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Abstract

In this paper, we introduce generalized hybrid mapping on CAT(0) spaces. The class
of generalized hybrid mappings contains the class of nonexpansive mappings,
nonspreading mappings, and hybrid mappings. We study the fixed point theorems
of generalized hybrid mappings on CAT(0) spaces. We also consider some iteration
processes for generalized hybrid mappings on CAT(0) spaces, and our results
generalize some results of fixed point theorems on CAT(0) spaces and Hilbert spaces.
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1 Introduction
Fixed point theory in CAT(0) spaces was first studied by Kirk [1,2]. He showed that

every nonexpansive (single-valued) mapping defined on a bounded closed convex sub-

set of a complete CAT(0) space always has a fixed point. Since then, the fixed point

theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly

developed, and many papers have appeared (e.g., see [3-6] and related references.)

Let (X, d) be a metric space. A geodesic path joining x Î X to y Î X (or, more

briefly, a geodesic from x to y) is a map c from a closed interval [0, ℓ] ⊆ R to X such

that c(0) = x, c(ℓ) = y, and d(c(t), c(t′)) = |t - t′| for all t, t′ Î [0, ℓ]. In particular, c is

an isometry and d(x, y) = ℓ. The image a of c is called a geodesic (or metric) segment

joining x and y. When it is unique, this geodesic is denoted by [x, y]. The space (X, d)

is said to be a geodesic space if every two points of X are joined by a geodesic, and X

is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each

x, y Î X. A subset Y ⊆ X is said to be convex if Y includes every geodesic segment

joining any two of its points.

A geodesic triangle Δ(x1, x2, x3) in a geodesic space (X, d) consists of three points x1,

x2, and x3 in X (the vertices of Δ and a geodesic segment between each pair of vertices

(the edge of Δ). A comparison triangle for geodesic triangle Δ (x1, x2, x3) in (X, d) is a

triangle �(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that

dE2
(x̄i, x̄j) = d(xi, xj) for i, j Î {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate

size satisfy the following comparison axiom.
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CAT(0): Let Δ be a geodesic triangle in X, and let � be a comparison triangle for Δ.

Then, Δ is said to satisfy the CAT(0) inequality if for all x, y Î Δ and all comparison

points x̄, ȳ ∈ �, d(x, y) ≤ dE2 (x̄, ȳ). It is well known that any complete, simply con-

nected Riemannian manifold having nonpositive sectional curvature is a CAT(0) space.

Other examples include Pre-Hilbert spaces [7], R-trees [8], the complex Hilbert ball

with a hyperbolic metric [9], and many others.

If x, y1, y2 are points in a CAT(0) space, and if y0 is the midpoint of the segment [y1,

y2], then the CAT(0) inequality implies

d2(x, y0) ≤ 1
2
d2(x, y1) +

1
2
d2(x, y2) − 1

4
d2(y1, y2).

This is the (CN) inequality of Bruhat and Tits [10]. In fact, a geodesic space is a

CAT(0) space if and only if it satisfies the (CN) inequality ([[7], p. 163]).

In 2008, Dhompongsa and Panyanak [11] gave the following result, and the proof is

similar to the proof of remark in [[12], p. 374].

Lemma 1.1. [11] Let X be a CAT(0) space. Then,

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z)

for all x, y, z Î X and t Î [0, 1].

By the above lemma, we know that CAT(0) space is a convex metric space. Indeed, a

metric space X with a convex structure if there exists a mapping W : X × X × [0, 1] ®
X such that

d(W(x, y, t), z) ≤ td(x, z) + (1 − t)d(y, z)

for all x, y, z Î X and t Î [0, 1] and call this space X a convex metric space [13].

Furthermore, Takahashi [13] has proved that

d(x, y) = td(x,W(x, y, t)) + (1 − t)d(y,W(x, y, t))

for all x, y, z Î X and t Î [0, 1] when X is a convex metric space with a convex

structure. So, we also get the following result, and it is proved in [11].

Lemma 1.2. [11] Let X be a CAT(0) space, and x, y Î X. For each t Î [0, 1], there

exists a unique point z Î [x, y] such that d(x, z) = td(x, y) and d(y, z) = (1 - t)d(x, y).

For convenience, from now on we will use the notation z = (1 - t)x ⊕ ty. Therefore,

we have:

z = (1 − t)x ⊕ ty ⇔ z ∈ [x, y], d(x, z) = td(x, y), and d(y, z) = (1 − t)d(x, y).

Let C be a nonempty closed convex subset of a CAT(0) space (X, d). A mapping T :

C ® C is called a nonexpansive mapping if d(Tx, Ty) ≤ d(x, y) for all x, y Î C. A

point x Î C is called a fixed point of T if Tx = x. Let F(T) denote the set of fixed

points of T.

Now, we introduce the following nonlinear mappings on CAT(0) spaces.

Definition 1.1. Let C be a nonempty closed convex subset of a CAT(0) space X. We

say T : C ® X is a generalized hybrid mapping if there are functions a1, a2, a3, k1, k2 :

C ® [0, 1) such that
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(P1) d2(Tx, Ty)

≤ a1(x)d2(x, y) + a2(x)d2(Tx, y) + a3(x)d2(Ty, x) + k1(x)d2(Tx, x) + k2(x)d2(Ty, y)

for all x, y Î C;

(P2) a1(x) + a2(x) + a3(x) ≤ 1 for all x, y Î C;

(P3) 2k1(x) <1 - a2(x) and k2(x) <1 - a3(x) for all x Î C.

Remark 1.1. In Definition 1.1, if a1(x) = 1 and a2(x) = a3(x) = k1(x) = k2(x) = 0 for

all x Î C, then T is a nonexpansive mapping.

In 2008, Kohsaka and Takahashi [14] introduced nonspreading mappings on Banach

spaces. Let C be a nonempty closed convex subset of a real Hilbert space H. A map-

ping T : C ® C is said to be a nonspreading mapping if 2||Tx - Ty||2 ≤ ||Tx - y||2 + ||

Ty - x||2 for all x, y Î C (for detail, refer to [15]).

In 2010, Takahashi [16] introduced hybrid mapping on Hilbert spaces. Let C be a

nonempty closed convex subset of a real Hilbert space H. A mapping T : C ® C is

said to be hybrid if 3||Tx - Ty||2 ≤ ||x - y||2 + ||Tx - y||2 + ||x - Ty||2 for all x, y Î C.

In 2011, Takahashi and Yao [17] also introduced two nonlinear mappings in Hilbert

spaces. Let C be a nonempty closed convex subset of a real Hilbert space H. A map-

ping T : C ® C is said to be TJ-1 if 2||Tx - Ty||2 ≤ ||x - y||2 + ||Tx - y||2 for all x, y

Î C. A mapping T : C ® C is said to be TJ-2 if 3||Tx - Ty||2 ≤ 2||Tx - y||2 + ||Ty -

x||2 for all x, y Î C.

Now, we give the definitions of nonspreading mapping, TJ-1, TJ-2, hybrid mappings

on CAT(0) spaces. In fact, these are special cases of generalized hybrid mapping on

CAT(0) spaces.

Definition 1.2. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Then, T : C ® C is said to be a nonspreading mapping if 2d2(Tx, Ty) ≤ d2

(Tx, y) + d2(Ty, x) for all x, y Î C.

Definition 1.3. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Then, T : C ® C is said to be hybrid if 3d2(Tx, Ty) ≤ d2(x, y)+d2(Tx, y)+d2(x,

Ty) for all x, y Î C.

Definition 1.4. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Then, T : C ® C is said to be TJ-1 if 2d2(Tx, Ty) ≤ d2(x, y) + d2(Tx, y) for all

x, y Î C.

Definition 1.5. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Then, T : C ® C is said to be TJ-2 if 3d2(Tx, Ty) ≤ 2d2(Tx, y) + d2(Ty, x) for

all x, y Î C.

On the other hand, we observe that construction of approximating fixed points of

nonlinear mappings is an important subject in the theory of nonlinear mappings and

its applications in a number of applied areas. Let C be a nonempty closed convex sub-

set of a real Hilbert space H, and let T, S : C ® C be two mappings.

In 1953, Mann [18] gave an iteration process:

xn+1 = αnxn + (1 − αn)Txn,n ≥ 0,

where the initial guess x0 is taken in C arbitrarily, and {an} is a sequence in the inter-

val [0, 1].
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In 1974, Ishikawa [19] gave an iteration process which is defined recursively by⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := (1 − αn)xn + αnTyn
yn := (1 − βn)xn + βnTxn

where {an} and {bn} are sequences in the interval [0, 1].

In 1986, Das and Debata [20] studied a two mappings’s iteration on the pattern of

the Ishikawa iteration:⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := (1 − αn)xn + αnTyn
yn := (1 − βn)xn + βnSxn

(1:1)

where {an} and {bn} are sequences in the interval [0, 1].

In 2007, Agarwal et al. [21] introduced the following iterative process:⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := (1 − αn)Txn + αnTyn,

yn := (1 − βn)xn + βnTxn,

(1:2)

where the initial guess x0 is taken in C arbitrarily, and {an} and {bn} are sequences in

the interval [0, 1].

In 2011, Khan and Abbas [22] modified (1.1) and (1.2) for two nonexpansive map-

pings S and T in CAT(0) spaces as follows.⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := (1 − αn)xn ⊕ αnTyn,

yn := (1 − βn)xn ⊕ βnSxn,

(1:3)

and ⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := (1 − αn)Txn ⊕ αnTyn,

yn := (1 − βn)xn ⊕ βnTxn,

(1:4)

where the initial guess x0 is taken in C arbitrarily, and {an} and {bn} are sequences in

the interval [0, 1].

Let D be a nonempty closed convex subset of a complete CAT(0) space (X, d). For

each x Î X, there exists a unique element y Î D such that d(x, y) = min
z∈D

d(x, z)[7]. In

the sequel, let PD : X ® D be defined by

PD(x) = y ⇔ d(x, y) = min
z∈D

d(x, z).

And we call PD the metric projection from the complete CAT(0) space X onto a

nonempty closed convex subset D of X. Note that PD is a nonexpansive mapping [7].

Now, let C be a nonempty closed convex subset of a complete CAT(0) space X, let

T, S : C ® X be two nonexpansive mappings, and we modified (1.3) and (1.4) as fol-

lows:
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⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)xn ⊕ αnTyn),

yn := PC((1 − βn)xn ⊕ βnSxn),

(1:5)

and ⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)Txn ⊕ αnTyn),

yn := PC((1 − βn)xn ⊕ βnTxn),

(1:6)

where the initial guess x0 is taken in C arbitrarily, and {an} and {bn} are sequences in

the interval [0, 1].

In this paper, we study the fixed point theorems of generalized hybrid mappings on

CAT(0) spaces. Next, we also consider iteration process (1.5), (1.6), or Mann’s type for

generalized hybrid mappings on CAT(0) spaces, and our results improve or generalize

recent results on fixed point theorems on CAT(0) spaces or Hilbert spaces.

2 Preliminaries
In this paper, we need the following definitions, notations, lemmas, and related results.

Lemma 2.1. [11] Let X be a CAT(0) space. Then,

d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y)

for all t Î [0, 1] and x, y, z Î X.

Definition 2.1. Let {xn} be a bounded sequence in a CAT(0) space X, and let C be a

subset of X. Now, we use the following notations:

(i) r(x, {xn}) := lim sup
n→∞

d(x, xn).

(ii) r({xn}) := inf
x∈X

r(x, {xn}).
(iii) rC({xn}) := inf

x∈C
r(x, {xn}).

(iv) A({xn}) := {x Î X : r(x, {xn}) = r({xn})}.

(iv) AC({xn}) := {x Î C : r(x, {xn}) = rC({xn})}.

Note that x Î X is called an asymptotic center of {xn} if x Î A({xn}). It is known that

in a CAT(0) space, A({xn}) consists of exactly one point [23].

Definition 2.2. [6] Let (X, d) be a CAT(0) space. A sequence {xn} in X is said to be

Δ-convergent to x Î X if x is the unique asymptotic center of {un} for every subse-

quence {un} of {xn}. That is, A({un}) = {x} for every subsequence {un} of {xn}. In this

case, we write � - lim
n

xn = x and call x the Δ-limit of {xn}.

In 2008, Kirk and Panyanak [6] gave the following result for nonexpansive mappings

on CAT(0) spaces.

Theorem 2.1. [6] Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® C be a nonexpansive mapping. Let {xn} be a bounded

sequence in C with � - lim
n

xn = x and lim
n→∞ d(xn,Txn) = 0. Then, x Î C and Tx = x.

Lemma 2.2. [6] Let (X, d) be a CAT(0) space. Then, every bounded sequence in X

has a Δ-convergent subsequence.
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Lemma 2.3. [24] Let C be a nonempty closed convex subset of a CAT(0) space X. If

{xn} is a bounded sequence in C, then the asymptotic center A({xn}) of {xn} is in C.

Lemma 2.4. [11] Let C be a nonempty closed convex subset of a CAT(0) space (X,

d).

Let {xn} be a bounded sequence in X with A({xn}) = {x}, and let {un} be a subse-

quence of {xn} with A({un}) = {u}. Suppose that lim
n→∞ d(xn, u) exists. Then, x = u.

Let {xn} be a bounded sequence in a CAT(0) space (X, d), and let C be a nonempty

closed convex subset of X which contains {xn}. We denote the notation

xn ⇀ w iff �(w) = inf
x∈C

�(x),

where �(x) := lim sup
n→∞

d(xn, x). Then, we observe that

A({xn}) = {x ∈ X : �(x) = inf
u∈X

�(u)}, and
AC({xn}) = {x ∈ C : �(x) = inf

u∈C
�(u)}.

Remark 2.1. Let {xn} be a bounded sequence in a CAT(0) space (X, d), and let C be

a nonempty closed convex subset of X which contains {xn}. If xn ⇀ w, then w Î C.

Proof. There exist x̄ ∈ X and ȳ ∈ C such that A({xn}) = {x̄} and AC({xn}) = {ȳ}. By
Lemma 2.3, x̄ = ȳ. Hence,

�(ȳ) = �(x̄) ≤ �(w) = inf
x∈C

�(x) = �(ȳ).

Hence, w Î A({xn}) and w = x̄ ∈ C. □
Lemma 2.5. [25] Let C be a nonempty closed convex subset of a CAT(0) space (X,

d), and let {xn} be a bounded sequence in C. If � - lim
n

xn = x, then xn ⇀ x.

Proposition 2.1. Let C be a nonempty closed convex subset of a complete CAT(0)

space (X, d), and let T : C ® X be a generalized hybrid mapping with F(T) ≠ ∅. Then,

F(T) is a closed convex subset of C.

Proof. If {xn} is a sequence in F (T ) and lim
n→∞ xn = x. Then, we have:

d2(Tx, xn) ≤ d2(x, xn) +
k1(x)

1 − a2(x)
d2(Tx, x).

This implies that

(1 − k1(x)
1 − a2(x)

)d2(Tx, x) ≤ 0.

Then, Tx = x and F(T) is a closed set.

Next, we want to show that F(T) is a convex set. If x, y Î F(T) ⊆ C and z Î [x, y],

then there exists t Î [0, 1] such that z = tx ⊕ (1 - t)y. Since C is convex, z Î C.
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Furthermore,

d2(Tz, z)

≤ td2(Tz, x) + (1 − t)d2(Tz, y) − t(1 − t)d2(x, y)

≤ td2(z, x) + tk1(z)
1−a2(z)

d2(Tz, z) + (1 − t)d2(z, y) + (1−t)k1(z)
1−a2(z)

d2(Tz, z) − t(1 − t)d2(x, y)

≤ t(1 − t)2d2(x, y) + k1(z)
1−a2(z)

d2(Tz, z) + t2(1 − t)d2(x, y) − t(1 − t)d2(x, y)

≤ k1(z)
1−a2(z)

d2(Tz, z).

Hence, Tz = z and F(T) is a convex set. □
Remark 2.2. Let C be a nonempty closed convex subset of a complete CAT(0) space

(X, d), and let T : C ® X be any one of nonspreading mapping, TJ-1 mapping, TJ-2

mapping, and hybrid mapping. If F(T) ≠ ∅, then F(T) is a closed convex subset of C.

3 Fixed point theorems on complete CAT(0) spaces
The following theorem establishes a demiclosed principle for a generalized hybrid

mapping on CAT(0) spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® X be a generalized hybrid mapping. Let {xn} be a bounded

sequence in C with xn ⇀ x and lim
n→∞ d(xn,Txn) = 0. Then, x Î C and Tx = x.

Proof. Since xn ⇀ x, we know that x Î C and �(x) = inf
u∈C

�(u), where

�(u) := lim sup
n→∞

d(xn, u). Furthermore, we know that F(x) = inf{F (u) : u Î X}. Since T

is a generalized hybrid,

d2(Txn,Tx)

≤ a1(x)d2(x, xn) + a2(x)d2(Tx, xn) + a3(x)d2(Txn, x) + k1(x)d2(Tx, x)+

k2(x)d2(Txn, xn)

≤ a1(x)d2(x, xn) + a2(x)(d(Tx,Txn) + d(Txn, xn))2 + a3(x)(d(Txn, xn) + d(xn, x))2

+k1(x)d2(Tx, x) + k2(x)d2(Txn, xn).

Then, we have:

lim sup
n→∞

d2(Txn,Tx) ≤ lim sup
n→∞

d2(x, xn) +
k1(x)

(1 − a2(x))
d2(x,Tx).

This implies that

lim sup
n→∞

d2(xn,Tx)

≤ lim sup
n→∞

(d(xn,Txn) + d(Txn,Tx))2

≤ lim sup
n→∞

d2(Txn,Tx)

≤ lim sup
n→∞

d2(x, xn) +
k1(x)

1 − a2(x)
d2(x,Tx).

Besides, by (CN) inequality, we have:

d2(xn,
1
2
x ⊕ 1

2
Tx) ≤ 1

2
d2(xn, x) +

1
2
d2(xn,Tx) − 1

4
d2(x,Tx).
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So,

lim sup
n→∞

d2(xn,
1
2
x ⊕ 1

2
Tx)

≤ 1
2
lim sup
n→∞

d2(xn, x) +
1
2
lim sup
n→∞

d2(xn,Tx) − 1
4
d2(x,Tx)

≤ lim sup
n→∞

d2(xn, x) +
k1(x)

2(1 − a2(x))
d2(x,Tx) − 1

4
d2(x,Tx).

So,

(
1
4

− k1(x)
2(1 − a2(x))

)d2(x,Tx) ≤ lim sup
n→∞

d2(xn, x) − lim sup
n→∞

d2(xn,
1
2
x ⊕ 1

2
Tx).

That is,

(
1
4

− k1(x)
2(1 − a2(x))

)d2(x,Tx) ≤ (�(x))2 − (�(
1
2
x ⊕ 1

2
Tx))2 ≤ 0.

Therefore, Tx = x. □
By Theorem 3.1 and Lemma 2.5, it is easy to get the conclusion.

Corollary 3.1. Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® X be a generalized hybrid mapping. Let {xn} be a bounded

sequence in C with Δ-limn xn = x and lim
n→∞ d(xn,Txn) = 0. Then, Tx = x.

Theorem 3.1 generalizes Theorem 2.1 since the class of generalized hybrid mappings

contains the class of nonexpansive mappings on CAT(0) spaces. Furthermore, we also

get the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® X be any one of nonspreading mapping, TJ-1 mapping, TJ-2

mapping, and hybrid napping. Let {xn} be a bounded sequence in C with xn ⇀ x and

lim
n→∞ d(xn,Txn) = 0. Then, Tx = x.

Corollary 3.3. [14-17] Let C be a nonempty closed convex subset of a real Hilbert

space H, and let T : C ® H be a any one of nonspreading mapping, hybrid mapping,

TJ-1 mapping, and TJ-2 mapping. Let {xn} be a sequence in C with {xn} converges

weakly to x Î C and lim
n→∞ d(xn,Txn) = 0. Then, x Î C and Tx = x.

Proof. For each x, y Î H, let d(x, y) := ||x - y||. Clearly, a real Hilbert space H is a

CAT(0) space, and C is a nonempty closed convex subset of a CAT(0) space H, and T

is generalized hybrid. Since {xn} converges weakly to x, {xn} is a bounded sequence.

Since H is a real Hilbert space,

lim sup
n→∞

||xn − x|| ≤ lim sup
n→∞

||xn − y||, for each y ∈ C.

This implies that xn ⇀ x. By Theorem 3.1, Tx = x and the proof is completed. □
Theorem 3.2. Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® C be a generalized hybrid mapping with k1(x) = k2(x) = 0 for

all x Î C. Then, the following conditions are equivalent:

(i) {Tnx} is bounded for some x Î C;

(ii) F(T) ≠ ∅.
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Proof. Suppose that {Tnx} is bounded for some x Î C. For each n Î N, let xn := Tnx.

Since {xn} is bounded, there exists x̄ ∈ X such that A({xn}) = {x̄}. By Lemma 2.3, x̄ ∈ C.

Furthermore, we have:

d2(xn,Tx̄) ≤ a1(x̄)d2(x̄, xn−1) + a2(x̄)d2(Tx̄, xn−1) + a3(x̄)d2(xn, x̄).

This implies that

lim sup
n→∞

d2(xn,Tx̄)

≤ a1(x̄) lim sup
n→∞

d2(x̄, xn−1) + a2(x̄) lim sup
n→∞

d2(Tx̄, xn−1) + a3(x̄) lim sup
n→∞

d2(xn, x̄)

≤ (a1(x̄) + a3(x̄)) lim sup
n→∞

d2(xn, x̄) + a2(x̄) lim sup
n→∞

d2(xn,Tx̄).

Then

(�(Tx̄))2 = lim sup
n→∞

d2(xn,Tx̄) ≤ lim sup
n→∞

d2(xn, x̄) = (�(x̄))2.

Since A({xn}) = {x̄}, Tx̄ = x̄. This shows that F(T) ≠ ∅. It is easy to see that (ii)

implies (i). □
By Theorem 3.2, it is easy to get the following results.

Corollary 3.4. Let C be a nonempty closed convex subset of a complete CAT(0)

space X, and let T : C ® C be any one of nonspreading mapping, TJ-1 mapping, TJ-2

mapping, hybrid mapping, and nonexpansive mapping. Then, {Tnx} is bounded for

some x Î C if and only if F(T) ≠ ∅.

Corollary 3.5. [1,2] Let C be a nonempty bounded closed convex subset of a com-

plete CAT(0) space X, and let T : C ® C be a nonexpansive mapping. Then, F(T) ≠ ∅.

Corollary 3.6. [14-17,26] Let C be a nonempty closed convex subset of a real Hilbert

space H, and let T : C ® C be any one of nonspreading mapping, TJ-1 mapping, TJ- 2

mapping, hybrid mapping, and nonexpansive mapping. Then, {Tnx} is bounded for

some x Î C if and only if F(T) ≠ ∅.

4 Δ-convergent theorems
In the sequel, we need the following lemmas. By Lemmas 2.2-2.4 and Theorem 3.1,

and following the similar argument as in the proof of Lemma 2.10 in [11], we have the

following result.

Lemma 4.1. Let C be a nonempty closed convex subset of a complete CAT(0) space

X, and let T : C ® X be a generalized hybrid mapping. If {xn} is a bounded sequence

in C such that lim
n→∞ d(xn,Txn) = 0 and {d(xn, v)} converges for all v Î F (T ), then ωw

(xn) ⊆ F (T ), where ωw(xn) := ∪A({un}) and {un} is any subsequence of {xn}. Further-

more, ωw(xn) consists of exactly one point.

Remark 4.1. The conclusion of Lemma 4.1 is still true if T : C ® X is any one of

nonexpansive mapping, nonspreading mapping, TJ-1 mapping, TJ-2 mapping, and

hybrid mapping.

Theorem 4.1. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Let T : C ® X be a generalized hybrid mapping with F(T) ≠ ∅. Let {an} be a

sequence in [0, 1]. Let {xn} be defined by
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{
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)xn ⊕ αnTxn).

Assume lim inf
n→∞ αn[(1 − αn) − k2(w)

1 − a3(w)
] > 0 for all w Î F(T). Then, {xn} Δ-con-

verges to a point of F(T).

Proof. Clearly, {xn} ⊆ C. Take any w Î F (T ) and let w be fixed. Then,

d2(Tx,w) ≤ d2(w, x) +
k2(w)

1 − a3(w)
d2(Tx, x)

for all x Î C. Hence, by Lemma 2.1,

d2(xn+1,w)

= d2(PC((1 − αn)xn ⊕ αnTxn),w)

≤ d2((1 − αn)xn ⊕ αnTxn,w)

≤ (1 − αn)d2(xn,w) + αnd2(Txn,w) − αn(1 − αn)d2(xn,Txn)

≤ d2(xn,w) + αn[
k2(w)

1 − a3(w)
− (1 − αn)]d2(Txn, xn).

By assumption, there exists δ >0 and M Î N such that

αn[(1 − αn) − k2(w)
1 − a3(w)

] ≥ δ > 0

for all n ≥ M. Without loss of generality, we may assume that

αn[(1 − αn) − k2(w)
1 − a3(w)

] > 0

for all n Î N. Hence, {d(xn, w)} is decreasing, lim
n→∞ d(xn,w) exists, and {xn} is

bounded.

Then

lim
n→∞ αn[(1 − αn) − k2(w)

1 − a3(w)
]d2(xn,Txn) = 0.

This implies that lim
n→∞ d(xn,Txn) = 0. By Lemma 4.1, there exists x̄ ∈ C such that

ωw({xn}) = {x̄} ⊆ F(T). So, � − limn xn = x̄ and the proof is completed. □
Theorem 4.2. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Let T : C ® X be a generalized hybrid mapping with F(T) ≠ ∅. Let {an} and

{bn} be two sequences in [0, 1]. Let {xn} be defined as⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)Txn ⊕ αnTyn),

yn := PC((1 − βn)xn ⊕ βnTxn).

Assume that:

(i) k2(w) = 0 for all w Î F (T );

(ii) lim inf
n→∞ αn(1 − αn) > 0 and lim inf

n→∞ βn(1 − βn) > 0.
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Then {xn} Δ-converges to a point of F (T ).

Proof. Take any w Î F(T) and let w be fixed. Then, by (i), d(Tx, w) ≤ d(x, w) for all

x Î C. By Lemma 2.1, we have:

d2(yn,w)

= d2(PC((1 − βn)xn ⊕ βnTxn),w)

≤ d2((1 − βn)xn ⊕ βnTxn,w)

≤ (1 − βn)d2(xn,w) + βnd2(Txn,w) − βn(1 − βn)d(xn,Txn)

≤ d2(xn,w) − βn(1 − βn)d(xn,Txn)

≤ d2(xn,w).

Hence,

d2(xn+1,w)

= d2(PC((1 − αn)Txn ⊕ αnTyn),w)

≤ d2((1 − αn)Txn ⊕ αnTyn,w)

≤ (1 − αn)d2(Txn,w) + αnd2(Tyn,w) − αn(1 − αn)d2(Txn,Tyn)

≤ (1 − αn)d2(xn,w) + αnd
2(yn,w) − αn(1 − αn)d2(Txn,Tyn)

≤ d2(xn,w) − αn(1 − αn)d2(Txn,Tyn)

≤ d2(xn,w).

Hence, lim
n→∞ d(xn,w) exists, and {xn} and {yn} are bounded sequences. Besides, we

know that

lim
n→∞ αn(1 − αn)d2(Txn,Tyn) = 0.

This implies that lim
n→∞ d(Txn,Tyn) = 0. So,

lim sup
n→∞

d(xn+1,Txn) ≤ lim
n→∞ d(Txn,Tyn) = 0.

And this implies that lim
n→∞ d(xn+1,Txn) = 0. Furthermore, we also have:

0 ≤ αn(1 − αn)d2(Txn,Tyn) ≤ d2(xn,w) − d2(xn+1,w) + αn[d2(yn,w) − d2(xn,w)].

So,

αn(1 − αn)[d2(xn,w) − d2(yn,w)] ≤ d2(xn,w) − d2(xn+1,w)

This implies that lim
n→∞(d2(yn,w) − d2(xn,w)) = 0. So,

βn(1 − βn)d2(xn,Txn) ≤ d2(xn,w) − d2(yn,w).

This implies that lim
n→∞ d(xn,Txn) = 0. By Lemma 4.1, there exists x̄ ∈ C such that

ωw({xn}) = {x̄} ⊆ F(T). So, � − limn xn = x̄ and the proof is completed. □
Remark 4.2. If 0 < a < b <1 and {an} is a sequence in [0, 1] with a ≤ an ≤ b for all n

Î N, then lim inf
n→∞ αn(1 − αn) ≥ a(1 − b) > 0. Furthermore, the class of generalized

hybrid mappings contains the class of nonexpansive mappings in CAT(0) spaces.

Hence, Theorem 4.2 generalizes Theorem 1 in [22].
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Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let T : C ® X be any one of nonspreading mapping, nonexpansive mapping, hybrid

mapping, TJ-1 mapping, and TJ-2 mapping. Let PC be the metric projection from H

onto C. Suppose that F(T) ≠ ∅. Let {an} and {bn} be two sequences in [0, 1]. Let {xn}

be defined as⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)Txn + αnTyn),

yn := PC((1 − βn)xn + βnTxn).

Assume that lim inf
n→∞ αn(1 − αn) > 0 and lim inf

n→∞ βn(1 − βn) > 0. Then, {xn} converges

weakly to a point x of F(T).

Proof. For each x, y Î H, let d(x, y) := ||x - y||. Clearly, H is a CAT(0) space, and C

is a nonempty closed convex subset of H. Furthermore, tx ⊕ (1 - t)y = tx + (1 - t)y for

all x, y Î C and t Î [0, 1]. Since T is any one of nonspreading mapping, nonexpansive

mapping, hybrid mapping, TJ-1 mapping, and TJ-2 mapping, k1(w) = k2(w) = 0 for all

w Î F(T). By Theorem 4.2, {xn} is a bounded sequence, and {xn} Δ-converges to a

point x of F(T).

Next, we want to show that {xn} converges to x. If {xnk} is a subsequence of {xn} and

{xnk} converges weakly to u Î C, then xnk ⇀ u and A({xnk}) = {u}. Since {xn} Δ-con-

verges to x, u = x. Then, every weakly convergent subsequence of {xn} has the same

limit. So, {xn} converges weakly to x, and the proof is completed. □
Lemma 4.2. Let X be a CAT(0) space. Let {xn} and {yn} be two bounded sequences

in X with lim
n→∞ d(xn, yn) = 0. If � − lim

n
xn = x, then � - lim

n
yn = x.

Proof. Since ??, we know that

r({xn}) = r(x, {xnk }) = lim sup
k→∞

d(xnk , x)

for every subsequence {xnk} of {xn}. Now, take any subsequence {ynk} of {yn} and let

{ynk} be fixed. Then, there exists y Î X such that A({ynk}) = {y}. Hence,

lim sup
n→∞

d(ynk , y) ≤ lim sup
n→∞

d(ynk , x)

≤ lim sup
n→∞

d(ynk , xnk) + lim sup
n→∞

d(xnk , x)

= lim sup
n→∞

d(xnk , x)

= r({xn})
≤ lim sup

n→∞
d(xnk , y)

≤ lim sup
n→∞

d(xnk , y).

So, lim sup
n→∞

d(ynk , y) = lim sup
n→∞

d(ynk , x). And this implies that x ∈ A({ynk}). Since

A({ynk}) = {y}, x = y. So, A({ynk}) = {x} for every subsequence {ynk} of {yn}. Therefore,
� − lim

n
yn = x. □

Theorem 4.3. Let C be a nonempty closed convex subset of a complete CAT(0)

space X. Let T, S : C ® X be two generalized hybrid mapping with F(T) ∩ F(S) ≠ ∅.

Let {an} and {bn} be two sequences in [0, 1]. Let {xn} be defined as
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⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)xn ⊕ αnTyn),

yn := PC((1 − βn)xn ⊕ βnSxn).

Assume that:

(i) kT2(w) = 0 for all w Î F (T ) ∩ F (S);

(ii) lim inf
n→∞ αn(1 − αn) > 0 and lim inf

n→∞ βn[(1 − βn) − kS2(w)

1 − aS3(w)
] > 0.

Then, {xn} Δ-converges to a common fixed point of S and T.

Proof. Take any w Î F(T) ∩ F(S) and let w be fixed. Then, d(Tx, w) ≤ d(x, w) for all

x ≤ C. By Lemma 2.1, we have:

d2(yn,w)

= d2(PC((1 − βn)xn ⊕ βnSxn),w)

≤ d2((1 − βn)xn ⊕ βnSxn,w)

≤ (1 − βn)d2(xn,w) + βnd2(Sxn,w) − βn(1 − βn)d2(xn, Sxn)

≤ (1 − βn)d2(xn,w) + βn[d2(xn,w) +
kS2(w)

1 − aS3(w)
d2(Sxn, xn)] − βn(1 − βn)d2(xn, Sxn)

≤ d2(xn,w) − βn[(1 − βn) − kS2(w)

1 − aS3(w)
]d2(Sxn, xn).

By (ii), there exists δ >0 and M Î N such that

βn[(1 − βn) − kS2(w)

1 − aS3(w)
] ≥ δ > 0

for all n ≥ M. Without loss of generality, we may assume that

βn[(1 − βn) − kS2(w)

1 − aS3(w)
] > 0

for all n Î N. Hence, we know that d(yn, w) ≤ d(xn, w), and

d2(xn+1,w)

= d2(PC((1 − αn)xn ⊕ αnTyn),w)

≤ d2((1 − αn)xn ⊕ αnTyn,w)

≤ (1 − αn)d2(xn,w) + αnd2(Tyn,w) − αn(1 − αn)d2(xn,Tyn)

≤ (1 − αn)d2(xn,w) + αnd
2(yn,w) − αn(1 − αn)d2(xn,Tyn)

≤ d2(xn,w) − αn(1 − αn)d2(xn,Tyn)

≤ d2(xn,w).

Hence, lim
n→∞ d(xn,w) exists, and {xn} and {yn} are bounded sequences. Besides, we

know that

lim
n→∞ αn(1 − αn)d2(xn,Tyn) = 0.
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This implies that lim
n→∞ d(xn,Tyn) = 0. Furthermore, we also have:

αn(1 − αn)d2(xn,Tyn) ≤ d2(xn,w) − d2(xn+1,w) + αn[d2(yn,w) − d2(xn,w)].

Then,

αn[d2(xn,w) − d2(yn,w)] ≤ d2(xn,w) − d2(xn+1,w).

And this implies that lim
n→∞[d2(xn,w) − d2(yn,w)] = 0. Besides, we have:

βn[(1 − βn) − kS2(w)

1 − aS3(w)
]d2(xn, Sxn) ≤ d2(xn,w) − d2(yn,w).

This implies that lim
n→∞ d(xn, Sxn) = 0. Hence,

lim sup
n→∞

d(yn, xn) = lim sup
n→∞

βnd(xn, Sxn) ≤ lim sup
n→∞

d(xn, Sxn) = 0.

So, lim
n→∞ d(yn, xn) = 0, and lim

n→∞ d(yn,Tyn) = 0. By Lemma 4.1, there exist x̄, ȳ ∈ C such

that ωw({xn}) = {x̄} ⊆ F(S) and ωw({yn}) = {ȳ} ⊆ F(T). So, � − limn xn = x̄ and

� − limn yn = ȳ. By Lemma 4.2, x̄ = ȳ.

Remark 4.3. Theorem 4.3 generalizes Theorem 4 in [22].

Following the same argument as in the proof of Corollary 4.1, we have the following

result from Theorem 4.3.

Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let T, S : C ® X be any two of nonspreading mapping, hybrid mapping, TJ-1 mapping,

TJ-2 mapping. Suppose that F(T) ∩ F(S) ≠ ∅. Let {an} and {bn} be two sequences in [0,

1]. Let PC be the metric projection from H onto C. Let {xn} be defined as⎧⎪⎨
⎪⎩
x1 ∈ C chosen arbitrary,

xn+1 := PC((1 − αn)xn + αnTyn),

yn := PC((1 − βn)xn + βnSxn).

Assume that lim inf
n→∞ αn(1 − αn) > 0 andlim inf

n→∞ βn[(1 − βn) − kS2(w)

1 − aS3(w)
] > 0. Then,

{xn} Δ-converges to a common fixed point of S and T.
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