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Abstract
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1 Introduction
The Banach contraction principle [1] is one of the most celebrated fixed point theo-

rem. Many generalizations of this famous theorem and other important fixed point

theorems exist in the literature (cf. [2-37]).

Ran and Reurings [3] proved the Banach contraction principle in partially ordered

metric spaces. Recently Agarwal et al. [2] presented some new fixed point results for

monotone and generalized contractive type mappings in partially ordered metric

spaces. Bhaskar and Lakshmikantham [4] initiated and proved some new coupled fixed

point results for mixed monotone and contraction mappings in partially ordered

metric spaces. The main idea in [2-11] involve combining the ideas of iterative techni-

que in the contraction mapping principle with those in the monotone technique.

In [3], Ran and Reurings proved the following Banach type principle in partially

ordered metric spaces.

Theorem 1 (Ran and Reurings [3]). Let (X, ≤) be a partially ordered set such that

every pair x, y Î X has a lower and an upper bound. Let d be a metric on X such that

the metric space (X, d) is complete. Let f : X ® X be a continuous and monotone (that is,

either decreasing or increasing) operator. Suppose that the following two assertions hold:

(1) there exists k Î (0, 1) such that d(f (x), f (y)) ≤ k d(x, y), for each x, y Î X with x ≥ y,

(2) there exists x0 Î X such that x0 ≤ f (x0) or x0 ≥ f (x0).

Then f has a unique fixed point x* Î X, i.e. f(x*) = x*, and for each x Î X, the

sequence {fn(x)} of successive approximations of f starting from x converges to x* Î X.
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The results of Ran and Reurings [3] have motivated many authors to undertake further

investigation of fixed points in the field of ordered metric spaces: Agarwal et al. [2], Bhas-

kar and Lakshmikantham [4], Bhaskar et al. [5], Ćirić and Lakshmikantham [7], Ćirić et al.
[8,9], Lakshmikantham and Ćirić [10], Nieto and López [6,11], Samet [12-14], and others.

Fixed point theory in probabilistic metric spaces can be considered as a part of prob-

abilistic analysis, which is a very dynamic area of mathematical research. The theory of

probabilistic metric spaces was introduced in 1942 by Menger [15]. These are generali-

zations of metric spaces in which the distances between points are described by prob-

ability distributions rather than by numbers. Schweizer and Sklar [16,17] studied this

concept and gave some fundamental results on these spaces. In 1972, Sehgal and Bhar-

ucha-Reid [18] initiated the study of contraction mappings on probabilistic metric

spaces. Since then, several results have been obtained by various authors in this direc-

tion. For more details, we refer the reader to [19-27].

In [8], Ćirić et al. introduced the concept of monotone generalized contraction in

partially ordered probabilistic metric spaces and proved some fixed and common fixed

point theorems on such spaces.

In this article, we introduce a new concept of mixed monotone generalized contraction

in partially ordered probabilistic metric spaces and we prove some coupled coincidence

and coupled fixed point theorems on such spaces. Presented theorems extend many exist-

ing results in the literature, in particular, the results obtained by Bhaskar and Lakshmikan-

tham [4], Lakshmikantham and Ćirić [10], and include several recent developments.

Throughout this article, the space of all probability distribution functions is denoted

by Δ+ = {F : ℝ ∪ {-∞, +∞} ® [0,1]: F is left-continuous and non-decreasing on ℝ, F(0)

= 0 and F(+∞) = 1} and the subset D+ ⊆ Δ+ is the set D+ = {F Î Δ+ : limt®+∞ F(t) =

1}. The space Δ+ is partially ordered by the usual point-wise ordering of functions, i.e.,

F ≤ G if and only if F(t) ≤ G(t) for all t in ℝ. The maximal element for Δ+ in this order

is the distribution function given by

ε0(t) =
{
0, if t ≤ 0,
1, if t > 0.

We refer the reader to [22] for the terminology concerning probabilistic metric

spaces (also called Menger spaces).

2 Main results
We start by recalling some definitions introduced by Bhaskar and Lakshmikantham [4]

and Lakshmikantham and Ćirić [10].

Definition 2 (Bhaskar and Lakshmikantham [4]). Let X be a non-empty set and A :

X × X ® X be a given mapping. An element (x, y) Î X × X is said to be a coupled

fixed point of A if

A(x, y) = x and A(y, x) = y.

Definition 3 (Lakshmikantham and Ćirić [10]). Let X be a non-empty set, A : X ×

X ® X and h : X ® X are given mappings.

(1) An element (x, y) Î X × X is said to be a coupled coincidence point of A and h if

A(x, y) = h(x) and A(y, x) = h(y).
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(2) An element (x, y) Î X × X is said to be a coupled common fixed point of A and h if

A(x, y) = h(x) = x and A(y, x) = h(y) = y.

(3) We say that A and h commute at (x, y) Î X × X if

h(A(x, y)) = A(h(x), h(y)) and h(A(y, x)) = A(h(y), h(x)).

(4) A and h commute if

h(A(x, y)) = A(h(x), h(y)), for all (x, y) ∈ X × X.

Definition 4 (Lakshmikantham and Ćirić [10]). Let (X, ≤) be a partially ordered set,

A : X × X ® X and h : X ® X are given mappings. We say that A has the mixed h-

monotone property if for all x, y Î X, we have

x1, x2 ∈ X, h(x1) ≤ h(x2) ⇒ A(x1, y) ≤ A(x2, y),

y1, y2 ∈ X, h(y1) ≥ h(y2) ⇒ A(x, y1) ≤ A(x, y2).

If h is the identity mapping on X, then A satisfies the mixed monotone property.

We need the following lemmas to prove our main results.

Lemma 5. Let n ≥ 1. If F Î D+, G1, G2, ..., Gn : ℝ ® [0,1] are non-decreasing func-

tions and, for some k Î (0, 1),

F(kt) ≥ min{G1(t),G2(t), · · · ,Gn(t), F(t)}, ∀t > 0, (1)

then F(kt) ≥ min{G1(t), G2(t), ..., Gn(t)} for all t > 0.

Proof. The proof is a simple adaptation of that of Lemma 3.3 in [8]. □
Lemma 6. Let (X, F, Δ) be a Menger PM-space and k Î (0, 1). If

min{Fp,q(kt), Fs,v(kt)} = min{Fp,q(t), Fs,v(t)}, for all t > 0, (2)

then p = q and s = v.

Proof. From (2) it is easy to show by induction that

min{Fp,q(knt), Fs,v(knt)} = min{Fp,q(t), Fs,v(t)}, for all n ≥ 1. (3)

Now we shall show that min{Fpq(t), Fs,v(t)} = 1 for all t > 0. Suppose, to the contrary,

that there exists some t0 > 0 such that min{Fpq(t0), Fs,v(t0)} < 1. Since (X, F) is a Men-

ger PM space, then min{Fpq(t), Fs,v(t)} ® 1 as t ® ∞. Therefore, there exists t1 >t0
such that

min{Fpq(t1), Fs,v(t1)} > min{Fpq(t0), Fs,v(t0)}. (4)

Since t0 > 0 and k Î (0, 1), there exists a positive integer n > 1 such that knt1 <t0.

Then by the monotony of Fpq(·) and Fs,v(·), it follows that min{Fpq(k
nt1), Fs,v(k

nt1)} ≤

min{Fpq(t0), Fs,v(t0)}. Hence and from (3) with t = t1, we have

min{Fpq(t1), Fs,v(t1)} = min{Fpq(knt1), Fs,v(knt1)} ≤ min{Fpq(t0), Fs,v(t0},

a contradiction with (4). Therefore min{Fpq(t), Fs,v(t)} = 1 for all t > 0, which implies

that Fpq(t) = 1 and Fs,v(t) = 1 for all t > 0. Hence p = q and s = v. □
Now, we state and prove our first result.
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Theorem 7. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger

PM-space under a T-norm Δ of H-type (Hadžić-type). Suppose A : X × X ® X and h :

X ® X are two mappings such that A has the h-mixed monotone property on X and,

for some k Î (0, 1),

FA(x,y),A(u,v)(kt) ≥min{Fh(x),h(u)(t), Fh(y),h(v)(t), Fh(x),A(x,y)(t),
Fh(u),A(u,v)(t), Fh(y),A(y,x)(t), Fh(v),A(v,u)(t)} (5)

for all x, y Î X for which h(x) ≤ h(u) and h(y) ≥ h(v) and all t > 0. Suppose also that

A(X × X) ⊆ h(X), h(X) is closed and

if {h(xn)} ⊂ X is a non - decreasing sequence with h(xn) → h(z) in h(X)

then h(xn) ≤ h(z) for all n hold,
(6)

if {h(xn)} ⊂ X is a non - decreasing sequence with h(xn) → h(z) in h(X)

then h(z) ≤ h(xn) for all n hold.
(7)

If there exist x0, y0 Î X such that

h(x0) ≤ A(x0, y0) and h(y0) ≥ A(y0, x0),

then A and h have a coupled coincidence point, that is, there exist p, q Î X such that

A(p, q) = h(p) and A(q, p) = h(q).

Proof. By hypothesis, there exist (x0, y0) Î X × X such that h(x0) ≤ A(x0, y0) and h

(y0) ≥ A(y0, x0). Since A(X × X) ⊆ h(X), we can choose x1, y1 Î X such that h(x1) = A

(x0, y0) and h(y1) = A(y0, x0). Now A(x1, y1) and A(y1, x1) are well defined. Again, from

A(X × X) ⊆ h(X), we can choose x2, y2 Î X such that h(x2) = A(x1, y1) and h(y2) = A

(y1, x1). Continuing this process, we can construct sequences {xn} and {yn} in X

such that

h(xn+1) = A(xn, yn) and h(yn+1) = A(yn, xn), for all n ∈ N. (8)

We shall show that

h(xn) ≤ h(xn+1), for all n ∈ N (9)

and

h(yn) ≥ h(yn+1), for all n ∈ N. (10)

We shall use the mathematical induction. Let n = 0. Since h(x0) ≤ A(x0, y0) and h(y0)

≥ A(y0, x0), and as h(x1) = A(x0, y0) and h(y1) = A(y0, x0), we have h(x0) ≤ h(x1) and h

(y0) ≥ h(y1). Thus (9) and (10) hold for n = 0. Suppose now that (9) and (10) hold for

some fixed n Î N. Then, since h(xn) ≤ h(xn+1) and h(yn+1) ≤ h(yn), and as A has the h-

mixed monotone property, from (8),

h(xn+1) = A(xn, yn) ≤ A(xn+1, yn) and A(yn+1, xn) ≤ A(yn, xn) = h(yn+1), (11)

and from (8),

h(xn+2) = A(xn+1, yn+1) ≥ A(xn+1, yn) and A(yn+1, xn) ≥ A(yn+1, xn+1) = h(yn+2). (12)

Now from (11) and (12), we get

h(xn+1) ≤ h(xn+2)
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and

h(yn+1) ≥ h(yn+2).

Thus by the mathematical induction we conclude that (9) and (10) hold for all n Î
N. Therefore,

h(x0) ≤ h(x1) ≤ h(x2) ≤ h(x3) ≤ · · · ≤ h(xn) ≤ h(xn+1) ≤ · · · (13)

and

h(y0) ≥ h(y1) ≥ h(y2) ≥ h(y3) ≥ · · · ≥ h(yn) ≥ h(yn+1) ≥ · · · . (14)

Now, from (13) and (14), we can apply (5) for (x, y) = (xn, yn) and (u, v) = (xn+1, yn

+1). Thus, for all t > 0, we have

FA(xn,yn),A(xn+1,yn+1)(kt) ≥min{Fh(xn),h(xn+1 )(t), Fh(yn),h(yn+1 )(t), Fh(xn),A(xn,yn)(t),
Fh(xn+1 ),A(xn+1,yn+1)(t), Fh(yn),A(yn,xn)(t), Fh(yn+1 ),A(yn+1 ,xn+1 )(t)}.

Using (8), we obtain

Fh(xn+1),h(xn+2)(kt) ≥min{Fh(xn),h(xn+1)(t), Fh(yn),h(yn+1)(t), Fh(xn+1),h(xn+2)(t),
Fh(yn+1),h(yn+2)(t)}.

(15)

Similarly, from (13) and (14), we can apply (5) for (x, y) = (yn+1, xn+1) and (u, v) =

(yn, xn). Thus, by using (8), for all t > 0 we get

Fh(yn+2),h(yn+1)(kt) ≥min{Fh(yn+1),h(yn)(t), Fh(xn+1),h(xn)(t), Fh(yn+1),h(yn+2)(t),
Fh(xn+1),h(xn+2)(t)}.

(16)

From (15) and (16), we have

min{Fh(xn+1),h(xn+2)(kt), Fh(yn+1),h(yn+2)(kt)}
≥ min{Fh(xn),h(xn+1)(t), Fh(yn),h(yn+1)(t), Fh(xn+1),h(xn+2)(t), Fh(yn+1 ),h(yn+2)(t)}
= min{Fh(xn),h(xn+1)(t), Fh(yn),h(yn+1)(t),min{Fh(xn+1),h(xn+2)(t), Fh(yn+1),h(yn+2)(t)}}.

Now, from Lemma 5, we have

min{Fh(xn+1),h(xn+2)(kt), Fh(yn+1),h(yn+2)(kt)} ≥ min{Fh(xn),h(xn+1)(t), Fh(yn),h(yn+1)(t)} (17)

for all t > 0. From (17) it follows that

min{Fh(xn+1),h(xn+2)(t), Fh(yn+1),h(yn+2)(t)} ≥ min{Fh(xn),h(xn+1)(t
/
k), Fh(yn),h(yn+1)(t

/
k)} (18)

for all t > 0. Repeating the inequality (18), for all t > 0 we get

min{Fh(xn+1),h(xn+2)(t), Fh(yn+1),h(yn+2)(t)} ≥ min{Fh(xn),h(xn+1)(t
/
k), Fh(yn),h(yn+1)(t

/
k)}

≥ min{Fh(xn−1),h(xn)(t
/
k2), Fh(yn−1),h(yn)(t

/
k2)}

≥ · · ·
≥ min{Fh(x0),h(x1)(t

/
kn+1), Fh(y0),h(y1)(t

/
kn+1)}.

Thus

min{Fh(xn+1),h(xn+2)(t), Fh(yn+1),h(yn+2)(t)} ≥ min{Fh(x0),h(x1)(t
/
kn+1), Fh(y0),h(y1)(t

/
kn+1)}, (19)
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for all t > 0 and n Î N. Letting n ® +∞ in (19), we obtain

lim
n→∞ Fh(xn),h(xn+1)(t) = 1, for all t > 0, (20)

and

lim
n→∞ Fh(yn),h(yn+1)(t) = 1, for all t > 0. (21)

We now prove that {h(xn)} and {h(yn)} are Cauchy sequences in X. We need to show

that for each δ > 0 and 0 <ε < 1, there exists a positive integer n0 = n0(δ, ε) such that

Fh(xn),h(xm)(δ) > 1 − ε, for all m > n ≥ n0(δ, ε)

and

Fh(yn),h(ym)(δ) > 1 − ε, for all m > n ≥ n0(δ, ε),

that is,

min{Fh(xn),h(xm)(δ), Fh(yn),h(ym)(δ)} > 1 − ε, for all m > n ≥ n0(δ, ε). (22)

Now we shall prove that for each r > 0,

min{Fh(xn),h(xm)(ρ), Fh(yn),h(ym)(ρ)}
≥ �m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}) (23)

for all m ≥ n + 1. We prove (23) by the mathematical induction. Let m = n + 1.

Then from monotony of F, for m = n +1 we have

Fh(xn),h(xn+1)(ρ) ≥ Fh(xn),h(xn+1)(ρ − kρ)

= �(Fh(xn),h(xn+1)(ρ − kρ), 1)

≥ �(Fh(xn),h(xn+1)(ρ − kρ), Fh(xn),h(xn+1)(ρ − kρ))

= �1(Fh(xn),h(xn+1)(ρ − kδ))

≥ �1(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}).
Similarly,

Fh(yn),h(yn+1)(ρ) ≥ Fh(yn),h(yn+1)(ρ − kρ)

= �(Fh(yn),h(yn+1)(ρ − kρ), 1)

≥ �(Fh(yn),h(yn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ))

= �1(Fh(yn),h(yn+1)(ρ − kδ))

≥ �1(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}).
Then

min{Fh(xn),h(xn+1)(ρ), Fh(yn),h(yn+1)(ρ)} ≥ �1(min{Fh(xn),h(xn+1)(ρ−kρ), Fh(yn),h(yn+1)(ρ−kρ)}),

and (23) holds for m = n + 1.

Suppose now that (23) holds for some m ≥ n + 1. Since r - kr > 0, from the prob-

abilistic triangle inequality, we have

Fh(xn),h(xm+1)(ρ) = Fh(xn),h(xm+1)((ρ − kρ) + kρ)

≥ �(Fh(xn),h(xn+1)(ρ − kρ), Fh(xn+1),h(xm+1)(kρ)).
(24)

Similarly,

Fh(yn),h(ym+1)(ρ) ≥ �(Fh(yn),h(yn+1)(ρ − kρ), Fh(yn+1),h(ym+1)(kρ)). (25)
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From (24) and (25), we get

min{Fh(xn),h(xm+1)(ρ), Fh(yn),h(ym+1)(ρ)}
≥ �(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)},min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}).

(26)

Now we shall consider min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}. From (5) and the

hypothesis (23), we have

min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}
= min{FA(xn,yn),A(xm,ym)(kρ), FA(yn,xn),A(ym,xm)(kρ)}
≥ min{Fh(xn),h(xm)(ρ), Fh(yn),h(ym)(ρ),

Fh(xn),h(xn+1)(ρ), Fh(xm),h(xm+1)(ρ), Fh(yn),h(yn+1)(ρ), Fh(ym),h(ym+1)(ρ)}
= min{min{Fh(xn),h(xm)(ρ), Fh(yn),h(ym)(ρ)},

Fh(xn),h(xn+1)(ρ), Fh(xm),h(xm+1)(ρ), Fh(yn),h(yn+1)(ρ), Fh(ym),h(ym+1)(ρ)}
≥ min{�m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}),

Fh(xn),h(xn+1)(ρ), Fh(xm),h(xm+1)(ρ), Fh(yn),h(yn+1)(ρ), Fh(ym),h(ym+1)(ρ)}.

(27)

Note that from (18), for every positive integer m ≥ n, we have

min{Fh(xm),h(xm+1)(ρ), Fh(ym),h(ym+1)(ρ)}
≥ min{Fh(xn),h(xn+1)(ρ

/
km−n), Fh(yn),h(yn+1)(ρ

/
km−n)}

≥ min{Fh(xn),h(xn+1)(ρ), Fh(yn),h(yn+1)(ρ)} for all n ∈ N.

(28)

Therefore, from (27) and (28), we get

min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}
≥ min{�m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}),

min{Fh(xn),h(xn+1)(ρ), Fh(yn),h(yn+1)(ρ)}}.
Since r ≥ r - kr, using the monotony of F, we have

min{Fh(xn),h(xn+1)(ρ), Fh(yn),h(yn+1)(ρ)} ≥ min{Fh(xn),h(xn+1)(ρ −kρ), Fh(yn),h(yn+1)(ρ −kρ)}.

Then, we have

min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}
≥ min{�m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}),

min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}}.
Since {Δi(t)}i≥0 is a decreasing sequence for all t > 0, we have

min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}
≥ �m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}).

Then, we get

min{Fh(xn+1),h(xm+1)(kρ), Fh(yn+1),h(ym+1)(kρ)}
≥ �m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}). (29)

Now, from (26) and (29), we obtain

min{Fh(xn),h(xm+1)(ρ), Fh(yn),h(ym+1)(ρ)}
≥ �(�m−n(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}),

min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)})
= �m−n+1(min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)}).
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Hence and by the induction we conclude that (23) holds for all m ≥ n + 1.

Now we show that {h(xn)} and {h(yn)} are Cauchy sequences, that is, for each δ > 0

and 0 <ε < 1, there exists a positive integer n0 = n0(δ, ε) such that (22) holds. Since Δ

is of H-type, then {Δn : n Î ≁} is equicontinuous at 1, that is,

∀ε ∈ (0, 1)∃r ∈ (0, 1) | s > 1 − r ⇒ �n(s) > 1 − ε(for all n ∈ N).

Since δ - kδ > 0, from (20) and (21) it follows that for any 0 <r < 1 there exists a

positive integer n1 = n1((δ - kδ), r) such that

Fh(xn),h(xn+1)(δ − kδ) > 1 − r and Fh(yn),h(yn+1)(δ − kδ) > 1 − r, for all n ≥ n1.

Then by (23), with min{Fh(xn),h(xn+1)(ρ − kρ), Fh(yn),h(yn+1)(ρ − kρ)} = s, we conclude

that (22) holds for n0(δ, ε) = n1((δ - kδ), r). Thus we proved that {h(xn)} and {h(yn)} are

Cauchy sequences in X.

Since h(X) is complete, there is some p, q Î X such that

lim
n→∞ h(xn) = h(p) and lim

n→∞ h(yn) = h(q),

that is, for all t > 0,

lim
n→∞ Fh(xn),h(p)(t) = 1 and lim

n→∞ Fh(yn),h(q)(t) = 1. (30)

Now we show that (p, q) is a coupled coincidence point of A and h.

Since {h(xn)} is a non-decreasing sequence, from (30) and (6), we have

h(xn) ≤ h(p). (31)

Since {h(yn)} is a non-increasing sequence, from (30) and (7), we have

h(q) ≤ h(yn). (32)

For all t > 0 and a Î (0, 1), we have

Fh(p),A(p,q)(kt) ≥ �(Fh(p),h(xn+1)(kt − αkt), Fh(xn+1),A(p,q)(kαt))

and

Fh(q),A(q,p)(kt) ≥ �(Fh(q),h(yn+1)(kt − αkt), Fh(yn+1),A(q,p)(kαt)).

Then

min{Fh(p),A(p,q)(kt), Fh(q),A(q,p)(kt)} ≥ �(An,min{Fh(xn+1),A(p,q)(kαt), Fh(yn+1),A(q,p)(kαt)}), (33)

where

An = min{Fh(p),h(xn+1)(kt − αkt), Fh(q),h(yn+1)(kt − αkt)}. (34)

Now, using (31), (32) and (5), we have

Fh(xn+1),A(p,q)(kαt) = FA(xn,yn),A(p,q)(kαt)

≥ min{Fh(xn),h(p)(αt), Fh(yn),h(q)(αt), Fh(xn),h(xn+1)(αt),
Fh(p),A(p,q)(αt), Fh(yn),h(yn+1)(αt), Fh(q),A(q,p)(αt)}
:= Bn(αt) = Bn.

(35)

Similarly, we get

Fh(yn+1),A(q,p)(kαt) ≥ Bn. (36)
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Combining (35) and (36), we obtain

min{Fh(xn+1),A(p,q)(kαt), Fh(yn+1),A(q,p)(kαt)} ≥ Bn. (37)

Therefore, from (37) and (33), we have

min{Fh(p),A(p,q)(kt), Fh(q),A(q,p)(kt)} ≥ �(An,Bn). (38)

Now, letting n ® +∞ in (38), using the continuity of the T-norm Δ, (30), (20), (21)

and the property Δ(1, a) = a for all a Î [0, 1], we get

min{Fh(p),A(p,q)(kt), Fh(q),A(q,p)(kt)} ≥ min{Fh(p),A(p,q)(αt), Fh(q),A(q,p)(αt)}.

Now, letting a ® 1- in the above inequality, using the left-continuity of F and the

monotony of F, we get

min{Fh(p),A(p,q)(t), Fh(q),A(q,p)(t)} ≥ min{Fh(p),A(p,q)(kt), Fh(q),A(q,p)(kt)}
≥ min{Fh(p),A(p,q)(t), Fh(q),A(q,p)(t)}.

Hence, for all t > 0, we have

min{Fh(p),A(p,q)(t), Fh(q),A(q,p)(t)} = min{Fh(p),A(p,q)(kt), Fh(q),A(q,p)(kt)}.

Now, applying Lemma 6, we get

A(p, q) = h(p) and A(q, p) = h(q),

that is, (p, q) is a coupled coincidence point of A and h. This makes end to the proof. □
The following result is an immediate consequence of Theorem 7.

Corollary 8. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger

PM-space under a T-norm Δ of H-type. Let A : X × X ® X be mapping satisfying the

mixed monotone property, for which there exists k Î (0, 1) such that

FA(x,y),A(u,v)(kt) ≥ min{Fx,u(t), Fy,v(t), Fx,A(x,y)(t), Fu,A(u,v)(t), Fy,A(y,x)(t), Fv,A(v,u)(t)}

for all x, y Î X for which x ≤ u and y ≥ v and all t > 0. Suppose also that

if {xn} ⊂ X is a non - decreasing sequence with xn → z in X then xn ≤ z for all n hold,

if {xn} ⊂ X is a non - increasing sequence with xn → z in X then z ≤ xn for all n hold.

If there exist x0, y0 Î X such that

x0 ≤ A(x0, y0) and y0 ≥ A(y0, x0),

then A has a coupled fixed point, that is, there exist p, q Î X such that A(p, q) = p

and A(q, p) = q.

Now, we prove the following result.

Theorem 9. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger

PM-space under a T-norm Δ of H-type. Suppose A : X × X ® X and h : X ® X are

two continuous mappings such that A(X × X) ⊆ h(X), A has the h-mixed monotone

property on X and h commutes with A. Suppose that for some k Î (0, 1),

FA(x,y),A(u,v)(kt) ≥min{Fh(x),h(u)(t), Fh(y),h(v)(t), Fh(x),A(x,y)(t),
Fh(u),A(u,v)(t), Fh(y),A(y,x)(t), Fh(v),A(v,u)(t)}
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for all x, y Î X for which h(x) ≤ h(u) and h(y) ≥ h(v) and all t > 0. If there exist x0, y0 Î
X such that

h(x0) ≤ A(x0, y0) and h(y0) ≥ A(y0, x0),

then A and h have a coupled coincidence point.

Proof. Following the proof of Theorem 7, {h(xn)} and {h(yn)} are Cauchy sequences in

the complete Menger PM-space (X, F, Δ). Then, there is some p, q Î X such that

lim
n→∞ h(xn) = p and lim

n→∞ h(yn) = q. (39)

Since h is continuous, we have

lim
n→∞ h(h(xn)) = h(p) and lim

n→∞ h(h(yn)) = h(q). (40)

From (8) and the commutativity of A and h, we have

h(h(xn+1)) = h(A(xn, yn)) = A(h(xn), h(yn)) (41)

and

h(h(yn+1)) = h(A(yn, xn)) = A(h(yn), h(xn)). (42)

We now show that h(p) = A(p, q) and h(q) = A(q, p). Taking the limit as n ® +∞ in

(41) and (42), by (39), (40) and the continuity of A, we get

h(p) = lim
n→∞ h(h(xn+1)) = lim

n→∞A(h(xn), h(yn)) = A( lim
n→∞ h(xn), lim

n→∞ h(yn)) = A(p, q)

and

h(q) = lim
n→∞ h(h(yn+1)) = lim

n→∞A(h(yn), h(xn)) = A( lim
n→∞ h(yn), lim

n→∞ h(xn)) = A(q, p).

Thus we proved that h(p) = A(p, q) and h(q) = A(q, p), that is, (p, q) is a coupled

coincidence point of A and h. This makes end to the proof. □
The following result is an immediate consequence of Theorem 9.

Corollary 10. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Men-

ger PM-space under a T-norm Δ of H-type. Let A : X × X ® X be a continuous map-

ping having the mixed monontone property, for which there exists k Î (0, 1) such that

FA(x,y),A(u,v)(kt) ≥ min{Fx,u(t), Fy,v(t), Fx,A(x,y)(t), Fu,A(u,v)(t), Fy,A(y,x)(t), Fv,A(v,u)(t)}

for all x, y Î X for which x ≤ u and y ≥ v and all t > 0. If there exist x0, y0 Î X such that

x0 ≤ A(x0, y0) and y0 ≥ A(y0, x0),

then A has a coupled fixed point.

Now, we end the article with two examples to illustrate our obtained results.

Example 11. Let (X, d) be a metric space defined by d(x, y) = |x - y|, where X = [0, 1]

and (X, F, Δ) be the induced Menger space with Fx,y(t) =
t

t + d(x, y)
for all t > 0 and x, y Î

X. We endow X with the natural ordering of real numbers. Let h : X ® X be defined as

h(x) = x4, for all x ∈ X.

Let A : X × X ® X be defined as

A(x, y) =

{
x4−y4

4 , if x ≥ y
0, if x < y.
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At first we shall show that the mapping A satisfies the h-mixed monotone property:

Consider x1, x2 Î X such that h(x1) ≤ h(x2). Since h is a non-decreasing mapping, this

implies that x1 ≤ x2. Now, let y Î X be an arbitrary point. If x1 <y, then A(x1, y) = 0 ≤

A(x2, y). If y ≤ x1, then
x21 − y2

4
≤ x22 − y2

4
, that is, A(x1, y) ≤ A(x2, y). Similarly, one can

show that if y1, y2 Î X are such that h(y1) ≥ h(y2), then A(x, y1) ≤ A(x, y2) for all x Î
X. Then, the mapping A satisfies the h-mixed monotone property.

Now we shall show that the mappings A and h satisfy the inequality (5). Let x, y Î X

such that h(x) ≤ h(u) and h(y) ≥ h(v) that is, x4 ≤ u4 and y4 ≥ v4.

We have consider the following four cases:

Case-1: x ≥ y.

Since x ≤ u and y ≥ v, then u ≥ v. Moreover, for all t > 0, we have

FA(x,y),A(u,v)(t
/
2) =

t
/
2

t
/
2 + d(A(x, y),A(u, v))

=
t
/
2

t
/
2 +

∣∣∣ x4−y4

4 − u4−v4

4

∣∣∣
=

2t
2t+ | (x4 − u4) − (y4 − v4) | ≥ 2t

2t+ | x4 − u4 | + | y4 − v4 |
≥ min

{
t

t+ | x4 − u4 | ,
t

t+ | y4 − v4 |
}
= min{Fh(x),h(u)(t), Fh(y),h(v)(t)}

≥ min{Fh(x),h(u)(t), Fh(y),h(v)(t), Fh(x),A(x,y)(t), Fh(u),A(u,v)(t), Fh(y),A(y,x)(t), Fh(v),A(v,u)(t)}.

Case-2: x <y and u ≥ v.

In this case, for all t > 0, we have

FA(x,y),A(u,v)(t
/
2) =

t
/
2

t
/
2 + d(A(x, y),A(u, v))

=
t
/
2

t
/
2 +

∣∣∣0 − u4−v4

4

∣∣∣
=

2t
2t + (x4 − v4) + (u4 − x4)

≥ 2t
2t + (y4 − v4) + (u4 − x4)

=
2t

2t + (u4 − x4) + (y4 − v4)

≥ min
{

t
t + (u4 − x4)

,
t

t + (y4 − v4)

}
= min{Fh(x),h(u)(t), Fh(y),h(v)(t)}.

≥ min{Fh(x),h(u)(t), Fh(y),h(v)(t), Fh(x),A(x,y)(t), Fh(u),A(u,v)(t), Fh(y),A(y,x)(t), Fh(v),A(v,u)(t)}.
Case-3: x <y and u <v.

In this case, for all t > 0, we have

FA(x,y),A(u,v)(t
/
2) =

t
/
2

t
/
2 + d(A(x, y),A(u, v))

= 1 ≥ min{Fh(x),h(u)(t), Fh(y),h(v)(t)}.

Therefore, the mappings A and h satisfy the inequality (5), as well as all the required

hypotheses by Theorem 7, and (0, 0) is the coupled coincidence point of A and h.

Example 12. Consider X = [0, +∞) with

Fp,q(t) =

⎧⎨
⎩

t
t + max{p, q} if p �= q

1 if p = q

for all t > 0 and p, q Î X. Then, (X, F, ΔM) is a complete Menger PM-space, where

ΔM(a, b) = min(a, b) for all a, b Î [0, 1]. We endow X with the natural ordering of

real numbers. Define the continuous mapping A: X × X ® X by

A(x, y) =
x

2(1 + y)
, for all x, y ∈ X.
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Clearly A satisfies the mixed monotone property.

Now we shall show that the mappings A and h satisfy the inequality (5) with h(x) = x

for all x Î X. Let (x, y), (u, v) Î X × X such that x ≤ u, y ≥ v and A(x, y) ≠ A(u, v). For

all t > 0, we have

FA(x,y),A(u,v)(t
/
2) =

t

t + max
{

x
1 + y

,
u

1 + v

} =
t

t +
u

1 + v

≥ t
t + u

≥ t

t + max
{
u,

u
2(1 + v)

}
= Fu,A(u,v)(t) ≥ min{Fx,u(t), Fy,v(t), Fx,A(x,y)(t), Fu,A(u,v)(t), Fy,A(y,x)(t), Fv,A(v,u)(t)}.

Therefore, the mappings A and h satisfy the inequality (5), as well as all the required

hypotheses by Theorem 9, and (0, 0) is the coupled coincidence point of A and h, that

is, 0 = A(0, 0).

Now, we endow X with the standard metric d given by d(x, y) = |x - y| for all x, y Î
X. We have

d(A(12, 2),A(12, 1)) = 1 and
d(12, 12) + d(2, 1)

2
=
1
2
.

Then, we cannot find k Î [0, 1) such that

d(A(12, 2),A(12, 1)) ≤ k
2
[d(12, 12) + d(2, 1)].

Then, Theorem 2.1 and Theorem 2.2 of Bhaskar and Lakshmikantham [4]are not

applicable in this case. Similarly, we cannot find a function � : [0, +∞) ® [0, +∞) with

�(t) <t for all t > 0 such that

d(A(12, 2),A(12, 1)) ≤ ϕ

(
d(12, 12) + d(2, 1)

2

)
.

Then, Theorem 2.1 of Lakshmikantham and Ćirić [10]is also not applicable in this

case.
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