RESEARCH

Open Access

Coupled coincidence points for monotone operators in partially ordered metric spaces

Abdullah Alotaibi^{*} and Saud M Alsulami

* Correspondence: mathker11@hotmail.com Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Using the notion of compatible mappings in the setting of a partially ordered metric space, we prove the existence and uniqueness of coupled coincidence points involving a (φ , ψ)-contractive condition for a mappings having the mixed *q*-monotone property. We illustrate our results with the help of an example.

Keywords: coupled coincidence point, partially ordered metric space, mixed *g*-monotone property

1 Introduction

The Banach contraction principle is the most celebrated fixed point theorem. Afterward many authors obtained many important extensions of this principle (cf. [1-16]). Recently Bhaskar and Lakshmikantham [5], Nieto and Lopez [12,13], Ran and Reurings [14] and Agarwal et al. [3] presented some new results for contractions in partially ordered metric spaces. Bhaskar and Lakshmikantham [5] noted that their theorem can be used to investigate a large class of problems and have discussed the existence and uniqueness of solution for a periodic boundary value problem.

Recently, Luong and Thuan [11] presented some coupled fixed point theorems for a mixed monotone mapping in a partially ordered metric space which are generalizations of the results of Bhaskar and Lakshmikantham [5]. In this paper, we establish the existence and uniqueness of coupled coincidence point involving a (φ, ψ) -contractive condition for mappings having the mixed *g*-monotone property. We also illustrate our results with the help of an example.

2 Preliminaries

A partial order is a binary relation \leq over a set *X* which is reflexive, antisymmetric, and transitive. Now, let us recall the definition of the monotonic function $f: X \to X$ in the partially order set (X, \leq) . We say that *f* is non-decreasing if for *x*, $y \in X$, $x \leq y$, we have $fx \leq fy$. Similarly, we say that *f* is non-increasing if for *x*, $y \in X$, $x \leq y$, we have $fx \leq fy$. Any one could read on [9] for more details on fixed point theory.

Definition 2.1 [10](Mixed g-Monotone Property)

Let (X, \leq) be a partially ordered set and $F: X \times X \to X$. We say that the mapping F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument. That is, for any $x, y \in X$,

© 2011 Alotaibi and Alsulami; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and

$$\gamma_1, \gamma_2 \in X, g\gamma_1 \preccurlyeq g\gamma_2 \Rightarrow F(x, \gamma_1) \succcurlyeq F(x, \gamma_2). \tag{2}$$

Definition 2.2 [10](Coupled Coincidence Point)

Let $(x, y) \in X \times X$, $F : X \times X \to X$ and $g : X \to X$. We say that (x, y) is a coupled coincidence point of F and g if F(x, y) = gx and F(y, x) = gy for $x, y \in X$.

Definition 2.3 [10]*Let* X *be a non-empty set and let* $F : X \times X \rightarrow X$ *and* $g : X \rightarrow X$. *We say* F *and* g *are commutative if, for all* $x, y \in X$,

$$g(F(x, y)) = F(g(x), g(y))$$

Definition 2.4 [6]*The mapping F and g where F* : $X \times X \rightarrow X$ *and g* : $X \rightarrow X$ *, are said to be compatible if*

 $\lim_{n\to\infty} d(g(F(x_n, y_n)), F(gx_n, gy_n)) = 0$

and

$$\lim_{n\to\infty}d(g(F(y_n,x_n)),F(gy_n,gx_n))=0,$$

whenever $\{x_n\}$ and $\{y_n\}$ are sequences in X, such that $\lim_{n\to\infty} F(x_n, y_n) = \lim_{n\to\infty} gx_n = x$ and $\lim_{n\to\infty} F(y_n, x_n) = \lim_{n\to\infty} gy_n = y$, for all $x, y \in X$ are satisfied.

3 Existence of coupled coincidence points

As in [11], let φ denote all functions $\varphi : [0, \infty) \to [0, \infty)$ which satisfy

φ is continuous and non-decreasing,
 φ (*t*) = 0 if and only if *t* = 0,
 φ (*t* + *s*) ≤ *φ* (*t*) + *φ* (*s*), ∀*t*, *s* ∈ [0, ∞)

and let ψ denote all the functions $\psi : [0, \infty) \to (0, \infty)$ which satisfy $\lim_{t\to r} \psi(t) > 0$ for all r > 0 and $\lim_{t\to 0^+} \psi(t) = 0$.

For example [11], functions $\varphi_1(t) = kt$ where k > 0, $\phi_2(t) = \frac{t}{t+1}$, $\varphi_3(t) = \ln(t+1)$, and $\varphi_4(t) = \min\{t, 1\}$ are in Φ ; $\psi_1(t) = kt$ where k > 0, $\psi_2(t) = \frac{\ln(2t+1)}{2}$, and

$$\psi_{3}(t) = \begin{cases} 1, & t = 0\\ \frac{t}{t+1}, & 0 < t < 1\\ 1, & t = 1\\ \frac{1}{2}t, & t > 1 \end{cases}$$

are in Ψ,

Now, let us start proving our main results.

Theorem 3.1 Let (X, \preccurlyeq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \to X$ be a mapping having the mixed g-monotone property on X such that there exist two elements $x_0, y_0 \in X$ with

$$gx_0 \preccurlyeq F(x_0, y_0)$$
 and $gy_0 \succcurlyeq F(y_0, x_0)$.

Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\phi(d(F(x,y),F(u,v))) \le \frac{1}{2}\phi(d(gx,gu) + d(gy,gv)) - \psi\left(\frac{d(gx,gu) + d(gy,gv)}{2}\right)$$
(3)

for all $x, y, u, v \in X$ with $gx \ge gu$ and $gy \le gv$. Suppose $F(X \times X) \subseteq g(X)$, g is continuous and compatible with F and also suppose either

- (a) F is continuous or
- *(b) X* has the following property:
 - (i) if a non-decreasing sequence {x_n} → x, then x_n ≤ x, for all n,
 (ii) if a non-increasing sequence {y_n} → y, then y ≤ y_n, for all n.

Then there exists $x, y \in X$ such that

gx = F(x, y) and gy = F(y, x),

i.e., F and g have a coupled coincidence point in X.

Proof. Let $x_0, y_0 \in X$ be such that $gx_0 \leq F(x_0, y_0)$ and $gy_0 \geq F(y_0, x_0)$. Using $F(X \times X) \subseteq g(X)$, we construct sequences $\{x_n\}$ and $\{y_n\}$ in X as

$$gx_{n+1} = F(x_n, y_n)$$
 and $gy_{n+1} = F(y_n, x_n)$ for all $n \ge 0$. (4)

We are going to prove that

$$gx_n \preccurlyeq gx_{n+1} \quad \text{for all } n \ge 0$$
(5)

and

$$gy_n \succcurlyeq gy_{n+1} \quad \text{for all } n \ge 0.$$
 (6)

To prove these, we are going to use the mathematical induction.

Let n = 0. Since $gx_0 \leq F(x_0, y_0)$ and $gy_0 \geq F(y_0, x_0)$ and as $gx_1 = F(x_0, y_0)$ and $gy_1 = F(y_0, x_0)$, we have $gx_0 \leq gx_1$ and $gy_0 \geq gy_1$. Thus (5) and (6) hold for n = 0.

Suppose now that (5) and (6) hold for some fixed $n \ge 0$, Then, since $gx_n \le gx_{n+1}$ and $gy_n \ge gy_{n+1}$, and by mixed *g*-monotone property of *F*, we have

$$gx_{n+2} = F(x_{n+1}, y_{n+1}) \succcurlyeq F(x_n, y_{n+1}) \succcurlyeq F(x_n, y_n) = gx_{n+1}$$
(7)

and

$$gy_{n+2} = F(y_{n+1}, x_{n+1}) \preccurlyeq F(y_n, x_{n+1}) \preccurlyeq F(y_n, x_n) = gy_{n+1}.$$
(8)

Using (7) and (8), we get

$$gx_{n+1} \preccurlyeq gx_{n+2}$$
 and $gy_{n+1} \succeq gy_{n+2}$.

Hence by the mathematical induction we conclude that (5) and (6) hold for all $n \ge 0$. Therefore,

$$gx_0 \preccurlyeq gx_1 \preccurlyeq gx_2 \preccurlyeq \cdots \preccurlyeq gx_n \preccurlyeq gx_{n+1} \preccurlyeq \cdots \tag{9}$$

and

$$g\gamma_0 \succcurlyeq g\gamma_1 \succcurlyeq g\gamma_2 \succcurlyeq \cdots \succcurlyeq g\gamma_n \succcurlyeq g\gamma_{n+1} \succcurlyeq \cdots$$
 (10)

Since $gx_n \ge gx_{n-1}$ and $gy_n \le gy_{n-1}$, using (3) and (4), we have

$$\phi(d(gx_{n+1}, gx_n)) = \phi(d(F(x_n, y_n), F(x_{n-1}, y_{n-1})))
\leq \frac{1}{2}\phi(d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1}))
- \psi\left(\frac{d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})}{2}\right).$$
(11)

Similarly, since $gy_{n-1} \ge gy_n$ and $gx_{n-1} \le gx_n$, using (3) and (4), we also have

$$\begin{aligned} \phi(d(gy_{n}, gy_{n+1})) &= \phi(d(F(y_{n-1}, x_{n-1}), F(y_{n}, x_{n}))) \\ &\leq \frac{1}{2} \phi(d(gy_{n-1}, gy_{n}) + d(gx_{n-1}, gx_{n})) \\ &- \psi\left(\frac{d((gy_{n-1}, gy_{n}) + d(gx_{n-1}, gx_{n})}{2}\right). \end{aligned}$$
(12)

Using (11) and (12), we have

$$\phi(d(gx_{n+1}, gx_n)) + \phi(d(gy_{n+1}, gy_n)) \le \phi(d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})) - 2\psi\left(\frac{d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})}{2}\right).$$
(13)

By property (iii) of φ , we have

$$\phi(d(gx_{n+1}, gx_n) + d(gy_{n+1}, gy_n)) \le \phi(d(gx_{n+1}, gx_n)) + \phi(d(gy_{n+1}, gy_n)).$$
(14)

Using (13) and (14), we have

$$\phi(d(gx_{n+1}, gx_n) + d(gy_{n+1}, gy_n)) \le \phi(d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})) - 2\psi\left(\frac{d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})}{2}\right)$$
(15)

which implies, since ψ is a non-negative function,

$$\phi(d(gx_{n+1}, gx_n) + d(gy_{n+1}, gy_n)) \le \phi(d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})).$$

Using the fact that φ is non-decreasing, we get

$$d(gx_{n+1}, gx_n) + d(gy_{n+1}, gy_n) \le d(gx_n, gx_{n-1}) + d(gy_n, gy_{n-1})$$

Set

$$\delta_n = d(gx_{n+1}, gx_n) + d(gy_{n+1}, gy_n).$$

Now we would like to show that $\delta_n \to 0$ as $n \to \infty$. It is clear that the sequence $\{\delta_n\}$ is decreasing. Therefore, there is some $\delta \ge 0$ such that

$$\lim_{n \to \infty} \delta_n = \lim_{n \to \infty} \left[d(g x_{n+1}, g x_n) + d(g y_{n+1}, g y_n) \right] = \delta.$$
(16)

We shall show that $\delta = 0$. Suppose, to the contrary, that $\delta > 0$. Then taking the limit as $n \to \infty$ (equivalently, $\delta_n \to \delta$) of both sides of (15) and remembering $\lim_{t\to r} \psi(t) > 0$ for all r > 0 and φ is continuous, we have

$$egin{aligned} \phi(\delta) &= \lim_{n o \infty} \phi(\delta_n) \leq \lim_{n o \infty} \left[\phi(\delta_{n-1}) - 2\psi\left(rac{\delta_{n-1}}{2}
ight)
ight] \ &= \phi(\delta) - 2\lim_{\delta_{n-1} o \delta} \psi\left(rac{\delta_{n-1}}{2}
ight) < \phi(\delta) \end{aligned}$$

a contradiction. Thus $\delta = 0$, that is

$$\lim_{n \to \infty} \delta_n = \lim_{n \to \infty} \left[d(gx_{n+1}, gx_n) + d(g\gamma_{n+1}, g\gamma_n) \right] = 0.$$
(17)

Now, we will prove that $\{gx_n\}$ and $\{gy_n\}$ are Cauchy sequences. Suppose, to the contrary, that at least one of $\{gx_n\}$ or $\{gy_n\}$ is not Cauchy sequence. Then there exists an $\varepsilon > 0$ for which we can find subsequences $\{gx_n(k)\}, \{gx_m(k)\}$ of $\{gx_n\}$ and $\{gy_n(k)\}, \{gy_m(k)\}$ of $\{gy_n\}$ with $n(k) > m(k) \ge k$ such that

$$d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)}) \ge \varepsilon.$$
(18)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest integer with n(k) > m(k) and satisfying (18). Then

$$d(gx_{n(k)-1},gx_{m(k)}) + d(g\gamma_{n(k)-1},g\gamma_{m(k)}) < \varepsilon.$$

$$\tag{19}$$

Using (18), (19) and the triangle inequality, we have

$$\begin{aligned} \varepsilon &\leq r_k := d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)}) \\ &\leq d(gx_{n(k)}, gx_{n(k)-1}) + d(gx_{n(k)-1}, gx_{m(k)}) + d(gy_{n(k)}, gy_{n(k)-1}) + d(gy_{n(k)-1}, gy_{m(k)}) \\ &\leq d(gx_{n(k)}, gx_{n(k)-1}) + d(gy_{n(k)}, gy_{n(k)-1}) + \varepsilon. \end{aligned}$$

Letting $k \rightarrow \infty$ and using (17), we get

$$\lim_{k \to \infty} r_k = \lim_{k \to \infty} \left[d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)}) \right] = \varepsilon.$$
⁽²⁰⁾

By the triangle inequality

$$\begin{aligned} r_k &= d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)}) \\ &\leq d(gx_{n(k)}, gx_{n(k)+1}) + d(gx_{n(k)+1}, gx_{m(k)+1}) + d(gx_{m(k)+1}, gx_{m(k)}) \\ &+ d(gy_{n(k)}, gy_{n(k)+1}) + d(gy_{n(k)+1}, gy_{m(k)+1}) + d(gy_{m(k)+1}, gy_{m(k)}) \\ &= \delta_{n(k)} + \delta_{m(k)} + d(gx_{n(k)+1}, gx_{m(k)+1}) + d(gy_{n(k)+1}, gy_{m(k)+1}). \end{aligned}$$

Using the property of φ , we have

$$\begin{aligned}
\phi(r_k) &= \phi(\delta_{n(k)} + \delta_{m(k)} + d(gx_{n(k)+1}, gx_{m(k)+1}) + d(gy_{n(k)+1}, gy_{m(k)+1})) \\
&\leq \phi(\delta_{n(k)} + \delta_{m(k)}) + \phi(d(gx_{n(k)+1}, gx_{m(k)+1})) \\
&+ \phi(d(gy_{n(k)+1}, gy_{m(k)+1})).
\end{aligned}$$
(21)

Since n(k) > m(k), hence $gx_n(k) \ge gx_m(k)$ and $gy_n(k) \ge gy_m(k)$. Using (3) and (4), we get

$$\phi(d(gx_{n(k)+1}, gx_{m(k)+1})) = \phi(d(F(x_{n(k)}, y_{n(k)}), F(x_{m(k)}, y_{m(k)})))
\leq \frac{1}{2}\phi(d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)}))
- \psi\left(\frac{d(gx_{n(k)}, gx_{m(k)}) + d(gy_{n(k)}, gy_{m(k)})}{2}\right)$$

$$= \frac{1}{2}\phi(r_k) - \psi\left(\frac{r_k}{2}\right).$$
(22)

By the same way, we also have

$$\phi(d(gy_{m(k)+1}, gy_{n(k)+1})) = \phi(d(F(y_{m(k)}, x_{m(k)}), F(y_{n(k)}, x_{n(k)})))) \\
\leq \frac{1}{2}\phi(d(gy_{m(k)}, gy_{n(k)}) + d(gx_{m(k)}, gx_{n(k)}))) \\
- \psi\left(\frac{d(gy_{m(k)}, gy_{n(k)}) + d(gx_{m(k)}, gx_{n(k)})}{2}\right) \\
= \frac{1}{2}\phi(r_k) - \psi\left(\frac{r_k}{2}\right).$$
(23)

Inserting (22) and (23) in (21), we have

$$\phi(r_k) \leq \phi(\delta_{n(k)} + \delta_{m(k)}) + \phi(r_k) - 2\psi\left(\frac{r_k}{2}\right).$$

Letting $k \rightarrow \infty$ and using (17) and (20), we get

$$\phi(\varepsilon) \leq \phi(0) + \phi(\varepsilon) - 2\lim_{k \to \infty} \psi\left(\frac{r_k}{2}\right) = \phi(\varepsilon) - 2\lim_{r_k \to \varepsilon} \psi\left(\frac{r_k}{2}\right) < \phi(\varepsilon)$$

a contradiction. This shows that $\{gx_n\}$ and $\{gy_n\}$ are Cauchy sequences. Since *X* is a complete metric space, there exist $x, y \in X$ such that

$$\lim_{n \to \infty} F(x_n, y_n) = \lim_{n \to \infty} gx_n = x \quad and \quad \lim_{n \to \infty} F(y_n, x_n) = \lim_{n \to \infty} gy_n = y.$$
(24)

Since F and g are compatible mappings, we have

$$\lim_{n \to \infty} d(g(F(x_n, y_n)), F(gx_n, gy_n)) = 0$$
⁽²⁵⁾

and

$$\lim_{n \to \infty} d(g(F(y_n, x_n)), F(gy_n, gx_n)) = 0$$
(26)

We now show that gx = F(x, y) and gy = F(y, x). Suppose that the assumption (a) holds. For all $n \ge 0$, we have,

$$d(gx, F(gx_n, gy_n)) \leq d(gx, g(F(x_n, y_n))) + d(g(F(x_n, y_n)), F(gx_n, gy_n)).$$

Taking the limit as $n \to \infty$, using (4), (24), (25) and the fact that *F* and *g* are continuous, we have d(gx, F(x, y)) = 0.

Similarly, using (4), (24), (26) and the fact that *F* and *g* are continuous, we have d(gy, F(y, x)) = 0.

Combining the above two results we get

$$gx = F(x, y)$$
 and $gy = F(y, x)$.

Finally, suppose that (b) holds. By (5), (6) and (24), we have $\{gx_n\}$ is a non-decreasing sequence, $gx_n \to x$ and $\{gy_n\}$ is a non-increasing sequence, $gy_n \to y$ as $n \to \infty$. Hence, by assumption (b), we have for all $n \ge 0$,

$$gx_n \preccurlyeq x \quad and \quad gy_n \preccurlyeq y.$$
 (27)

Since F and g are compatible mappings and g is continuous, by (25) and (26)

$$\lim_{n \to \infty} g(gx_n) = gx = \lim_{n \to \infty} g(F(x_n, y_n)) = \lim_{n \to \infty} F(gx_n, gy_n)$$
(28)

and,

$$\lim_{n \to \infty} g(gy_n) = gy = \lim_{n \to \infty} g(F(y_n, x_n)) = \lim_{n \to \infty} F(gy_n, gx_n).$$
(29)

Now we have

$$d(gx, F(x, y)) \leq d(gx, g(gx_{n+1})) + d(g(gx_{n+1}), F(x, y)).$$

Taking $n \rightarrow \infty$ in the above inequality, using (4) and (21) we have,

$$d(gx, F(x, \gamma)) \leq \lim_{n \to \infty} d(gx, g(gx_{n+1})) + \lim_{n \to \infty} d(g(F(x_n, \gamma_n)), F(x, \gamma))$$

$$\leq \lim_{n \to \infty} d(F(gx_n, g\gamma_n)), F(x, \gamma))$$
(30)

Using the property of φ , we get

$$\phi(d(gx, F(x, y))) \leq \lim_{n \to \infty} \phi(d(F(gx_n, gy_n)), F(x, y)))$$

Since the mapping g is monotone increasing, using (3), (27) and (30), we have for all $n \ge 0$,

$$\phi(d(gx, F(x, y))) \leq \lim_{n \to \infty} \frac{1}{2} \phi(d(ggx_n, gx) + d(gy_n, ggy)) - \lim_{n \to \infty} \psi\left(\frac{d(ggx_n, gx) + d(ggy_n, gy)}{2}\right)$$

Using the above inequality, using (24) and the property of ψ , we get $\varphi(d(gx, F(x, y))) = 0$, thus d(gx, F(x, y)) = 0. Hence gx = F(x, y).

Similarly, we can show that gy = F(y, x). Thus we proved that *F* and *g* have a coupled coincidence point.

Corollary 3.1 [11]Let (X, \preccurlyeq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on X such that there exist two elements $x_0, y_0 \in X$ with

$$x_0 \preccurlyeq F(x_0, y_0)$$
 and $y_0 \succcurlyeq F(y_0, x_0)$.

Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\phi(d(F(x,y),F(u,v))) \leq \frac{1}{2}\phi(d(x,u)+d(y,v)) - \psi\left(\frac{d(x,u)+d(y,v)}{2}\right)$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$. Suppose either (a) F is continuous or

(b) X has the following property.

(i) if a non-decreasing sequence {x_n} → x, then x_n ≤ x, for all n,
(ii) if a non-increasing sequence {y_n} → y, then y ≤ y_n, for all n,

then there exist $x, y \in X$ such that

$$x = F(x, y)$$
 and $y = F(y, x)$

that is, F has a coupled fixed point in X.

Corollary 3.2 [11] Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \to X$ be a mapping having the mixed monotone property on X such that there exist two elements $x_0, y_0 \in X$ with

 $x_0 \preccurlyeq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$.

Suppose there exists $\psi \in \Psi$ such that

$$d(F(x,y),F(u,v)) \leq \frac{d(x,u)+d(y,v)}{2} - \psi\left(\frac{d(x,u)+d(y,v)}{2}\right)$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {x_n} → x, then x_n ≤ x, for all n,
(ii) if a non-increasing sequence {y_n} → y, then y ≤ y_n, for all n,

then there exist $x, y \in X$ such that

x = F(x, y) and y = F(y, x)

that is, F has a coupled fixed point in X.

Proof. Take $\varphi(t) = t$ in Corollary 3.1, we get Corollary 3.2.

Corollary 3.3 [5] eses of Corollary 3.1, suppose that for Let (X, \preccurlyeq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \rightarrow X$ be a mapping having the mixed monotone property on X such that there exist two elements $x_0, y_0 \in X$ with

 $x_0 \preccurlyeq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$.

Suppose there exists a real number $k \in [0, 1)$ such that

$$d(F(x, y), F(u, v)) \leq \frac{k}{2}[d(x, u) + d(y, v)]$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \ge v$. Suppose either (a) F is continuous or

(b) X has the following property.

(i) if a non-decreasing sequence {x_n} → x, then x_n ≤ x, for all n,
(ii) if a non-increasing sequence {y_n} → y, then y ≤ y_n, for all n,

then there exist $x, y \in X$ such that

x = F(x, y) and y = F(y, x)

that is, F has a coupled fixed point in X.

Proof. Taking $\psi(t) = \frac{1-k}{2}t$ in Corollary 3.2.

4 Uniqueness of coupled coincidence point

In this section, we will prove the uniqueness of the coupled coincidence point. Note that if (X, \preccurlyeq) is a partially ordered set, then we endow the product $X \times X$ with the following partial order relation, for all (x, y), $(u, v) \in X \times X$,

 $(x, y) \preccurlyeq (u, v) \quad \Leftrightarrow \quad x \preccurlyeq u, y \succ v.$

Theorem 4.1 In addition to hypotheses of Theorem 3.1, suppose that for every (x, y), (z, t) in $X \times X$, if there exists a (u, v) in $X \times X$ that is comparable to (x, y) and (z, t), then F has a unique coupled coincidence point.

Proof. From Theorem 3.1, the set of coupled coincidence points of *F* and *g* is nonempty. Suppose (x, y) and (z, t) are coupled coincidence points of *F* and *g*, that is gx = F(x, y), gy = F(y, x), gz = F(z, t) and gt = F(t, z). We are going to show that gx = gz and gy = gt. By assumption, there exists $(u, v) \subset X \times X$ that is comparable to (x, y) and (z, t). We define sequences $\{gu_n\}$, $\{gv_n\}$ as follows

$$u_0 = u \quad v_0 = v.$$
 $gu_{u+1} = F(u_n, v_n)$ and $gv_{n+1} = F(v_n, u_n)$ for all n

Since (u, v) is comparable with (x, y), we may assume that $(x, y) \ge (u, v) = (u_0, v_0)$. Using the mathematical induction, it is easy to prove that

$$(x, y) \succ (u_n, v_n) \quad \text{for all } n.$$
 (31)

Using (3) and (31), we have

$$\varphi(d(gx, gu_{n+1})) = \varphi(d(F(x, y), F(u_n, v_n))) < \frac{1}{2}\varphi(d(x, u_n) + d(y, v_n)) - \psi\left(\frac{d(x, u_n) + d(y, v_n)}{2}\right)$$
(32)

Similarly

$$\varphi(d(gv_{n+1}, g\gamma)) = \varphi(d(F(v_n, u_n), F(\gamma, x))) < \frac{1}{2}\varphi(d(v_n, \gamma) + d(u_n, x)) - \psi\left(\frac{d(v_n, \gamma) + d(u_n, x)}{2}\right)$$
(33)

Using (32), (33) and the property of ϕ , we have

$$\varphi(d(gx, gu_{n+1}) + d(gy, gv_{n+1})) \leq \varphi(d(gx, gu_{n+1})) + \varphi(d(gy, gv_{n+1}))$$

$$\leq \varphi(d(gx, gu_n) + d(gy, gv_n))$$

$$-2\psi\left(\frac{d(gx, gu_n) + d(gy, gv_n)}{2}\right).$$
(34)

which implies, using the property of ψ ,

$$\varphi(d(gx,gu_{n+1})+d(gy,gv_{n+1})) \leq \varphi(d(gx,gu_n)+d(gy,gv_n))$$

Thus, using the property of φ ,

$$d(gx,gu_{n+1})+d(gy,gv_{n+1}) \leq d(gx,gu_n)+d(gy,gv_n).$$

That is the sequence $\{d(gx, gu_n) + d(gy, gv_n)\}$ is decreasing. Therefore, there exists $\alpha \ge 0$ such that

$$\lim_{n \to \infty} [d(gx, gu_n) + d(gy, gv_n)] = \alpha.$$
(35)

We will show that $\alpha = 0$. Suppose, to the contrary, that $\alpha > 0$. Taking the limit as $n \rightarrow \infty$ in (34), we have, using the property of ψ ,

$$\varphi(\alpha) \leq \varphi(\alpha) - 2 \lim_{n \to \infty} \psi\left(\frac{d(gx, gu_n) + d(gy, gv_n)}{2}\right) < \varphi(\alpha)$$

a contradiction. Thus. α = 0, that is,

 $\lim_{n\to\infty} [d(gx,gu_n)+d(gy,gv_n)]=0.$

It implies

$$\lim_{n \to \infty} d(gx, gu_n) = \lim_{n \to \infty} d(gy, gv_n) = 0.$$
(36)

Similarly, we show that

$$\lim_{n \to \infty} d(gz, gu_n) = \lim_{n \to \infty} d(gt, gv_n) = 0.$$
(37)

Using (36) and (37) we have gx = gz and gy = gt.

Corollary 4.1 [11]*In addition to hypotheses of Corollary 3.1, suppose that for every* (x, y), (z, t) in $X \times X$, if there exists a (u, v) in $X \times X$ that is comparable to (x, y) and (z, t), then F has a unique coupled fixed point.

5 Example

Example 5.1 Let X = [0, 1]. Then (X, \le) is a partially ordered set with the natural ordering of real numbers. Let

d(x, y) = |x - y| for $x, y \in [0, 1]$.

Then (X, d) is a complete metric space. Let $g: X \to X$ be defined as

 $gx = x^2$, for all $x \in X$,

and let $F: X \times X \rightarrow X$ be defined as

$$F(x, y) = \begin{cases} \frac{x^2 - y^2}{3}, & \text{if } x \ge y, \\ 0, & \text{if } x < y. \end{cases}$$

F obeys the mixed g-monotone property. Let $\varphi : [0, \infty) \rightarrow [0, \infty)$ be defined as

$$\phi(t)=\frac{3}{4}t, \quad for \quad t\in [0,\infty).$$

and let $\psi : [0, \infty) \rightarrow [0, \infty)$ be defined as

$$\psi(t) = \frac{1}{4}t, \quad for \quad t \in [0, \infty).$$

$$gx_n = x_{n'}^2 gy_n = y_{n'}^2$$

$$F(x_n, y_n) = \begin{cases} \frac{x_n^2 - y_n^2}{3}, & \text{if } x_n \ge y_n, \\ 0, & \text{if } x_n < y_n. \end{cases}$$

and

$$F(y_n, x_n) = \begin{cases} \frac{y_n^2 - x_n^2}{3}, & \text{if } y_n \ge x_n, \\ 0, & \text{if } y_n < x_n. \end{cases}$$

Then it follows that,

$$\lim_{n\to\infty} d(g(F(x_n,y_n)),F(gx_n,gy_n))=0$$

and

$$\lim_{n\to\infty}d(g(F(y_n,x_n)),F(gy_n,gx_n))=0,$$

Hence, the mappings F and g are compatible in X. Also, $x_0 = 0$ and $y_0 = c(>0)$ are two points in X such that

$$gx_0 = g(0) = 0 = F(0, c) = F(x_0, y_0)$$

and

$$gy_0 = g(c) = c^2 \ge \frac{c^2}{3} = F(c, 0) = F(y_0, x_0).$$

We next verify the contraction (3). We take $x, y, u, v \in X$, such that $gx \ge gu$ and $gy \le gv$, that is, $x^2 \ge u^2$ and $y^2 \le v^2$.

We consider the following cases:

Case 1. $x \ge y$, $u \ge v$. Then,

$$\begin{split} \phi(d(F(x, y), F(u, v))) &= \frac{3}{4} \left[d(F(x, y), F(u, v)) \right] \\ &= \frac{3}{4} \left[d\left(\frac{x^2 - y^2}{3}, \frac{u^2 - v^2}{3}\right) \right] \\ &= \frac{3}{4} \left| \frac{(x^2 - y^2) - (u^2 - v^2)}{3} \right| \\ &= \frac{3}{4} \left| \frac{x^2 - u^2 |+|y^2 - v^2|}{3} \right| \\ &= \frac{1}{2} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{3}{4} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{3}{4} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{3}{8} (d(gx, gu) + d(gy, gv)) \\ &= \frac{1}{4} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{1}{2} \phi(d(gx, gu) + d(gy, gv)) \\ &= \frac{1}{2} \phi(d(gx, gu) + d(gy, gv)) \\ &= \frac{1}{2} \phi(d(gx, gu) + d(gy, gv)) \\ &= \psi \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \end{split}$$

Case 2. $x \ge y$, u < v. Then

$$\begin{split} \phi(d(F(x,y),F(u,v)) &= \frac{3}{4} [d(F(x,y),F(u,v)] \\ &= \frac{3}{4} \left[d(\frac{x^2 - y^2}{3},0) \right] \\ &= \frac{3}{4} \frac{|x^2 - y^2|}{3} \\ &= \frac{3}{4} \frac{|v^2 + x^2 - y^2 - u^2|}{3} \\ &= \frac{3}{4} \frac{|v^2 - y^2| + |u^2 - x^2||}{3} \\ &= \frac{3}{4} \left(\frac{|u^2 - x^2| + |y^2 - v^2|}{3} \right) \\ &= \frac{3}{4} \left(\frac{|u^2 - x^2| + |y^2 - v^2|}{2} \right) \\ &= \frac{1}{2} \left(\frac{d(gx,gu) + d(gy,gv)}{2} \right) \\ &= \frac{3}{4} \left(\frac{d(gx,gu) + d(gy,gv)}{2} \right) \\ &= \frac{3}{8} (d(gx,gu) + d(gy,gv)) \\ &= \frac{3}{8} (d(gx,gu) + d(gy,gv)) \\ &= \frac{1}{2} \left(\frac{d(gx,gu) + d(gy,gv)}{2} \right) \\ &= \frac{1}{2} \phi(d(gx,gu) + d(gy,gv)) \\ &= \frac{1}{2} \phi(d(gx,gu) + d(gy,gv)) \\ &= \frac{1}{2} \phi(d(gx,gu) + d(gy,gv)) \\ &= \psi \left(\frac{d(gx,gu) + d(gy,gv)}{2} \right) \end{split}$$

Case 3. x < y and $u \ge v$. Then

$$\begin{split} \phi(d(F(x, y), F(u, v))) &= \frac{3}{4} \left[d(0, \frac{u^2 - v^2}{3}) \right] \\ &= \frac{3}{4} \frac{|u^2 - v^2|}{3} \\ &= \frac{3}{4} \frac{|u^2 + x^2 - v^2 - x^2|}{3} \\ &= \frac{3}{4} \frac{|(x^2 - v^2) + (u^2 - x^2)|}{3} (since \, y > x) \\ &\leq \frac{3}{4} \frac{|y^2 - v^2| + |u^2 - x^2|}{3} \\ &= \frac{1}{2} \left(\frac{|u^2 - x^2| + |y^2 - v^2|}{2} \right) \\ &= \frac{1}{2} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{3}{4} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{3}{8} (d(gx, gu) + d(gy, gv)) \\ &= \frac{1}{4} \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \\ &= \frac{1}{2} \phi(d(gx, gu) + d(gy, gv)) \\ &= \psi \left(\frac{d(gx, gu) + d(gy, gv)}{2} \right) \end{split}$$

Case 4.
$$x < y$$
 and $u < v$ with $x^2 \le u^2$ and $y^2 \ge v^2$. Then, $F(x, y) = 0$ and $F(u, v) = 0$,

that is,

$$\phi(d(F(x, \gamma), F(u, \nu))) = \phi(d(0, 0)) = \phi(0) = 0.$$

Therefore all conditions of Theorem 3.1 are satisfied. Thus the conclusion follows.

Acknowledgements

The authors would like to thank the referees for the invaluable comments that improved this paper.

Authors' contributions

The authors have been working together on each step of the paper such as the literature review, results and examples.

Competing interests

The authors declare that they have no competing interests.

Received: 18 March 2011 Accepted: 30 August 2011 Published: 30 August 2011

References

- Abbas, M, Ali Khan, M, Radenovic, S: Common coupled fixed point theorems in cone metric spaces for w-compatible mappings. Appl Math Comput. 217, 195–201 (2010). doi:10.1016/j.amc.2010.05.042
- Abbas, M, Ali Khan, M, Nazir, T: Coupled common fixed point results in two generalized metric spaces. Appl Math Comput. 217, 6328–6336 (2011). doi:10.1016/j.amc.2011.01.006
- Agarwal, RP, El-Gebeily, MA, O'Regan, D: Generalized contractions in partially ordered metric spaces. Appl Anal. 87, 1–8 (2008). doi:10.1080/00036810701714164
- Altun, I, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl 2011 (2011). Article ID 508730
- Bhaskar, TG, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal: Theorey Methods Appl. 65, 1379–1393 (2006). doi:10.1016/j.na.2005.10.017
- Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73, 2524–2531 (2010). doi:10.1016/j.na.2010.06.025
- Hussain, N, Shah, MH, Kutbi, MA: Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q-function. Fixed Point Theory Appl 2011, 21 (2011). Article ID 703938. doi:10.1186/1687-1812-2011-21
- Khamsi, MA, Hussain, N: KKM mappings in metric type spaces. Nonlinear Anal: Theory Methods Appl. 73, 3123–3129 (2010). doi:10.1016/j.na.2010.06.084
- 9. Khamsi, MA, Kirk, W: An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics. Wiley-Interscience, New York (2001)
- Lakshmikantham, V, Ćirifić, L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal: Theorey Methods Appl. 70(12), 4341–4349 (2009). doi:10.1016/j.na.2008.09.020
- 11. Luong, NV, Thuan, NX: Coupled fixed point in partially ordered metric spaces and applications. Nonlinear Anal: Theorey Methods Appl. **74**, 983–992 (2011). doi:10.1016/j.na.2010.09.055
- Nieto, JJ, Rodriguez-Lopez, R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order. 22, 223–239 (2005). doi:10.1007/s11083-005-9018-5
- Nieto, JJ, Lopez, RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sinica Engl Ser. 23(12), 2205–2212 (2007). doi:10.1007/s10114-005-0769-0
- 14. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Am Math Soc. **132**, 1435–1443 (2004). doi:10.1090/S0002-9939-03-07220-4
- Sabetghadam, F, Masiha, HP, Sanatpour, AH: Some coupled fixed point theorems in cone metric spaces. Fixed Point Theory Appl 2009 (2009). Article ID 125426
- 16. Ray, BK: On Ćirić's fixed point theorem. Fund Math. XCIV, 221–229 (1977)

doi:10.1186/1687-1812-2011-44

Cite this article as: Alotaibi and Alsulami: Coupled coincidence points for monotone operators in partially ordered metric spaces. *Fixed Point Theory and Applications* 2011 2011:44.