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Abstract

The purpose of this paper is to present a fixed point theory for multivalued
�-contractions using the following concepts: fixed points, strict fixed points, periodic
points, strict periodic points, multivalued Picard and weakly Picard operators; data
dependence of the fixed point set, sequence of multivalued operators and fixed
points, Ulam-Hyers stability of a multivalued fixed point equation, well-posedness of
the fixed point problem, limit shadowing property of a multivalued operator, set-to-
set operatorial equations and fractal operators. Our results generalize some recent
theorems given in Petruşel and Rus (The theory of a metric fixed point theorem for
multivalued operators, Proc. Ninth International Conference on Fixed Point Theory
and its Applications, Changhua, Taiwan, July 16-22, 2009, 161-175, 2010).
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1 Introduction
Let X be a nonempty set. Then, we denote

P(X) := {Y ⊂ X|Y �= ∅}, Pcl(X) := {Y ∈ P(X)|Y is closed}.

If T : Y ⊆ X ® P(X) is a multivalued operator, then FT := {x Î Y | x Î T(x)} denotes

the fixed point set T, while (S F)T := {x Î Y | {x} = T (x)} is the strict fixed point set of

T.

Recall now two important notions, see [1] for details. A mapping � : ℝ+ ® ℝ+ is said

to be a comparison function if it is increasing and �k(t) ® 0, as k ® +∞. As a conse-

quence, we also have �(t) < t, for each t > 0, �(0) = 0 and � is continuous in 0.

A comparison function � : ℝ+ ® ℝ+ having the property that t - � (t) ® +∞, as t ®
+∞ is said to be a strict comparison function.

Moreover, a function � : ℝ+ ® ℝ+ is said to be a strong comparison function if it is

strictly increasing and
∑∞

n=1
ϕn(t) < +∞, for each t > 0.

If (X, d) is a metric space, then we denote by H the Pompeiu-Hausdorff generalized

metric on Pcl(X). Then, T : X ® Pcl(X) is called a multivalued �-contraction, if � : ℝ+

® ℝ+ is a strong comparison function, and for all x1, x2 Î X, we have that
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H(T(x1),T(x2)) ≤ ϕ(d(x1, x2)).

The purpose of this paper is to present a fixed point theory for multivalued �-con-

tractions in terms of the following:

• fixed points, strict fixed points, periodic points ([2-17]);

• multivalued weakly Picard operators ([18]);

• multivalued Picard operators ([19]);

• data dependence of the fixed point set ([18,20-22]);

• sequence of multivalued operators and fixed points ([23,24]);

• Ulam-Hyers stability of a multivalued fixed point equation ([25]);

• well-posedness of the fixed point problem ([26,27]);

• limit shadowing property of a multivalued operator ([28]);

• set-to-set operatorial equations ([29-31]);

• fractal operators ([32-40]).

2 Notations and basic concepts
Throughout this paper, the standard notations and terminologies in non-linear analysis

are used, see for example Kirk and Sims [41], Petruşel [42], Rus et al. [18,43]. See also

[44-52].

Let X be a nonempty set. Then, we denote

P(X) := {Y|Y is a subset of X}, P(X) := {Y ∈ P(X)|Y is nonempty}.

Let (X, d) be a metric space. Then δ(Y ) := sup {d(a, b)| a, b Î Y} and

Pb(X) := {Y ∈ P(X)|δ(Y) < +∞}, Pcl(X) := {Y ∈ P(X)|Y is closed},
Pcp(X) := {Y ∈ P(X)|Y is compact}, Pop(X) := {Y ∈ P(X)|Y is open}.

Let T : X ® P(X) be a multivalued operator. Then, the operator

T̂ : P(X) → P(X)defined by

T̂(Y) :=
⋃
x∈Y

T(x), for Y ∈ P(X)

is called the fractal operator generated by T.

For the continuity of concepts with respect to multivalued operators, we refer to

[44,45], etc.

It is known that if (X, d) is a metric spaces and T : X ® Pcp(X), then the following

conclusions hold:

(a) if T is upper semicontinuous, then T (Y) Î Pcp(X), for every Y Î Pcp(X);

(b) the continuity of T implies the continuity of T̂ : Pcp(X) → Pcp(X). A sequence of

successive approximations of T starting from x Î X is a sequence (xn)nÎN of elements

in X with x0 = x, xn+1 Î T (xn), for n Î N.

If T : Y ⊆ X ® P(X), then FT := {x Î Y | x Î T (x)} denotes the fixed point set T,

while (SF)T := {x Î Y | {x} = T (x)} is the strict fixed point set of T. By Graph(T) :=

{(x, y) Î Y × × : y Î T(x)}, we denote the graphic of the multivalued operator T.

If T : X ® P(X), then T0 := 1X, T
1 := T,..., T n+1 = T ○ Tn, n Î N denote the iterate

operators of T.
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By definition, a periodic point for a multivalued operator T : X ® Pcp(X) is an ele-

ment p Î X such that p ∈ FTm, for some integer m ≥ 1, i.e., p ∈ T̂m({p}) for some inte-

ger m ≥ 1.

The following (generalized) functionals are used in the main sections of the paper.

The gap functional

(1) D : P(X) × P(X) → R+ ∪ {+∞}

D(A,B) =

⎧⎨
⎩
inf {d(a, b)|a ∈ A, b ∈ B},
0,
+∞,

A �= ∅ �= B
A = ∅ = B
otherwise

The excess generalized functional

(2) ρ : P(X) × P(X) → R+ ∪ {+∞}

ρ(A,B) =

⎧⎨
⎩
sup{D(a,B)|a ∈ A},
0,
+∞,

A �= ∅ �= B
A = ∅
B = ∅ �= A

The Pompeiu-Hausdorff generalized functional.

(3) H : P(X) × P(X) → R+ ∪ {+∞}

H(A,B) =

⎧⎨
⎩
max {ρ(A,B),ρ(B,A)},
0,
+∞,

A �= ∅ �= B
A = ∅ = B
otherwise

For other details and basic results concerning the above notions, see, for example,

[2,41,44-50].

We recall now the notion of multivalued weakly Picard operator.

Definition 2.1. (Rus et al. [18]) Let (X, d) be a metric space. Then, T : X ® P (X) is

called a multivalued weakly Picard operator (briefly MWP operator) if for each x Î X

and each y Î T(x) there exists a sequence (xn)nÎN in X such that:

(i) x0 = x, x1 = y;

(ii) xn+1 Î T (xn), for all n Î N;

(iii) the sequence (xn)nÎN is convergent and its limit is a fixed point of T.

Definition 2.2. Let (X, d) be a metric space and T : X ® P (X) be a MWP operator.

Then, we define the multivalued operator T∞ : Graph(T) ® P(FT ) by the formula

T∞(x, y) = { z Î FT | there exists a sequence of successive approximations of T starting

from (x, y) that converges to z }.

Definition 2.3. Let (X, d) be a metric space and T : X ® P (X) a MWP operator.

Then, T is said to be a ψ-multivalued weakly Picard operator (briefly ψ-MWP opera-

tor) if and only if ψ : ℝ+ ® ℝ+ is a continuous in t = 0 and increasing function such

that ψ(0) = 0, and there exists a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph (T).

In particular, if ψ(t) := ct, for each t Î ℝ+ (for some c > 0), then T is called c-MWP

operator, see Petruşel and Rus [26]. See also [53,54].

We recall now the notion of multivalued Picard operator.

Lazăr Fixed Point Theory and Applications 2011, 2011:50
http://www.fixedpointtheoryandapplications.com/content/2011/1/50

Page 3 of 12



Definition 2.4. Let (X, d) be a complete metric space and T : X ® P (X). By defini-

tion, T is called a multivalued Picard operator (briefly MP operator) if and only if:

(i) (S F)T = FT = {x*};

(ii) Tn(x)
H→{x∗} as n ® ∞, for each x Î X.

For basic notions and results on the theory of weakly Picard and Picard operators,

see [42,43,53,54].

The following lemmas will be useful for the proof of the main results.

Lemma 2.5. ([1,18]) Let (X, d) be a metric space and A, B Î Pcl(X). Suppose that

there exists h > 0 such that for each a Î A there exists b Î B such that d(a, b) ≤ h]
and for each b Î B there exists a Î A such that d(a, b) ≤ h]. Then, H(A, B) ≤ h.
Lemma 2.6. ([1,18]) Let (X, d) be a metric space and A, B Î Pcl(X). Then, for each q

> 1 and for each a Î A there exists b Î B such that d(a, b) < qH(A, B).

Lemma 2.7. (Generalized Cauchy’s Lemma) (Rus and Şerban [55]) Let � : ℝ+ ® ℝ+

be a strong comparison function and (bn)nÎN be a sequence of non-negative real num-

bers, such that limn®+∞ bn = 0. Then,

lim
n→+∞

n∑
k=0

ϕn−k(bk) = 0.

The following result is known in the literature as Matkowski-Rus’s theorem (see [1]).

Theorem 2.8 Let (X, d) be a complete metric space and f : X ® × be a �-contraction,

i.e., � : ℝ+ ® ℝ+ is a comparison function and

d(f (x), f (y)) ≤ ϕ(d(x, y)) for all x, y ∈ X.

Then f is a Picard operator, i.e., f has a unique fixed point x* Î X and limn®+∞ fn(x)

= x*, for all × Î X.

Finally, let us recall the concept of H-convergence for sets. Let (X, d) be a metric

space and (An)nÎN be a sequence in Pcl(X). By definition, we will write

An
H→A∗ ∈ Pcl(X) as n ® ∞ if and only if H(An, A*) ® 0 as n ® ∞.

3 A fixed point theory for multivalued generalized contractions
Our first result concerns the case of multivalued �-contractions.

Theorem 3.1. Let (X, d) be a complete metric space and T : X ® Pcl(X) be a multi-

valued �-contraction. Then, we have:

(i) (Existence of the fixed point) T is a MWP operator;

(ii) If additionally �(qt) ≤ q�(t) for every t Î ℝ+ (where q > 1) and t = 0 is a point

of uniform convergence for the series
∑∞

n=1
ϕn(t), then T is a ψ-MWP operator, with

ψ(t) := t + s(t), for each t Î ℝ+ (where s(t) :=
∑∞

n=1 ϕn(t));

(iii) (Data dependence of the fixed point set) Let S : X ® Pcl(X) be a multivalued

�-contraction and h > 0 be such that H(S(x), T(x)) ≤ h, for each × Î X. Suppose

that �(qt) ≤ q� (t) for every t Î ℝ+ (where q > 1) and t = 0 is a point of uniform

convergence for the series
∑∞

n=1
ϕn(t). Then, H(FS, FT) ≤ ψ(h);
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(iv) (sequence of operators) Let T, Tn : X ® Pcl(X), n Î N be multivalued �-contrac-

tions such that Tn(x)
H→T(x)as n ® +∞, uniformly with respect to each × Î X.

Then, FTn
H→ FTas n ® +∞.

If, moreover T(x) Î Pcp(X), for each × Î X, then we additionally have:

(v) (generalized Ulam-Hyers stability of the inclusion × Î T(x)) Let ε > 0 and × Î X

be such that D(x, T(x)) ≤ ε. Then there exists x* Î FT such that d(x, x*) ≤ ψ(ε);

(vi) T is upper semicontinuous, T̂ : (Pcp(X),H) → (Pcp(X),H), T̂(Y) :=
⋃

x∈Y T(x)is a

set-to-set �-contraction and (thus) FT̂ = {A∗
T};

(vii) Tn(x)
H→A∗

T
as n ® +∞, for each × Î X;

(viii) FT ⊂ A∗
Tand FT is compact;

(ix) A∗
T =

⋃
n∈N∗ Tn(x), for each x Î FT.

Proof. (i) This is Węgrzyk’s Theorem, see [56].

(ii) Let x0 Î X and x1 Î T (x0) be arbitrarily chosen. We may suppose that x0 ≠ x1.

Denote t0 := d(x0, x1) > 0. Then, for any q > 1 there exists x2 Î T(x1) such that d

(x1, x2) < qH(T (x0), T (x1)) ≤ q�(t0). We may again suppose that x1 ≠ x2. Thus,

�(d(x1, x2)) < �(q�(t0)). Next, there exists x3 Î T(x2) such that

T(x2)) ≤ ϕ(qϕ(t0))
ϕ(d(x1, x2))

ϕ(d(x1, x2)) ≤ qϕ2(t0),

T(x2)) ≤ ϕ(qϕ(t0))
ϕ(d(x1, x2))

ϕ(d(x1, x2)) ≤ qϕ2(t0). By an inductive procedure, we obtain

a sequence of successive approximations for T starting from (x0, x1) Î Graph(T)

such that

d(xn, xn+1) ≤ qϕn(t0), for each n ∈ N∗.

Denote by

sn(t) :=
n∑

k=1

ϕk(t), for each t > 0.

Then, d(xn, xn+p) ≤ q(�n(t0) +...+ �n+p−1(t0)), for each n, p Î N*. If we set s0(t) := 0

for each t Î ℝ+, then

d(xn, xn+p) ≤ q(sn+p−1(t0) − sn−1(t0)), for each n, p ∈ N∗. (3:1)

By (3.1) we get that the sequence (xn)nÎN is Cauchy and hence it is convergent in (X,

d) to some x* Î X. Notice that, by the �-contraction condition, we immediately get

that Graph(T) is closed in X × X. Hence, x* Î FT. Then, by (3.1) letting p ® + ∞, we

obtain that

d(xn, x∗) ≤ q(s(t0) − sn−1(t0)), for each n ∈ N∗. (3:2)

If we put n = 1 in (3.2), we obtain that d(x1, x*) ≤ qs(t0). Hence,

d(x0, x∗) ≤ d(x0, x1) + d(x1, x∗) ≤ t0 + qs(t0). (3:3)
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Finally, letting q ↘ 1 in (3.3), we get that

d(x0, x∗) ≤ t0 + s(t0) = ψ(t0) = ψ(d(x0, x1)). (3:4)

Notice that, ψ is increasing (since � is), ψ(0) = 0 and, since t = 0 is a point of uni-

form convergence for the series
∑∞

n=1
ϕn(t), ψ is continuous in t = 0.

These, together with (3.4), prove that T is a ψ-MWP operator.

(iii) Let x0 Î FS be arbitrary chosen. Then, by (ii), we have that

d(x0, t∞(x0, x1)) ≤ ψ(d(x0, x1)), for each x1 ∈ T(x0).o

Let q > 1 be arbitrary. Then, there exists x1 Î T (x0) such that d(x0, x1) < qH(S(x0), T

(x0)). Then

d(x0, t∞(x0, x1)) ≤ ψ(qH(S(x0),T(x0))) ≤ qψ(H(S(x0),T(x0))) ≤ qψ(η).

By a similar procedure we can prove that, for each y0 Î FT, there exists y1 Î S(y0)

such that

d(y0, s∞(y0, y1)) ≤ qψ(η).

By the above relations and using Lemma 2.5, we obtain that

H(FS, FT) ≤ qψ(η), where q > 1.

Letting q ↘ 1, we get the conclusion.

(iv) Let ε > 0. Since Tn(x)
H→T(x) as n ® +∞, uniformly with respect to each x Î X,

there exists Nε Î N such that

sup
x∈X

H(Tn(x),T(x)) < ε, for each n ≥ Nε.

Then, by (iii) we get that H(FTn , FT) ≤ ψ(ε), for each n ≥ Nε. Since ψ is continuous

in 0 and ψ(0) = 0, we obtain that FTn
H→ FT.

(v) Let ε > 0 and x Î X be such that D(x, T(x)) ≤ ε. Then, since T(x) is compact,

there exists y Î T(x) such that d(x, y) ≤ ε. By the proof of (i), we have that

d(x, t∞(x, y)) ≤ ψ(d(x, y)).

Since x* := t∞ (x, y) Î FT, we get the desired conclusion d(x, x*) ≤ ψ(ε).

(vi) (Andres-Górniewicz [39], Chifu and Petruşel [40].) By the �-contraction condi-

tion, one obtain that the operator T is H-upper semicontinuos. Since T(x) is com-

pact, for each x Î X, we know that T is upper semicontinuous if and only if T is

H-upper semicontinuous. We will prove now that

H(T(A),T(B)) ≤ ϕ(H(A,B)), for each A, B ∈ Pcp(X).

For this purpose, let A, B Î Pcp(X) and let u Î T (A). Then, there exists a Î A such

that u Î T(a). For a Î A, by the compactness of the sets A, B there exists b Î B such

that
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d(a, b) ≤ H(A,B). (3:5)

Then, we have D(u, T(B)) ≤ D(u, T(b)) ≤ H(T(a), T(b)) ≤ �(d(a, b)). Hence, by the

above relation and by (3.5) we get

ρ(T(A),T(B)) ≤ ϕ(d(a, b)) ≤ ϕ(H(A,B)). (3:6)

By a similar procedure, we obtain

ρ(T(B),T(A)) ≤ ϕ(d(a, b)) ≤ ϕ(H(A,B)). (3:7)

Thus, (3.6) and (3.7) together imply that

H(T(A),T(B)) ≤ ϕ(H(A,B)).

Hence, T̂ is a self-�-contraction on the complete metric space (Pcp(X), H)). By the

�-contraction principle for singlevalued operators (see Theorem 2.8), we obtain:

(a) FT̂ = {A∗
T}

and

(b) T̂n(A)
H→A∗

T
as n ® +∞, for each A Î Pcp(X).

(vii) By (vi)-(b) we get that Tn({x}) = T̂n({x}) H→A∗
T
as n ® +∞, for each x Î X.

(viii)-(ix) (Chifu and Petruşel [40].) Let x Î FT be arbitrary. Then, x Î T(x) ⊂ T2(x)

⊂ ... ⊂ Tn(x) ⊂ ... Hence x Î Tn(x), for each n Î N*. Moreover,

lim
n→+∞Tn(x) =

⋃
n∈N∗ T

n(x). By (vii), we immediately get that A∗
T =

⋃
n∈N∗ T

n(x).

Hence, x ∈
⋃

n∈N∗ T
n(x) = A∗

T. The proof is complete. ■

A second result for multivalued �-contractions is as follows.

Theorem 3.2. Let (X, d) be a complete metric space and T : X ® Pcl(X) be a multi-

valued �-contraction with (SF)T ≠ ∅. Then, the following assertions hold:

(x) FT = (SF)T = {x*};

(xi) If, additionally T(x) is compact for each × Î X, then FTn = (SF)Tn = {x∗}for n Î
N*;

(xii) If, additionally T(x) is compact for each × Î X, then Tn(x)
H→{x∗}as n ® +∞,

for each x Î X;

(xiii) Let S : X ® Pcl(X) be a multivalued operator and h > 0 such that FS ≠ ∅ and

H(S(x), T(x)) ≤ h, for each × Î X. Then, H(FS, FT) ≤ b(h), where b : ℝ+ ® ℝ+ is

given by b(h) := sup{t Î ℝ+| t - �(t) ≤ h};
(xiv) Let Tn : X ® Pcl(X), n Î N be a sequence of multivalued operators such that

FTn �= ∅for each n Î N and Tn(x)
H→T(x)as n ® +∞, uniformly with respect to × Î

X. Then, FTn
H→ FTas n ® +∞.

(xv) (Well-posedness of the fixed point problem with respect to D) If (xn)n Î N is a

sequence in × such that D(xn, T (xn)) ® 0 as n ® ∞, then xn
d→ x∗as n ® ∞;
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(xvi) (Well-posedness of the fixed point problem with respect to H) If (xn)nÎN is a

sequence in × such that H(xn, T (xn)) ® 0 as n ® ∞, then xn
d→ x∗as n ® ∞;

(xvii) (Limit shadowing property of the multivalued operator) Suppose additionally

that � is a sub-additive function. If (yn)nÎN is a sequence in × such that D(yn+1, T

(yn)) ® 0 as n ® ∞, then there exists a sequence (xn)nÎN ⊂ X of successive approxi-

mations for T, such that d(xn, yn) ® 0 as n ® ∞.

Proof. (x) Let x* Î (SF)T. Notice first that (SF)T = {x*}. Indeed, if y Î (SF)T with y ≠

x*, then d(x*, y) = H(T(x*), T(y)) ≤ �(d(x*, y)). By the properties of �, we immediately

get that y = x*. Suppose now that y Î FT. Then,

d(x∗, y) = D(T(x∗), y) ≤ H(T(x∗),T(y)) ≤ ϕ(d(x∗, y)).

Thus, y = x*. Hence, FT ⊂ (SF)T. Since (SF)T ⊂ FT, we get that (SF)T = FT.

(xi) Notice first that x∗ ∈ (SF)Tn ⊂ FTn, for each n Î N*. Consider y ∈ (SF)Tn, for

arbitrary n Î N*. Then, by (vi) we have that

d(x∗, y) = H(Tn(x∗),Tn(y)) ≤ ϕ(H(Tn−1(x∗),Tn−1(y))) ≤ · · · ≤ ϕn(d(x∗, y)).

Thus, y = x* and (SF)Tn = {x∗}. Consider now y ∈ FTn. Then, we have

d(x∗, y) = D(Tn(x∗), y) ≤ H(Tn(x∗),Tn(y))

≤ ϕ(H(Tn−1(x∗),Tn−1(y))) ≤ · · · ≤ ϕn(d(x∗, y)).

Thus, y = x* and hence Tn(x)
H→{x∗}.

(xii) Let x Î X be arbitrarily chosen. Then, we have

H(Tn(x), x∗) = H(Tn(x),Tn(x∗)) ≤ ϕ(H(Tn−1(x),

Tn−1(x∗))) ≤ · · · ≤ ϕ(nd(x, x∗)) → 0 as n → +∞.

(xiii) Let y Î FS. Then,

d(y, x∗) ≤ H(S(y), x∗) ≤ H(S(y),T(y)) +H(T(y), x∗) ≤ η + ϕ(d(y, x∗)).

Thus, d(y, x*) ≤ b(h). The conclusion follows now by the following relations

H(FS, FT) = sup
y∈FS

d(y, x∗) ≤ β(η).

(xiv) follows by (xiii).

(xv) ([26,27]) Let (xn)nÎN be a sequence in X such that D(xn, T (xn)) ® 0 as n ® ∞.

Then,

d(xn, x∗) ≤ D(xn,T(xn)) +H(T(xn),T(x∗))
≤ D(xn,T(xn)) + ϕ(d(xn, x∗)).
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Then

d(xn, x∗) ≤ β(D(xn,T(xn))) → 0 as n → +∞.

(xvi) follows by (xv).

(xvii) Let (yn)nÎN be a sequence in X such that D(yn+1, T (yn)) ® 0 as n ® ∞.

Then, there exists un Î T (yn), n Î N such that d(yn+1, un) ® 0 as n ® +∞.

We shall prove that d(yn, x*) ® 0 as n ® +∞. We successively have:

d(x∗, yn+1) ≤ H(x∗,T(yn)) +D(yn+1,T(yn))

≤ ϕ(d(x∗, yn)) +D(yn+1,T(yn))

≤ ϕ(ϕ(d(x∗, yn−1)) +D(yn,T(yn−1))) +D(yn+1,T(yn))

≤ ϕ2(d(x∗, yn−1)) + ϕ(D(yn,T(yn−1))) +D(yn+1,T(yn))

≤ . . . ≤ ϕn+1(d(x∗, y0)) + ϕn(D(y1,T(y0)))

+ · · · +D(yn+1,T(yn)).

By the generalized Cauchy’s Lemma, the right-hand side tends to 0 as n ® +∞.

Thus, d(x*, yn+1) ® 0 as n ® +∞.

On the other hand, by the proof of Theorem 3.1 (i)-(ii), we know that there exists a

sequence (xn)nÎN of successive approximations for T starting from arbitrary (x0, x1) Î
Graph(T ) which converge to a fixed point x* Î X of the operator T. Since the fixed

point is unique, we get that d(xn, x*) ® 0 as n ® +∞. Hence, for such a sequence (xn)

nÎN, we have

d(yn, xn) ≤ d(yn, x∗) + d(x∗, xn) → 0 as n → +∞.

The proof is complete. ■
A third result for multivalued �-contraction is the following.

Theorem 3.3. Let (X, d) be a complete metric space and T : X ® Pcp(X) be a multi-

valued �-contraction such that T(FT) = FT. Then, we have:

(xviii) Tn(x)
H→ FTas n ® +∞, for each × Î X;

(xix) T(x) = FT, for each × Î FT;

(xx) If (xn)nÎN ⊂ X is a sequence such that xn
d→ x∗ ∈ FTas n ® ∞, then

Tn(x)
H→ FTas n ® +∞.

Proof. (xviii) By T(FT) = FT and Theorem 3.1 (vi), we have that FT = A∗
T. The conclu-

sion follows by Theorem 3.1 (vii).

(xix) Let x Î FT be arbitrary. Then, x Î T(x) and thus FT ⊂ T(x). On the other

hand T(x) ⊂ T(FT) ⊂ FT. Thus, T(x) = FT, for each x Î FT.

(xx) Let (xn)nÎN ⊂ X is a sequence such that xn
d→ x∗ ∈ FT as n ® +∞.

Then, we have:

H(T(xn), FT) = H(T(xn),T(x∗)) ≤ ϕ(d(xn, x∗)) → 0 as n → +∞.
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The proof is complete. ■
For compact metric spaces, we have:

Theorem 3.4. Let (X, d) be a compact metric space and T : X ® Pcl(X) be a multiva-

lued �-contraction. Then, we have:

(xxi) (Generalized well-posedness of the fixed point problem with respect to D) If (xn)

nÎN is a sequence in × such that D(xn, T (xn)) ® 0 as n ® ∞, then there exists a

subsequence (xni)i∈N of (xn)n∈Nxni
d→ x∗ ∈ FT as i ® ∞.

Proof. (xxi) Let (xn)nÎN is a sequence in X such that D(xn, T (xn)) ® 0 as n ® ∞.

Let (xni)i∈N be a subsequence of (xn)nÎN such that xni
d→ x∗ as i ® ∞. Then, there exists

yni ∈ T(xni), i Î N such that yni
d→ x∗ as i ® ∞. By the �-contraction condition, we

have that T has closed graph. Hence, x* Î FT. ■
Remark 3.1. For the particular case �(t) = at (with a Î [0, 1[), for each t Î ℝ+ see

Petruşel and Rus [57].

Recall now that a self-multivalued operator T : X ® Pcl(X) on a metric space (X, d) is

called (ε, �)-contraction if ε > 0, � : ℝ+ ® ℝ+ is a strong comparison function and

x, y ∈ X with x �= y and d(x, y) < ε implies H(T(x),T(y)) ≤ ϕ(d(x, y)).

Then, for the case of periodic points we have the following results.

Theorem 3.5. Let (X, d) be a metric space and T : X ® Pcp(X) be a continuous (ε,

�)-contraction. Then, the following conclusions hold:

(i) T̂m : Pcp(X) → Pcp(X)is a continuous (ε, �)-contraction, for each m Î N*;

(ii) if, additionally, there exists some A Î Pcp(X) such that a sub-sequence

(T̂m(A))m∈N∗of (T̂m(A))m∈N∗converges in (Pcp(X), H) to some X* Î Pcp(X), then there

exists x* Î X* a periodic point for T.

Proof. (i) By Theorem 3.1 (vi) we have that the operator T̂ given by

T̂(Y) :=
⋃

x∈Y T(x) maps Pcp(X) to Pcp(X) and it is continuous. By induction we get that

T̂m : Pcp(X) → Pcp(X) and it is continuous. We will prove that T̂ is a (ε, �)-contraction.,

i.e., if ε > 0 and A, B Î Pcp(X) are two distinct sets such that H(A, B) < ε, then

H(T̂(A), T̂(B)) ≤ ϕ(H(A,B)). Notice first that, by the symmetry of the Pompoiu-Haus-

dorff metric we only need to prove that

sup
u∈T̂(A)

D(u, T̂(B)) ≤ ϕ(H(A,B)).

Let u ∈ T̂(A). Then, there exists a0 Î A such that u Î T (a0). It follows that

D(u,T(b)) ≤ H(T(a0),T(b)), for every b ∈ B.

Since A, B Î Pcp(X), there exists b0 Î B such that d(a0, b0) ≤ H(A, B) < ε. Thus, by

the (ε, �)-contraction condition, we get

H(T(a0),T(b0)) ≤ ϕ(d(a0, b0)) ≤ ϕ(H(A,B)).
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Hence

D(u,T(b)) ≤ ϕ(H(A,B)).

Moreover, by the compactness of T̂(A) we get the conclusion, namely

sup
u∈T̂(A)

D(u, T̂(B)) ≤ ϕ(H(A,B)).

For the case of arbitrary m Î N*, the proof of the fact that T̂mis a (ε, �)-contraction

easily follows by induction.

(ii) By (i) and the properties of the function �, we get that T̂m is an ε-contractive

operator, i.e., if ε > 0 and A, B Î Pcp(X) are two distinct sets such that H(A, B) < ε,

then H(T̂m(A), T̂m(B)) < H(A,B). Now the conclusion follows from Theorem 3.2 in

[2]. ■
Theorem 3.6. Let (X, d) be a compact metric space and T : X ® Pcp(X) be a continu-

ous (ε; �)-contraction. Then, there exists x* Î X a periodic point for T.

Proof. The conclusion follows by Theorem 3.5 (ii) and Corollary 3.3. in [2]. ■
Remark 3.2. We also refer to [58,59] for some results of this type for multivalued

operators of Reich’s type.
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