) <1,

ϕ(r)d(u1,Tu1) ≤ d(u1,Tu1) ≤ d(u1, u2).

Thus, from the assumption (3),we have

d(u2,Tu2) ≤ H(Tu1,Tu2)

≤ r · max
{
d(u1, u2), d(u1,Tu1), d(u2,Tu2),

d(u1,Tu2) + 0
2

}

≤ r · max
{
d(u1, u2), d(u2,Tu2),

d(u1, u2) + d(u2,Tu2)
2

}
.

Hence, as r <1, we have d(u2, Tu2) ≤ rd(u1, u2). Hence, there exists u3 Î Tu2 such

that d(u2, u3) ≤r1d(u1, u2). Thus, we can construct such a sequence {un} in X that

un+1 ∈ Tun and d(un+1, un+2) ≤ r1d(un, un+1).

Then, we have

∞∑
n=1

d(un, un+1) ≤
∞∑
n=1

rn−1
1 d(u1, u2) < ∞.

Hence, we conclude that {un} is a Cauchy sequence. Since X is complete, there is

some point z Î X such that

lim
n→∞ un = z.

2. Now, we will show that

d(z,Tx) ≤ r · max{d (z, x) , d(x,Tx)} for all x ∈ X\{z}. (4)

Since un ® z, there exists n0 Î N such that d(z, un) ≤ (1/3)d(z, x) for all n ≥ n0.

Then, we have

ϕ (r) d(un,Tun) ≤ d(un,Tun)

≤ d(un, un+1)

≤ d(un, z) + d(un+1, z)

≤ 2
3
d(x, z).

Thus,

ϕ (r) d(un,Tun) ≤ 2
3
d(x, z). (5)
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Since

2
3
d(x, z) = d(x, z) − 1

3
d(x, z)

≤ d(x, z) − d(un, z)

≤ d(un, x),

from (5), we have � (r) d(un, Tun) ≤ d(un, x). Then, from (3),

H(Tun,Tx) ≤ r · max
{
d(un, x), d(un,Tun), d(x,Tx),

d(un,Tx) + d(x,Tun)
2

}
.

(6)

Since un +1 Î Tun, then

d(un+1,Tx) ≤ H(Tun,Tx) and d(un,Tun) ≤ d(un, un+1).

Hence, from (6), we get

d(un+1,Tx) ≤ r · max
{
d(un, x), d(un, un+1), d(x,Tx),

d(un,Tx) + d(x, un+1)
2

}

for all n Î N with n ≥ n0. Letting n tend to ∞, we obtain (4).

3. Now, we will show that z Î Tz.

3.1. First, we consider the case 0 ≤ r < 1
2 . Suppose, on the contrary, that z ∉ Tz. Let

a Î Tz be such that 2rd(a, z) < d(z, Tz). Since a Î Tz implies a ≠ z, then from (4) we

have

d(z,Ta) ≤ rmax{d(z, a), d(a,Ta)}.

On the other hand, since � (r) d(z, Tz) ≤ d(z, Tz) ≤ d(z, a), then from (3) we have

H(Tz,Ta) ≤ r · max
{
d(z, a), d(z,Tz), d(a,Ta),

d(z,Ta) + 0
2

}

≤ rmax
{
d(z, a), d(z,Tz), d(a,Ta)

}
≤ rmax

{
d(z, a), d(a,Ta)

}
.

Hence,

d(a,Ta) ≤ H(Tz,Ta) ≤ rmax
{
d(z, a), d(a,Ta)

}
.

Hence, d(a, Ta) ≤ rd(z, a) < d(z, a), and from (7), we have d(z, Ta) ≤ rd(z, a). There-

fore, we obtain

d(z,Tz) ≤ d(z,Ta) +H(Ta,Tz)

≤ d(z,Ta) + rmax
{
d(z, a), d(a,Ta)

}
≤ 2rd(z, a)

< d(z,Tz).

This is a contradiction. As a result, we have z Î Tz.

3.2. Now, we consider the case 1
2 ≤ r < 1 . We will first prove

H(Tx,Tz) ≤ rmax
{
d(x, z), d(x,Tx), d(z,Tz),

d(,Tx) + d(z,Tx)
2

}
(8)
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for all x Î X. If x = z, then the previous obviously holds. Hence, let us assume x ≠ z.

Then, for every n Î N, there exists a sequence yn Î Tx such that d(z, yn) ≤ d(z, Tx) +

(1/n)d(x, z). Using (4), we have for all n Î N

d(x,Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z,Tx) +
1
n
d(x, z)

≤ d(x, z) + rmax{d(x, z), d(x,Tx)} + 1
n
d(x, z).

If d(x, z) ≥ d(x, Tx), then

d(x,Tx) ≤ d(x, z) + rd(x, z) +
1
n
d(x, z) =

(
1 + r +

1
n

)
d(x, z).

Letting n tend to ∞, we have d(x, Tx) ≤ (r + 1)d(x, z). Thus,

ϕ(r)d(x,Tx) = (1 − r)d(x,Tx) ≤ 1
r + 1

d(x,Tx) ≤ d(x, z)

and from (3), we have (8).

If d(x, z) < d(x, Tx), then

d(x,Tx) ≤ d(x, z) + rd(x,Tx) +
1
n
d(x, z)

and therefore,

(1 − r)d(x,Tx) ≤
(
1 +

1
n

)
d(x, z).

Letting n tend to ∞, we have �(r)d(x, T) ≤ d(x, z) and thus, from (3), we again have

(8).

Finally, from (8), we obtain

d (z,Tz) = lim
n→∞ d(un+1,Tz)

≤ lim
n→∞ rmax

{
d(un, z), d(un,Tun), d(z,Tz),

d(un,Tz) + d(z,Tun)
2

}

≤ lim
n→∞ rmax

{
d(un, z), d(un, un+1), d(z,Tz),

d(un,Tz) + d(z, un+1)
2

}

= rd(z,Tz).

Hence, as r <1, we obtain d (z, Tz) = 0. Since Tz is closed, z Î Tz.

Hence, we have shown that z Î Tz in all cases, which completes the proof. □
Remark. The Theorem 2.1 provides the answer to the Question 1 posed in [12].

Corollary 2.1. Let (X, d) be a complete metric space and T be a mapping from X into

CB(X).

Assume that there exists r Î [0, 1) such that �(r)d(x, Tx) ≤ d(x, y) implies

H(Tx,Ty) ≤ rmax
{
d(x, y), d(x,Tx), d(y,Ty)

}
(9)

for all x, y Î X, where the function � is defined as in Theorem 2.1. Then, there exists

z Î X such that z Î Tz.

Đorić and Lazović Fixed Point Theory and Applications 2011, 2011:40
http://www.fixedpointtheoryandapplications.com/content/2011/1/40

Page 5 of 8



Proof. It comes from Theorem 2.1 since (9) implies (3). □
The Corollary 2.1 is the multivalued mapping generalization of the Theorem 2.2 of

Kikkawa and Suzuki [3], and therefore of the Kannan fixed point theorem [4] for gen-

eralized Kannan mappings. Also, it is the generalization of the Theorem 2.1 of Damja-

nović and Đorić [13].

From the Corollary 2.1, we obtain an another corollary:

Corollary 2.2. Let (X, d) be a complete metric space and T be a mapping from X into

CB(X).

Let a Î [0, 1/3) and r = 3a. Suppose that there exists r Î [0, 1) such that

ϕ(r)d(x,Tx) ≤ d(x, y) implies H(Tx,Ty) ≤ αd(x, y) + αd(x,Tx) + αd(y,Ty)

for all x, y Î X, where the function � is defined as in Theorem 2.1. Then, there exists

z Î X such that z Î Tz.

Considering T as a single-valued mapping, we have the following result:

Corollary 2.3. Let (X, d) be a complete metric space and T be a mapping from X into

X. Suppose that there exists r Î [0, 1) such that

ϕ(r)d(x,Tx) ≤ d(x, y)

implies

d(Tx,Ty) ≤ r · max
{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(y,Tx)
2

}

for all x, y Î X, where the function � is defined as in Theorem 2.1. Then, there exists

z Î X such that z = Tz.

Corollary 2.3 is the generalization fixed point theorem [4]. Corollary 2.3 also is the

generalization of the Theorem 3.1 of Enjouji et al. [14], since by symmetry, the

inequality (3.3) in [14] implies the inequality (1) in Theorem 1.1. Considering generali-

zations of the Theorem 1.2, Popescu [15] obtained the same result with different func-

tion �.

3 An application
The existence and uniqueness of solutions of functional equations and system of func-

tional equations arising in dynamic programming have been studied by using various

fixed point theorems (see [12,16,17] and the references therein). In this article, we will

prove the existence and uniqueness of a solution for a class of functional equations

using Corollary 2.3.

Throughout this section, we assume that U and V are Banach spaces, W ⊂ U, D ⊂ V

and ℝ is the field of real numbers. Let B(W) denote the set of all the bounded real-

valued functions on W. It is well known that B(W) endowed with the metric

dB(h, k) = sup
x∈W

|h(x) − k(x)|, h, k ∈ B(W) (10)

is a complete metric space.

According to Bellman and Lee [18], the basic form of the functional equation of

dynamic programming is given as

p(x) = sup
y

H(x, y, p(τ (x, y))),
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where x and y represent the state and decision vectors, respectively, τ : W ×D ® W

represents the transformation of the process and p(x) represents the optimal return

function with initial state x. In this section, we will study the existence and uniqueness

of a solution of the following functional equation:

p(x) = sup
y
[g(x, y) + G(x, y, p(τ (x, y))), x ∈ W (11)

where g : W × D ® ℝ and G : W × D ® ℝ ® ℝ are bounded functions.

Let a function � be defined as in Theorem 2.1 and the mapping T be defined by

T(h(x)) = sup
y∈D

{
g(x, y) + G(x, y, h(τ (x, y))

}
, h ∈ B(W), x ∈ W. (12)

Theorem 3.1. Suppose that there exists r Î [0, 1) such that for every (x, y) Î W × D,

h, k Î B(W) and t Î W, the inequality

ϕ(r)dB(T(h), h) ≤ dB(h, k) (13)

implies

|G(x, y, h(t)) − G(x, y, k(t))| ≤ r · M(h(t), k(t)),

where

M(h(t), k(t)) =max
{|h(t) − k(t)|, |h(t) − T(h(t))|, |k(t) − T(k(t))|,

|h(t) − T(k(t))| + |k(t) − T(h(t))|
2

}
.

Then, the functional equation (11) has a unique bounded solution in B(W).

Proof. Note that T is self-map of B(W) and that (B(W), dB) is a complete metric

space, where dB is the metric defined by (10). Let l be an arbitrary positive real num-

ber, and h1, h2 Î B(W ). For x Î W, we choose y1, y2 Î D so that

T(h1(x)) < g(x, y1) + G(x, y1, h1(τ1)) + λ, (14)

T(h2(x)) < g(x, y2) + G(x, y2, h2(τ2)) + λ, (15)

where τ1 = τ (x, y1) and τ2 = τ (x, y2).

From the definition of mapping T and equation (12), we have

T(h1(x)) ≥ g(x, y2) + G(x, y2, h1(τ2)), (16)

T(h2(x)) ≥ g(x, y1) + G(x, y1, h2(τ1)). (17)

If the inequality (13) holds, then from (14) and (17), we obtain

T(h1(x)) − T(h2(x)) < G(x, y1, h1(τ1)) − G(x, y1, h2(τ1)) + λ

≤ |G(x, y1, h1(τ1)) − G(x, y1, h2(τ1))| + λ

≤ r · M(h1(x), h2(x)) + λ.

(18)

Similarly, (15) and (16) imply

T(h2(x)) − T(h1(x)) ≤ r · M(h1(x), h2(x)) + λ. (19)
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Hence, from (18) and (19), we have

|T(h1(x)) − T(h2(x))| ≤ r · M(h1(x), h2(x)) + λ. (20)

Since the inequality (20) is true for any x Î W and arbitrary l >0, then

ϕ(r)dB(T(h1), h1) ≤ dB(h1, h2)

implies

dB(T(h1),T(h2)) ≤ r · max
{
dB(h1, h2), dB(h1,T(h1)), dB(h2,T(h2)),

dB(h1,T(h2)) + dB(h2,T(h1))
2

}
.

Therefore, all the conditions of Corollary 2.3 are met for the mapping T, and hence

the functional equation (11) has a unique bounded solution. □
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