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Abstract

Using the notion of compatible mappings in the setting of a partially ordered metric
space, we prove the existence and uniqueness of coupled coincidence points
involving a (j, ψ)-contractive condition for a mappings having the mixed
g-monotone property. We illustrate our results with the help of an example.
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1 Introduction
The Banach contraction principle is the most celebrated fixed point theorem. After-

ward many authors obtained many important extensions of this principle (cf. [1-16]).

Recently Bhaskar and Lakshmikantham [5], Nieto and Lopez [12,13], Ran and Reurings

[14] and Agarwal et al. [3] presented some new results for contractions in partially

ordered metric spaces. Bhaskar and Lakshmikantham [5] noted that their theorem can

be used to investigate a large class of problems and have discussed the existence and

uniqueness of solution for a periodic boundary value problem.

Recently, Luong and Thuan [11] presented some coupled fixed point theorems for a

mixed monotone mapping in a partially ordered metric space which are generalizations

of the results of Bhaskar and Lakshmikantham [5]. In this paper, we establish the exis-

tence and uniqueness of coupled coincidence point involving a (j,ψ)-contractive condi-

tion for mappings having the mixed g-monotone property. We also illustrate our

results with the help of an example.

2 Preliminaries
A partial order is a binary relation ≼ over a set X which is reflexive, antisymmetric, and

transitive. Now, let us recall the definition of the monotonic function f : X ® X in the

partially order set (X, ≼). We say that f is non-decreasing if for x, y Î X, x ≼ y, we

have fx ≼ fy. Similarly, we say that f is non-increasing if for x, y Î X, x ≼ y, we have fx

≽ fy. Any one could read on [9] for more details on fixed point theory.

Definition 2.1 [10](Mixed g-Monotone Property)

Let (X, ≼) be a partially ordered set and F : X × X ® X. We say that the mapping F has

the mixed g-monotone property if F is monotone g-non-decreasing in its first argument

and is monotone g-non-increasing in its second argument. That is, for any x, y Î X,
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x1, x2 ∈ X, gx1 � gx2 ⇒ F(x1, y) � F(x2, y) (1)

and

y1, y2 ∈ X, gy1 � gy2 ⇒ F(x, y1) � F(x, y2). (2)

Definition 2.2 [10](Coupled Coincidence Point)

Let (x, y) Î X × X, F : X × X ® X and g : X ® X. We say that (x, y) is a coupled

coincidence point of F and g if F(x, y) = gx and F(y, x) = gy for x, y Î X.

Definition 2.3 [10]Let X be a non-empty set and let F : X × X ® X and g : X ® X.

We say F and g are commutative if, for all x, y Î X,

g(F(x, y)) = F(g(x), g(y)).

Definition 2.4 [6]The mapping F and g where F : X × X ® X and g : X ® X, are

said to be compatible if

lim
n→∞ d(g(F(xn, yn)), F(gxn, gyn)) = 0

and

lim
n→∞ d(g(F(yn, xn)), F(gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X, such that limn®∞ F (xn, yn) = limn®∞ gxn =

x and limn®∞ F (yn, xn) = limn®∞ gyn = y, for all x, y Î X are satisfied.

3 Existence of coupled coincidence points
As in [11], let j denote all functions j : [0, ∞) ® [0, ∞) which satisfy

1. j is continuous and non-decreasing,

2. j (t) = 0 if and only if t = 0,

3. j (t + s) ≤ j (t) + j (s), ∀t, s Î [0, ∞)

and let ψ denote all the functions ψ : [0, ∞) ® (0, ∞) which satisfy limt®r ψ (t) > 0

for all r >0 and limt→0+ψ(t) = 0.

For example [11], functions j1(t) = kt where k >0, φ2 (t) =
t

t + 1
, j3(t) = ln(t + 1),

and j4(t) = min{t, 1} are in F; ψ1(t) = kt where k >0, ψ2 (t) =
ln (2t + 1)

2
, and

ψ3(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, t = 0
t

t + 1
, 0 < t < 1

1, t = 1
1
2
t, t > 1

are in Ψ,

Now, let us start proving our main results.

Theorem 3.1 Let (X, ≼) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Let F : X × X ® X be a mapping having

the mixed g-monotone property on X such that there exist two elements x0, y0 Î X with
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gx0 � F(x0, y0) and gy0 � F(y0, x0).

Suppose there exist j Î F and ψ Î Ψ such that

φ(d(F(x, y), F(u, v))) ≤ 1
2

φ(d(gx, gu) + d(gy, gv)) − ψ

(
d(gx, gu) + d(gy, gv))

2

)
(3)

for all x, y, u, v Î X with gx ≽ gu and gy ≼ gv. Suppose F(X × X) ⊆ g(X), g is continu-

ous and compatible with F and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x, for all n,

(ii) if a non-increasing sequence {yn} ® y, then y ≼ yn, for all n.

Then there exists x, y Î X such that

gx = F(x, y) and gy = F(y, x),

i.e., F and g have a coupled coincidence point in X.

Proof. Let x0, y0 Î X be such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0).

Using F(X × X) ⊆ g(X), we construct sequences {xn} and {yn} in X as

gxn+1 = F(xn, yn) and gyn+1 = F(yn, xn) for all n ≥ 0. (4)

We are going to prove that

gxn � gxn+1 for all n ≥ 0 (5)

and

gyn � gyn+1 for all n ≥ 0. (6)

To prove these, we are going to use the mathematical induction.

Let n = 0. Since gx0 ≼ F(x0, y0) and gy0 ≽ F(y0, x0) and as gx1 = F(x0, y0) and gy1 = F

(y0, x0), we have gx0 ≼ gx1 and gy0 ≽ gy1. Thus (5) and (6) hold for n = 0.

Suppose now that (5) and (6) hold for some fixed n ≥ 0, Then, since gxn ≼ gxn+1 and

gyn ≽ gyn+1 , and by mixed g-monotone property of F, we have

gxn+2 = F(xn+1, yn+1) � F(xn, yn+1) � F(xn, yn) = gxn+1 (7)

and

gyn+2 = F(yn+1, xn+1) � F(yn, xn+1) � F(yn, xn) = gyn+1. (8)

Using (7) and (8), we get

gxn+1 � gxn+2 and gyn+1 � gyn+2.

Hence by the mathematical induction we conclude that (5) and (6) hold for all n ≥ 0.

Therefore,

gx0 � gx1 � gx2 � · · · � gxn � gxn+1 � · · · (9)
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and

gy0 � gy1 � gy2 � · · · � gyn � gyn+1 � · · · . (10)

Since gxn ≽ gxn - 1 and gyn ≼ gyn - 1 , using (3) and (4), we have

φ(d(gxn+1, gxn)) = φ(d(F(xn, yn), F(xn−1, yn−1)))

≤ 1
2

φ(d(gxn, gxn−1) + d(gyn, gyn−1))

− ψ

(
d(gxn, gxn−1) + d(gyn, gyn−1)

2

)
.

(11)

Similarly, since gyn - 1 ≽ gyn and gxn - 1 ≼ gxn, using (3) and (4), we also have

φ(d(gyn, gyn+1)) = φ(d(F(yn−1, xn−1), F(yn, xn)))

≤ 1
2

φ(d(gyn−1, gyn) + d(gxn−1, gxn))

− ψ

(
d((gyn−1, gyn) + d(gxn−1, gxn)

2

)
.

(12)

Using (11) and (12), we have

φ(d(gxn+1, gxn)) + φ(d(gyn+1, gyn)) ≤ φ(d(gxn, gxn−1) + d(gyn, gyn−1))

− 2ψ

(
d(gxn, gxn−1) + d(gyn, gyn−1)

2

)
.

(13)

By property (iii) of j, we have

φ(d(gxn+1, gxn) + d(gyn+1, gyn)) ≤ φ(d(gxn+1, gxn)) + φ(d(gyn+1, gyn)). (14)

Using (13) and (14), we have

φ(d(gxn+1, gxn) + d(gyn+1, gyn)) ≤ φ(d(gxn, gxn−1) + d(gyn, gyn−1))

− 2ψ

(
d(gxn, gxn−1) + d(gyn, gyn−1)

2

)
(15)

which implies, since ψ is a non-negative function,

φ(d(gxn+1, gxn) + d(gyn+1, gyn)) ≤ φ(d(gxn, gxn−1) + d(gyn, gyn−1)).

Using the fact that j is non-decreasing, we get

d(gxn+1, gxn) + d(gyn+1, gyn) ≤ d(gxn, gxn−1) + d(gyn, gyn−1).

Set

δn = d(gxn+1, gxn) + d(gyn+1, gyn).

Now we would like to show that δn ® 0 as n ® ∞. It is clear that the sequence {δn}

is decreasing. Therefore, there is some δ ≥ 0 such that

lim
n→∞ δn = lim

n→∞[d(gxn+1, gxn) + d(gyn+1, gyn)] = δ. (16)

We shall show that δ = 0. Suppose, to the contrary, that δ >0. Then taking the limit

as n ® ∞ (equivalently, δn ® δ) of both sides of (15) and remembering limt®r ψ(t) >0

for all r >0 and j is continuous, we have
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φ(δ) = lim
n→∞ φ(δn) ≤ lim

n→∞

[
φ(δn−1) − 2ψ

(
δn−1

2

)]

= φ(δ) − 2 lim
δn−1→δ

ψ

(
δn−1

2

)
< φ(δ)

a contradiction. Thus δ = 0, that is

lim
n→∞ δn = lim

n→∞[d(gxn+1, gxn) + d(gyn+1, gyn)] = 0. (17)

Now, we will prove that {gxn} and {gyn} are Cauchy sequences. Suppose, to the con-

trary, that at least one of {gxn} or {gyn} is not Cauchy sequence. Then there exists an ε >0

for which we can find subsequences {gxn(k)}, {gxm(k)} of {gxn} and {gyn(k)}, {gym(k)} of {gyn}

with n(k) > m(k) ≥ k such that

d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) ≥ ε. (18)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smal-

lest integer with n(k) > m(k) and satisfying (18). Then

d(gxn(k)−1, gxm(k)) + d(gyn(k)−1, gym(k)) < ε. (19)

Using (18), (19) and the triangle inequality, we have

ε ≤ rk := d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k)) + d(gyn(k), gyn(k)−1) + d(gyn(k)−1, gym(k))

≤ d(gxn(k), gxn(k)−1) + d(gyn(k), gyn(k)−1) + ε.

Letting k ® ∞ and using (17), we get

lim
k→∞

rk = lim
k→∞

[d(gxn(k), gxm(k)) + d(gyn(k), gym(k)] = ε. (20)

By the triangle inequality

rk = d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k)+1) + d(gxm(k)+1, gxm(k))

+ d(gyn(k), gyn(k)+1) + d(gyn(k)+1, gym(k)+1) + d(gym(k)+1, gym(k))

= δn(k) + δm(k) + d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1).

Using the property of j, we have

φ(rk) = φ(δn(k) + δm(k) + d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1))

≤ φ(δn(k) + δm(k)) + φ(d(gxn(k)+1, gxm(k)+1))

+ φ(d(gyn(k)+1, gym(k)+1)).

(21)

Since n(k) > m(k), hence gxn(k) ≽ gxm(k) and gyn(k) ≽ gym(k). Using (3) and

(4), we get

φ(d(gxn(k)+1, gxm(k)+1)) = φ(d(F(xn(k), yn(k)), F(xm(k), ym(k))))

≤ 1
2

φ(d(gxn(k), gxm(k)) + d(gyn(k), gym(k)))

− ψ

(
d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

2

)

=
1
2

φ(rk) − ψ
( rk
2

)
.

(22)
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By the same way, we also have

φ(d(gym(k)+1, gyn(k)+1)) = φ(d(F(ym(k), xm(k)), F(yn(k), xn(k))))\
≤ 1

2
φ(d(gym(k), gyn(k)) + d(gxm(k), gxn(k)))

− ψ

(
d(gym(k), gyn(k)) + d(gxm(k), gxn(k))

2

)

=
1
2

φ(rk) − ψ
( rk
2

)
.

(23)

Inserting (22) and (23) in (21), we have

φ(rk) ≤ φ(δn(k) + δm(k)) + φ(rk) − 2ψ
( rk
2

)
.

Letting k ® ∞ and using (17) and (20), we get

φ(ε) ≤ φ(0) + φ(ε) − 2 lim
k→∞

ψ
( rk
2

)
= φ(ε) − 2 lim

rk→ε
ψ

( rk
2

)
< φ(ε)

a contradiction. This shows that {gxn} and {gyn} are Cauchy sequences.

Since X is a complete metric space, there exist x, y Î X such that

lim
n→∞ F(xn, yn) = lim

n→∞ gxn = x and lim
n→∞ F(yn, xn) = lim

n→∞ gyn = y. (24)

Since F and g are compatible mappings, we have

lim
n→∞ d(g(F(xn, yn)), F(gxn, gyn)) = 0 (25)

and

lim
n→∞ d(g(F(yn, xn)), F(gyn, gxn)) = 0 (26)

We now show that gx = F(x, y) and gy = F(y, x). Suppose that the assumption (a)

holds. For all n ≥ 0, we have,

d(gx, F(gxn, gyn)) ≤ d(gx, g(F(xn, yn))) + d(g(F(xn, yn)), F(gxn, gyn).

Taking the limit as n ® ∞, using (4), (24), (25) and the fact that F and g

are continuous, we have d(gx, F(x, y)) = 0.

Similarly, using (4), (24), (26) and the fact that F and g are continuous, we have d(gy,

F(y, x)) = 0.

Combining the above two results we get

gx = F(x, y) and gy = F(y, x).

Finally, suppose that (b) holds. By (5), (6) and (24), we have {gxn} is a non-decreasing

sequence, gxn ® x and {gyn} is a non-increasing sequence, gyn ® y as n ® ∞. Hence,

by assumption (b), we have for all n ≥ 0,

gxn � x and gyn � y. (27)

Since F and g are compatible mappings and g is continuous, by (25) and (26)
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we have

lim
n→∞ g(gxn) = gx = lim

n→∞ g(F(xn, yn)) = lim
n→∞ F(gxn, gyn) (28)

and,

lim
n→∞ g(gyn) = gy = lim

n→∞ g(F(yn, xn)) = lim
n→∞ F(gyn, gxn). (29)

Now we have

d(gx, F(x, y)) ≤ d(gx, g(gxn+1)) + d(g(gxn+1), F(x, y)).

Taking n ® ∞ in the above inequality, using (4) and (21) we have,

d(gx, F(x, y)) ≤ lim
n→∞ d(gx, g(gxn+1)) + lim

n→∞ d(g(F(xn, yn)), F(x, y))

≤ lim
n→∞ d(F(gxn, gyn)), F(x, y))

(30)

Using the property of j, we get

φ(d(gx, F(x, y))) ≤ lim
n→∞ φ(d(F(gxn, gyn)), F(x, y)))

Since the mapping g is monotone increasing, using (3), (27) and (30), we have for all

n ≥ 0,

φ(d(gx, F(x, y))) ≤ lim
n→∞

1
2

φ(d(ggxn, gx) + d(gyn, ggy))

− lim
n→∞ ψ

(
d(ggxn, gx) + d(ggyn, gy)

2

)
.

Using the above inequality, using (24) and the property of ψ, we get j(d(gx, F(x, y))) = 0,

thus d(gx, F(x, y)) = 0. Hence gx = F(x, y).

Similarly, we can show that gy = F(y, x). Thus we proved that F and g have a coupled

coincidence point.

Corollary 3.1 [11]Let (X, ≼) be a partially ordered set and suppose there is a metric

d on X such that (X, d) is a complete metric space. Let F : X × X ® X be a mapping

having the mixed monotone property on X such that there exist two elements x0, y0 Î X

with

x0 � F(x0, y0) and y0 � F(y0, x0).

Suppose there exist j Î F and ψ Î Ψ such that

φ(d(F(x, y), F(u, v))) ≤ 1
2

φ(d(x, u) + d(y, v)) − ψ

(
d(x, u) + d(y, v))

2

)

for all x, y, u, v Î X with x ≥ u and y ≤ v. Suppose either

(a) F is continuous or

(b) X has the following property.

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x, for all n,

(ii) if a non-increasing sequence {yn} ® y, then y ≼ yn, for all n,

then there exist x, y Î X such that
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x = F(x, y) and y = F(y, x)

that is, F has a coupled fixed point in X.

Corollary 3.2 [11] Let (X, ≼) be a partially ordered set and suppose there is a metric

d on X such that (X, d) is a complete metric space. Let F : X × X ® X be a mapping

having the mixed monotone property on X such that there exist two elements x0, y0 Î X

with

x0 � F(x0, y0) and y0 � F(y0, x0).

Suppose there exists ψ Î Ψ such that

d(F(x, y), F(u, v)) ≤ d(x, u) + d(y, v)
2

− ψ

(
d(x, u) + d(y, v)

2

)

for all x, y, u, v Î X with x ≥ u and y ≤ v. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x, for all n,

(ii) if a non-increasing sequence {yn} ® y, then y ≼ yn, for all n,

then there exist x, y Î X such that

x = F(x, y) and y = F(y, x)

that is, F has a coupled fixed point in X.

Proof. Take j(t) = t in Corollary 3.1, we get Corollary 3.2.

Corollary 3.3 [5] eses of Corollary 3.1, suppose that for Let (X, ≼) be a partially

ordered set and suppose there is a metric d on X such that (X, d) is a complete metric

space. Let F : X × X ® X be a mapping having the mixed monotone property on X

such that there exist two elements x0, y0 Î X with

x0 � F(x0, y0) and y0 � F(y0, x0).

Suppose there exists a real number k Î [0, 1) such that

d(F(x, y), F(u, v)) ≤ k
2
[d(x, u) + d(y, v)]

for all x, y, u, v Î X with x ≥ u and y ≥ v. Suppose either

(a) F is continuous or

(b) X has the following property.

(i) if a non-decreasing sequence {xn} ® x, then xn ≼ x, for all n,

(ii) if a non-increasing sequence {yn} ® y, then y ≼ yn, for all n,

then there exist x, y Î X such that

x = F(x, y) and y = F(y, x)

that is, F has a coupled fixed point in X.
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Proof. Taking ψ (t) =
1 − k
2

t in Corollary 3.2.

4 Uniqueness of coupled coincidence point
In this section, we will prove the uniqueness of the coupled coincidence point. Note

that if (X, ≼) is a partially ordered set, then we endow the product X × X with the fol-

lowing partial order relation, for all (x, y), (u, v) Î X × X,

(x, y) � (u, v) ⇔ x � u, y � v.

Theorem 4.1 In addition to hypotheses of Theorem 3.1, suppose that for every (x, y),

(z, t) in X × X, if there exists a (u, v) in X ×X that is comparable to (x, y) and (z, t),

then F has a unique coupled coincidence point.

Proof. From Theorem 3.1, the set of coupled coincidence points of F and g is non-

empty. Suppose (x, y) and (z, t) are coupled coincidence points of F and g, that is gx =

F(x, y), gy = F(y, x), gz = F(z, t) and gt = F(t, z). We are going to show that gx = gz and

gy = gt. By assumption, there exists (u, v) ⊂ X × X that is comparable to (x, y) and (z,

t). We define sequences {gun}, {gvn} as follows

u0 = u v0 = v. guu+1 = F (un, vn) and gvn+1 = F(vn, un) for all n.

Since (u, v) is comparable with (x, y), we may assume that (x, y) ≽ (u, v) = (u0, v0).

Using the mathematical induction, it is easy to prove that

(x, y) � (un, vn) for all n. (31)

Using (3) and (31), we have

ϕ(d(gx, gun+1)) = ϕ(d(F(x, y), F(un, vn)))

<
1
2

ϕ(d(x, un) + d(y, vn)) − ψ

(
d(x, un) + d(y, vn)

2

)
(32)

Similarly

ϕ(d(gvn+1, gy)) = ϕ(d(F(vn, un), F(y, x)))

<
1
2

ϕ(d(vn, y) + d(un, x)) − ψ

(
d(vn, y) + d(un, x)

2

)
(33)

Using (32), (33) and the property of �, we have

ϕ(d(gx, gun+1) + d(gy, gvn+1)) ≤ ϕ(d(gx, gun+1)) + ϕ(d(gy, gvn+1))

≤ ϕ(d(gx, gun) + d(gy, gvn))

− 2ψ

(
d(gx, gun) + d(gy, gvn)

2

)
.

(34)

which implies, using the property of ψ,

ϕ(d(gx, gun+1) + d(gy, gvn+1)) ≤ ϕ(d(gx, gun) + d(gy, gvn)).

Thus, using the property of j,

d(gx, gun+1) + d(gy, gvn+1) ≤ d(gx, gun) + d(gy, gvn).
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That is the sequence {d(gx, gun)+ d(gy, gvn)} is decreasing. Therefore, there exists a ≥

0 such that

lim
n→∞[d(gx, gun) + d(gy, gvn)] = α. (35)

We will show that a = 0. Suppose, to the contrary, that a >0. Taking the limit as n

® ∞ in (34), we have, using the property of ψ,

ϕ(α) ≤ ϕ(α) − 2 lim
n→∞ ψ

(
d(gx, gun) + d(gy, gvn)

2

)
< ϕ(α)

a contradiction. Thus. a = 0, that is,

lim
n→∞[d(gx, gun) + d(gy, gvn)] = 0.

It implies

lim
n→∞ d(gx, gun) = lim

n→∞ d(gy, gvn) = 0. (36)

Similarly, we show that

lim
n→∞ d(gz, gun) = lim

n→∞ d(gt, gvn) = 0. (37)

Using (36) and (37) we have gx = gz and gy = gt.

Corollary 4.1 [11]In addition to hypotheses of Corollary 3.1, suppose that for every (x,

y), (z, t) in X × X, if there exists a (u, v) in X × X that is comparable to (x, y) and (z, t),

then F has a unique coupled fixed point.

5 Example
Example 5.1 Let X = [0, 1]. Then (X, ≤) is a partially ordered set with the natural

ordering of real numbers. Let

d(x, y) =
∣∣x − y

∣∣ for x, y ∈ [0, 1].

Then (X, d) is a complete metric space.

Let g : X ® X be defined as

gx = x2, for all x ∈ X,

and let F : X × X ® X be defined as

F(x, y) =

⎧⎨
⎩

x2 − y2

3
, if x ≥ y,

0, if x < y.

F obeys the mixed g-monotone property.

Let j : [0, ∞) ® [0, ∞) be defined as

φ(t) =
3
4
t, for t ∈ [0,∞).

and let ψ : [0, ∞) ® [0, ∞) be defined as

ψ(t) =
1
4
t, for t ∈ [0,∞).
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Let {xn} and {yn} be two sequences in X such that limn®∞ F (xn, yn) = a, limn®∞ gxn =

a, limn®∞ F (yn, xn) = b and limn®∞ gyn = b Then obviously, a = 0 and b = 0. Now, for

all n ≥ 0,

gxn = x2n, gyn = y2n,

F(xn, yn) =

⎧⎨
⎩

x2n − y2n
3

, if xn ≥ yn,

0, if xn < yn.

and

F(yn, xn) =

⎧⎨
⎩

y2n − x2n
3

, if yn ≥ xn,

0, if yn < xn.

Then it follows that,

lim
n→∞ d(g(F(xn, yn)), F(gxn, gyn)) = 0

and

lim
n→∞ d(g(F(yn, xn)), F(gyn, gxn)) = 0,

Hence, the mappings F and g are compatible in X. Also, x0 = 0 and y0 = c(>0) are

two points in X such that

gx0 = g(0) = 0 = F(0, c) = F(x0, y0)

and

gy0 = g(c) = c2 ≥ c2

3
= F(c, 0) = F(y0, x0).

We next verify the contraction (3). We take x, y, u, v, Î X, such that gx ≥ gu and gy ≤

gv, that is, x2 ≥ u2 and y2 ≤ v2.

We consider the following cases:

Case 1. x ≥ y, u ≥ v. Then,

φ(d(F(x, y), F(u, v))) =
3
4
[d(F(x, y), F(u, v)]

=
3
4

[
d
(
x2 − y2

3
,
u2 − v2

3

)]

=
3
4

∣∣∣∣(x
2 − y2) − (u2 − v2)

3

∣∣∣∣
=
3
4

|x2 − u2| + |y2 − v2|
3

=
1
2

(
d(gx, gu) + d(gy, gv)

2

)

=
3
4

(
d(gx, gu) + d(gy, gv)

2

)

− 1
4

(
d(gx, gu) + d(gy, gv)

2

)

=
3
8
(d(gx, gu) + d(gy, gv))

− 1
4

(
d(gx, gu) + d(gy, gv)

2

)

=
1
2

φ(d(gx, gu) + d(gy, gv))

− ψ

(
d(gx, gu) + d(gy, gv)

2

)
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Case 2. x ≥ y, u < v.Then

φ(d(F(x, y), F(u, v)) =
3
4
[d(F(x, y), F(u, v)]

=
3
4

[
d(

x2 − y2

3
, 0)

]

=
3
4

|x2 − y2|
3

=
3
4

|v2 + x2 − y2 − u2|
3

=
3
4

|(v2 − y2) − (u2 − x2)|
3

≤ 3
4

|v2 − y2| + |u2 − x2|
3

=
3
4

( |u2 − x2| + |y2 − v2|
3

)

=
1
2

( |u2 − x2| + |y2 − v2|
2

)

=
1
2

(
d(gx, gu) + d(gy, gv)

2

)

=
3
4

(
d(gx, gu) + d(gy, gv)

2

)

− 1
4

(
d(gx, gu) + d(gy, gv)

2

)

=
3
8
(d(gx, gu) + d(gy, gv))

− 1
4
(
d(gx, gu) + d(gy, gv)

2

=
1
2

φ(d(gx, gu) + d(gy, gv))

− ψ

(
d(gx, gu) + d(gy, gv)

2

)

Case 3. x < y and u ≥ v. Then

φ(d(F(x, y), F(u, v))) =
3
4

[
d(0,

u2 − v2

3
)
]

=
3
4

|u2 − v2|
3

=
3
4

|u2 + x2 − v2 − x2|
3

=
3
4

|(x2 − v2) + (u2 − x2)|
3

(since y > x)

≤ 3
4

|y2 − v2| + |u2 − x2|
3

=
1
2

( |u2 − x2| + |y2 − v2|
2

)

=
1
2

(
d(gx, gu) + d(gy, gv)

2

)

=
3
4

(
d(gx, gu) + d(gy, gv)

2

)

− 1
4

(
d(gx, gu) + d(gy, gv)

2

)

=
3
8
(d(gx, gu) + d(gy, gv))

− 1
4

(
d(gx, gu) + d(gy, gv)

2

)

=
1
2

φ(d(gx, gu) + d(gy, gv))

− ψ

(
d(gx, gu) + d(gy, gv)

2

)
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Case 4. x < y and u < v with x2 ≤ u2 and y2 ≥ v2. Then, F(x, y) = 0 and F(u, v) = 0,

that is,

φ(d(F(x, y), F(u, v))) = φ(d(0, 0)) = φ(0) = 0.

Therefore all conditions of Theorem 3.1 are satisfied. Thus the conclusion follows.
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