
RESEARCH Open Access

Strong convergence of a hybrid method for
monotone variational inequalities and fixed point
problems
Yonghong Yao1, Yeong-Cheng Liou2, Mu-Ming Wong3* and Jen-Chih Yao4

* Correspondence:
mmwong@cycu.edu.tw
3Department of Applied
Mathematics, Chung Yuan Christian
University, Chung Li 32023, Taiwan
Full list of author information is
available at the end of the article

Abstract

In this paper, we suggest a hybrid method for finding a common element of the set
of solution of a monotone, Lipschitz-continuous variational inequality problem and
the set of common fixed points of an infinite family of nonexpansive mappings. The
proposed iterative method combines two well-known methods: extragradient
method and CQ method. Under some mild conditions, we prove the strong
convergence of the sequences generated by the proposed method.
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1 Introduction
Let H be a real Hilbert space with inner product 〈· , ·〉 and induced norm || · ||. Let C be

a nonempty closed convex subset of H. Let A : C ® H be a nonlinear operator. It is well

known that the variational inequality problem VI(C, A) is to find u Î C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of the variational inequality is denoted by Ω.

Variational inequality theory has emerged as an important tool in studying a wide

class of obstacle, unilateral and equilibrium problems, which arise in several branches

of pure and applied sciences in a unified and general framework. Several numerical

methods have been developed for solving variational inequalities and related optimiza-

tion problems, see [1,1-25] and the references therein. Let us start with Korpelevich’s

extragradient method which was introduced by Korpelevich [6] in 1976 and which

generates a sequence {xn} via the recursion:{
yn = PC[xn − λAxn],

xn+1 = PC[xn − λAyn],n ≥ 0,
(1:1)

where PC is the metric projection from Rn onto C, A : C ® H is a monotone opera-

tor and l is a constant. Korpelevich [6] proved that the sequence {xn} converges

strongly to a solution of V I(C, A). Note that the setting of the space is Euclid space

Rn.
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Korpelevich’s extragradient method has extensively been studied in the literature for

solving a more general problem that consists of finding a common point that lies in

the solution set of a variational inequality and the set of fixed points of a nonexpansive

mapping. This type of problem aries in various theoretical and modeling contexts, see

e.g., [16-22,26] and references therein. Especially, Nadezhkina and Takahashi [23]

introduced the following iterative method which combines Korpelevich’s extragradient

method and a CQ method:

x0 = x ∈ C,

yn = PC[xn − λnAxn],

zn = αnxn + (1 − αn)SPC[xn − λnAyn],

Cn = {z ∈ C : ‖ zn − z ‖ ≤ ‖ xn − z ‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx,n ≥ 0,n ≥ 0,

where PC is the metric projection from H onto C, A : C ® H is a monotone

k-Lipschitz-continuous mapping, S : C ® C is a nonexpansive mapping, {ln} and {an}

are two real number sequences. They proved the strong convergence of the sequences

{xn}, {yn} and {zn} to the same element in Fix(S) ∩ Ω. Ceng et al. [25] suggested a new

iterative method as follows:

yn = PC[xn − λnAxn],

zn = αnxn + (1 − αn)SnPC[xn − λnAyn],

Cn = {z ∈ C : ‖ zn − z ‖ ≤ ‖ xn − z ‖},
find xn+1 ∈ Cn such that

〈xn − xn+1 + en − σnAxn+1, xn+1 − x〉 ≥ −εn, ∀x ∈ Cn,

where A : C ® H is a pseudomonotone, k-lipschitz-continuous and (w, s)-sequen-

tially-continuous mapping, {Si}Ni=1 : C → C are N nonexpansive mappings. Under some

mild conditions, they proved that the sequences {xn}, {yn} and {zn} converge weakly to

the same element of
⋂N

i=1 Fix(Si) ∩ � if and only if lim infn〈Axn, x - xn〉 ≥ 0, ∀x Î C.

Note that Ceng, Teboulle and Yao’s method has only weak convergence. Very recently,

Ceng, Hadjisavvas and Wong further introduced the following hybrid extragradient-

like approximation method

x0 ∈ C,

yn = (1 − γn)xn + γnPC[xn − λnAxn],

zn = (1 − αn − βn)xn + αnyn + βnSPC[xn − λnAyn],

Cn = {z ∈ C : ‖ zn − z‖2 ≤ ‖ xn − z‖2 + (3 − 3γn + αn)b2 ‖ Axn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

for all n ≥ 0. It is shown that the sequences {xn}, {yn}, {zn} generated by the above

hybrid extragradient-like approximation method are well defined and converge strongly

to PF(S)∩Ω.

Motivated and inspired by the works of Nadezhkina and Takahashi [23], Ceng et al.

[25], and Ceng et al. [27], in this paper we suggest a hybrid method for finding a com-

mon element of the set of solution of a monotone, Lipschitz-continuous variational

inequality problem and the set of common fixed points of an infinite family of
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nonexpansive mappings. The proposed iterative method combines two well-known

methods: extragradient method and CQ method. Under some mild conditions, we

prove the strong convergence of the sequences generated by the proposed method.

2 Preliminaries
In this section, we will recall some basic notations and collect some conclusions that

will be used in the next section.

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping A :

C ® H is called monotone if

〈Au − Av, u − v〉 ≥ 0,∀u, v ∈ C.

Recall that a mapping S : C ® C is said to be nonexpansive if

‖ Sx − Sy ‖ ≤ ‖ x − y ‖,∀x, y ∈ C.

Denote by Fix(S) the set of fixed points of S; that is, Fix(S) = {x Î C : Sx = x}.

It is well known that, for any u Î H, there exists a unique u0 Î C such that

‖ u − u0 ‖= inf{‖ u − x ‖ : x ∈ C}.
We denote u0 by PC[u], where PC is called the metric projection of H onto C. The

metric projection PC of H onto C has the following basic properties:

(i) ||PC[x] - PC[y] || ≤ ||x - y|| for all x, y Î H.

(ii) 〈x - PC[x], y - PC[x]〉 ≤ 0 for all x Î H, y Î C.

(iii) The property (ii) is equivalent to

‖ x − PC[x]‖2+ ‖ y − PC[x]‖2 ≤ ‖ x − y ‖,∀x ∈ H, y ∈ C.

(iv) In the context of the variational inequality problem, the characterization of the

projection implies that

u ∈ � ⇔ u = PC[u − λAu],∀λ > 0.

Recall that H satisfies the Opial’s condition [28]; i.e., for any sequence {xn} with xn
converges weakly to x, the inequality

lim inf
n→∞

‖ xn − x ‖ < lim inf
n→∞

‖ xn − y ‖

holds for every y Î H with y ≠ x.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Si}∞i=1 be
infinite family of nonexpansive mappings of C into itself and let {ξi}∞i=1 be real number

sequences such that 0 ≤ ξi ≤ 1 for every i Î N. For any n Î N, define a mapping Wn

of C into itself as follows:

Un,n+1 = I,

Un,n = ξnSnUn,n+1 + (1 − ξn)I,

Un,n−1 = ξn−1Sn−1Un,n + (1 − ξn−1)I,

...

Un,k = ξkSkUn,k+1 + (1 − ξk)I,

Un,k−1 = ξk−1Sk−1Un,k + (1 − ξk−1)I,

...

Un,2 = ξ2S2Un,3 + (1 − ξ2)I,

Wn = Un,1 = ξ1S1Un,2 + (1 − ξ1)I.

(2:1)
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Such Wn is called the W -mapping generated by {Si}∞i=1 and {ξi}∞i=1.
We have the following crucial Lemmas 3.1 and 3.2 concerning Wn which can be

found in [29]. Now we only need the following similar version in Hilbert spaces.

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

S1, S2, ... be nonexpansive mappings of C into itself such that
⋂∞

n=1 Fix(Sn)is nonempty,

and let ξ1, ξ2, ... be real numbers such that 0 < ξi ≤ b <1 for any i Î N. Then, for every

x Î C and k Î N, the limit limn®∞ Un,kx exists.

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

S1, S2, ... be nonexpansive mappings of C into itself such that
⋂∞

n=1 Fix(Sn)is nonempty,

and let ξ1, ξ2, ... be real numbers such that 0 < ξi ≤ b <1 for any i Î N. Then,

Fix(W) =
⋂∞

n=1 Fix(Sn).

Lemma 2.3. (see [30]) Using Lemmas 2.1 and 2.2, one can define a mapping W of C

into itself as: Wx = limn®∞ Wnx = limn®∞ Un,1x, for every x Î C. If {xn} is a bounded

sequence in C, then we have

lim
n→∞ ‖ Wxn − Wnxn ‖= 0.

We also need the following well-known lemmas for proving our main results.

Lemma 2.4. ([31]) Let C be a nonempty closed convex subset of a real Hilbert space

H. Let S : C ® C be a nonexpansive mapping with Fix(S) ≠ ∅. Then S is demiclosed on

C, i.e., if yn ® z Î C weakly and yn - Syn ® y strongly, then (I - S)z = y.

Lemma 2.5. ([32]) Let C be a closed convex subset of H. Let {xn} be a sequence in H

and u Î H. Let q = PC[u]. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖ xn − u ‖ ≤ ‖ u − q ‖ for all n.

Then xn ® q.

We adopt the following notation:

• For a given sequence {xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of {xn}; that

is, ωw(xn) := {x ∈ H : {xnj} converges weakly to x for some subsequence {nj} of {n}}.

• xn ⇀ x stands for the weak convergence of (xn) to x;

• xn ® x stands for the strong convergence of (xn) to x.

3 Main results
In this section we will state and prove our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let A : C ® H be a monotone, k-Lipschitz-continuous mapping and let {Sn}∞n=1be an

infinite family of nonexpansive mappings of C into itself such that⋂∞
n=1 Fix(Sn) ∩ � 
= ∅. Let x1 = x0 Î C. For C1 = C, let {xn}, {yn} and {zn} be sequences

generated by

yn = PCn[xn − λnAxn],

zn = αnxn + (1 − αn)WnPCn[xn − λnAyn],

Cn+1 = {z ∈ Cn : ‖ zn − z ‖ ≤ ‖ xn − z ‖},
xn+1 = PCn+1 [x0],n ≥ 1,

(3:1)

where Wn is W -mapping defined by (2.1). Assume the following conditions hold:
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(i) {ln} ⊂ [a, b] for some a, b Î (0, 1/k);

(ii) {an} ⊂ [0, c] for some c Î [0, 1).

Then the sequences {xn}, {yn} and {zn} generated by (3.1) converge strongly to the same

point P⋂∞
n=1 Fix(Sn)∩�[x0].

Next, we will divide our detail proofs into several conclusions. In the sequel, we

assume that all assumptions of Theorem 3.1 are satisfied.

Conclusion 3.2. (1) Every Cn is closed and convex, n ≥ 1;

(2)
⋂∞

n=1 Fix(Sn) ∩ � ⊂ Cn+1, ∀n ≥ 1,

(3) {xn+1} is well defined.

Proof. First we note that C1 = C is closed and convex. Assume that Ck is closed and

convex. From (3.1), we can rewrite Ck+1 as

Ck+1 = {z ∈ Ck : 〈z − xk + zk
2

, zk − xk〉 ≥ 0}.

It is clear that Ck+1 is a half space. Hence, Ck+1 is closed and convex. By induction,

we deduce that Cn is closed and convex for all n ≥ 1. Next we show that⋂∞
n=1 Fix(Sn) ∩ � ⊂ Cn+1, ∀n ≥ 1.

Set tn = PCn [xn − λnAyn] for all n ≥ 1. Pick up u ∈ ⋂∞
n=1 Fix(Sn) ∩ �. From property

(iii) of PC, we have

‖ tn − u‖2 ≤ ‖ xn − λnAyn − u‖2− ‖ xn − λnAyn − tn‖2
= ‖ xn − u‖2− ‖ xn − tn‖2 + 2λn〈Ayn, u − tn〉
= ‖ xn − u‖2− ‖ xn − tn‖2 + 2λn〈Ayn, u − yn〉 + 2λn〈Ayn, yn − tn〉.

(3:2)

Since u Î Ω and yn Î Cn ⊂ C, we get

〈Au, yn − u〉 ≥ 0.

This together with the monotonicity of A imply that

〈Ayn, yn − u〉 ≥ 0. (3:3)

Combine (3.2) with (3.3) to deduce

‖ tn − u‖2 ≤ ‖ xn − u‖2− ‖ xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖ xn − u‖2− ‖ xn − yn‖2 − 2〈xn − yn, yn − tn〉− ‖ yn − tn‖2
+ 2λn〈Ayn, yn − tn〉

= ‖ xn − u‖2− ‖ xn − yn‖2− ‖ yn − tn‖2
+ 2〈xn − λnAyn − yn, tn − yn〉.

(3:4)

Note that yn = PCn [xn − λnAxn] and tn Î Cn. Then, using the property (ii) of PC, we

have

〈xn − λnAxn − yn, tn − yn〉 ≤ 0.

Hence,

〈xn − λnAyn − yn, tn − yn〉 = 〈xn − λnAxn − yn, tn − yn〉 + 〈λnAxn − λnAyn, tn − yn〉
≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk ‖ xn − yn ‖‖ tn − yn ‖ .

(3:5)
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From (3.4) and (3.5), we get

‖ tn − u‖2 ≤ ‖ xn − u‖2− ‖ xn − yn‖2− ‖ yn − tn‖2 + 2λnk ‖ xn − yn ‖‖ tn − yn ‖
≤ ‖ xn − u‖2− ‖ xn − yn‖2− ‖ yn − tn‖2 + λ2

nk
2 ‖ xn − yn‖2+ ‖ yn − tn‖2

= ‖ xn − u‖2 + (λ2
nk

2 − 1) ‖ xn − yn‖2
≤ ‖ xn − u‖2.

(3:6)

Therefore, from (3.6), together with zn = anxn + (1 an)Wntn and u = Wnu, we get

‖ zn − u‖2 = ‖ αn(xn − u) + (1 − αn)(Wntn − u)‖2
≤ αn ‖ xn − u‖2 + (1 − αn) ‖ Wntn − u‖2
≤ αn ‖ xn − u‖2 + (1 − αn) ‖ tn − u‖2
≤ ‖ xn − u‖2 + (1 − αn)(λ2

nk
2 − 1) ‖ xn − yn‖2

≤ ‖ xn − u‖2,

(3:7)

which implies that

u ∈ Cn+1.

Therefore,

∞⋂
n=1

Fix(Sn) ∩ � ⊂ Cn+1,∀n ≥ 1.

This implies that {xn+1} is well defined. □
Conclusion 3.3. The sequences {xn}, {zn} and {tn} are all bounded and limn®∞ || xn - x0 ||

exists.

Proof. From xn+1 = PCn+1 [x0], we have

〈x0 − xn+1, xn+1 − y〉 ≥ 0,∀y ∈ Cn+1.

Since
⋂∞

n=1 Fix(Sn) ∩ � ⊂ Cn+1, we also have

〈x0 − xn+1, xn+1 − u〉 ≥ 0,∀u ∈
∞⋂
n=1

Fix(Sn) ∩ �.

So, for u ∈ ⋂∞
n=1 Fix(Sn) ∩ �, we have

0 ≤ 〈x0 − xn+1, xn+1 − u〉
= 〈x0 − xn+1, xn+1 − x0 + x0 − u〉
= − ‖ x0 − xn+1‖2 + 〈x0 − xn+1, x0 − u〉
≤ − ‖ x0 − xn+1‖2+ ‖ x0 − xn+1 ‖‖ x0 − u ‖ .

Hence,

‖ x0 − xn+1 ‖ ≤ ‖ x0 − u ‖,∀u ∈
∞⋂
n=1

Fix(Sn) ∩ �, (3:8)

which implies that {xn} is bounded. From (3.6) and (3.7), we can deduce that {zn} and

{tn} are also bounded.

From xn = PCn [x0] and xn+1 = PCn+1 [x0] ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (3:9)
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As above one can obtain that

0 ≤ − ‖ x0 − xn‖2+ ‖ x0 − xn ‖‖ x0 − xn+1 ‖,
and therefore

‖ x0 − xn ‖ ≤ ‖ x0 − xn+1 ‖ .

This together with the boundedness of the sequence {xn} imply that limn®∞ || xn - x0 ||

exists.

Conclusion 3.4. limn®∞ ||xn+1 - xn|| = limn®∞ ||xn - yn|| = limn®∞ ||xn - zn|| =

limn®∞ ||xn - tn|| = 0 and limn®∞ ||xn - Wnxn|| = limn®∞ ||xn - Wxn|| = 0.

Proof. It is well known that in Hilbert spaces H, the following identity holds:

‖ x − y‖2 = ‖ x‖2− ‖ y‖2 − 2〈x − y, y〉, ∀x, y ∈ H.

Therefore,

‖ xn+1 − xn‖2 = ‖ (xn+1 − x0) − (xn − x0)‖2
= ‖ xn+1 − x0‖2− ‖ xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉,

and by (3.9)

‖ xn+1 − xn‖2 ≤ ‖ xn+1 − x0‖2− ‖ xn − x0‖2.
Since limn®∞ ||xn - x0|| exists, we get ||xn+1 - x0||

2 - ||xn - x0||
2 ® 0. Therefore,

lim
n→∞ ‖ xn+1 − xn ‖ = 0.

Since xn+1 Î Cn, we have

‖ zn − xn+1 ‖ ≤ ‖ xn − xn+1 ‖,
and hence

‖ xn − zn ‖ ≤ ‖ xn − xn+1 ‖ + ‖ xn+1 − zn ‖
≤ 2 ‖ xn+1 − xn ‖
→ 0.

For each u ∈ ⋂∞
n=1 Fix(Sn) ∩ �, from (3.7), we have

‖ xn − yn‖2 ≤ 1
(1 − αn)(1 − λ2

nk2)
(‖ xn − u‖2− ‖ zn − u‖2)

≤ 1
(1 − αn)(1 − λ2

nk2)
(‖ xn − u ‖ + ‖ zn − u ‖) ‖ xn − zn ‖ .

Since ||xn - zn|| ® 0 and the sequences {xn} and {zn} are bounded, we obtain ||xn -

yn|| ® 0.

We note that following the same idea as in (3.6) one obtains that

‖ tn − u‖2 ≤ ‖ xn − u‖2 + (λ2
nk

2 − 1) ‖ yn − tn‖2.

Hence,

‖ zn − u‖2 ≤ αn ‖ xn − u‖2 + (1 − αn) ‖ tn − u‖2
≤ αn ‖ xn − u‖2 + (1 − αn)(‖ xn − u‖2 + (λ2

nk
2 − 1) ‖ yn − tn‖2)

= ‖ xn − u‖2 + (1 − αn)(λ2
nk

2 − 1) ‖ yn − tn‖2.
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It follows that

‖ tn − yn‖2 ≤ 1
(1 − αn)(1 − λ2

nk2)
(‖ xn − u‖2− ‖ zn − u‖2)

≤ 1
(1 − αn)(1 − λ2

nk2)
(‖ xn − u ‖ + ‖ zn − u ‖) ‖ xn − zn ‖

→ 0.

Since A is k-Lipschitz-continuous, we have ||Ayn - Atn|| ® 0. From

‖ xn − tn ‖ ≤ ‖ xn − yn ‖ + ‖ yn − tn ‖,

we also have

‖ xn − tn ‖ → 0.

Since zn = anxn + (1 - an)Wntn, we have

(1 − αn)(Wntn − tn) = αn(tn − xn) + (zn − tn).

Then,

(1 − c) ‖ Wntn − tn ‖ ≤ (1 − αn) ‖ Wntn − tn ‖
≤ αn ‖ tn − xn ‖ + ‖ zn − tn ‖
≤ (1 + αn) ‖ tn − xn ‖ + ‖ zn − xn ‖

and hence || tn - Wntn || ® 0. To conclude,

‖ xn − Wnxn ‖ ≤ ‖ xn − tn ‖ + ‖ tn − Wntn ‖ + ‖ Wntn − Wnxn ‖
≤ ‖ xn − tn ‖ + ‖ tn − Wntn ‖ + ‖ tn − xn ‖
≤ 2 ‖ xn − tn ‖ + ‖ tn − Wntn ‖ .

So, ||xn - Wnxn|| ® 0 too. On the other hand, since {xn} is bounded, from Lemma

2.3, we have limn®∞ ||Wnxn - Wxn|| = 0. Therefore, we have

lim
n→∞ ‖ xn − Wxn ‖ = 0.

□
Finally, according to Conclusions 3.3-3.5, we prove the remainder of Theorem 3.1.

Proof. By Conclusions 3.3-3.5, we have proved that

lim
n→∞ ‖ xn − Wxn ‖ = 0.

Furthermore, since {xn} is bounded, it has a subsequence {xnj} which converges

weakly to some ũ ∈ C; hence, we have limj→∞ ‖ xnj − Wxnj ‖= 0. Note that, from

Lemma 2.4, it follows that I - W is demiclosed at zero. Thus ũ ∈ Fix(W). Since
tn = PCn [xn − λnAyn], for every x Î Cn we have

〈xn − λnAyn − tn, tn − x〉 ≥ 0

hence,

〈x − tn,Ayn〉 ≥ 〈x − tn,
xn − tn

λn
〉.
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Combining with monotonicity of A we obtain

〈x − tn,Ax〉 ≥ 〈x − tn,Atn〉
= 〈x − tn,Atn − Ayn〉 + 〈x − tn,Ayn〉
≥ 〈x − tn,Atn − Ayn〉 + 〈x − tn,

xn − tn
λn

〉.

Since limn®∞(xn - tn) = limn®∞(yn - tn) = 0, A is Lipschitz continuous and ln ≥ a > 0,

we deduce that

〈x − ũ,Ax〉 = lim
nj→∞〈x − tnj ,Ax〉 ≥ 0.

This implies that ũ ∈ �. Consequently, ũ ∈ ⋂∞
n=1 Fix(Sn) ∩ � That is,

ωw(xn) ⊂ ⋂∞
n=1 Fix(Sn) ∩ �.

In (3.8), if we take u = P⋂∞
n=1 Fix(Sn)∩�[x0], we get

‖ x0 − xn+1 ‖ ≤ ‖ x0 − P⋂∞
n=1 Fix(Sn)∩�[x0] ‖ . (3:10)

Notice that ωw(xn) ⊂ ⋂∞
n=1 Fix(Sn) ∩ �. Then, (3.10) and Lemma 2.5 ensure the

strong convergence of {xn+1} to P⋂∞
n=1 Fix(Sn)∩�[x0]. Consequently, {yn} and {zn} also con-

verge strongly to P⋂∞
n=1 Fix(Sn)∩�[x0]. This completes the proof.

Remark 3.5. Our algorithm (3.1) is simpler than the one in [23] and we extend the

single mapping in [23] to an infinite family mappings. At the same time, the proofs are

also simple.
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