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1 Introduction
In nonlinear analysis theory, due to applications to complex real-world problems, a

growing number of mathematical models are built up by introducing constraints which

can be expressed as subproblems of a more general problem. These constraints can be

given by fixed-point problems, see, for example, [1-3]. Study of fixed points of non-

linear mappings and its approximation algorithms constitutes a topic of intensive

research efforts. Many well-known problems arising in various branches of science can

be studied by using algorithms which are iterative in their nature. The well-known

convex feasibility problem which captures applications in various disciplines such as

image restoration, computer tomography, and radiation therapy treatment planning is

to find a point in the intersection of common fixed point sets of a family of nonexpan-

sive mappings, see, for example, [3-5].

For iterative algorithms, the most oldest and simple one is Picard iterative algorithm.

It is known that T enjoys a unique fixed point, and the sequence generated in Picard

iterative algorithm can converge to the unique fixed point. However, for more general

nonexpansive mappings, Picard iterative algorithm fails to convergence to fixed points

of nonexpansive even that it enjoys a fixed point.

Recently, Mann-type iterative algorithm and Ishikawa-type iterative algorithm (implicit

and explicit) have been considered for the approximation of common fixed points of

nonlinear mappings by many authors, see, for example, [6-24]. A classical convergence

theorem of nonexpansive mappings has been established by Xu and Ori [23]. In 2006,

Chang et al. [6] considered an implicit iterative algorithm with errors for asymptotically

nonexpansive mappings in a Banach space. Strong and weak convergence theorems are
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established. Recently, Cianciaruso et al. [9] considered an Ishikawa-type iterative algo-

rithm for the class of asymptotically nonexpansive mappings. Strong and weak conver-

gence theorems are also established. In this paper, based on the class of generalized

asymptotically nonexpansive mappings, an Ishikawa-type implicit iterative algorithm

with errors for two families of mappings is considered. Strong and weak convergence

theorems of common fixed points are established. The results presented in this paper

mainly improve the corresponding results announced in Chang et al. [6], Chidume and

Shahzad [7], Cianciaruso et al. [9], Guo and Cho [10], Khan et al. [12], Plubtieng et al.

[14], Qin et al. [15], Shzhzad and Zegeye [18], Thakur [21], Thianwan and Suantai [22],

Xu and Ori [23], Zhou and Chang [24].

2 Preliminaries
Let C be a nonempty closed convex subset of a Banach space E. Let T : C ® C be a

mapping. Throughout this paper, we use F(T) to denote the fixed point set of T.

Recall the following definitions.

T is said to be nonexpansive if

‖ Tx − Ty ‖≤‖ x − y ‖, ∀x, y ∈ C.

T is said to be asymptotically nonexpansive if there exists a positive sequence {hn} ⊂
[1, ∞) with hn ® 1 as n ® ∞ such that

‖ Tnx − Tny ‖≤ hn ‖ x − y ‖, ∀x, y ∈ C,n ≥ 1.

It is easy to see that every nonexpansive mapping is asymptotically nonexpansive

with the asymptotical sequence {1}. The class of asymptotically nonexpansive mappings

was introduced by Goebel and Kirk [25] in 1972. It is known that if C is a nonempty

bounded closed convex subset of a uniformly convex Banach space E, then every

asymptotically nonexpansive mapping on C has a fixed point. Further, the set F(T) of

fixed points of T is closed and convex. Since 1972, a host of authors have studied

weak and strong convergence problems of implicit iterative processes for such a class

of mappings.

T is said to be asymptotically nonexpansive in the intermediate sense if it is continu-

ous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(‖ Tnx − Tny ‖ − ‖ x − y ‖) ≤ 0. (2:1)

Putting ξn = max{0, supx,yÎC(||T
nx - Tny|| - ||x - y||)}, we see that ξn ® 0 as n ® ∞.

Then, (2.1) is reduced to the following:

‖ Tnx − Tny ‖≤‖ x − y ‖ +ξn, ∀x, y ∈ C,n ≥ 1.

The class of asymptotically nonexpansive mappings in the intermediate sense was

introduced by Bruck et al. [26] (see also Kirk [27]) as a generalization of the class of

asymptotically nonexpansive mappings. It is known that if C is a nonempty closed con-

vex and bounded subset of a real Hilbert space, then every asymptotically nonexpan-

sive self mapping in the intermediate sense has a fixed point; see [28] more details.

T is said to be generalized asymptotically nonexpansive if it is continuous and there

exists a positive sequence {hn} ⊂ [1, ∞) with hn ® 1 as n ® ∞ such that
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lim sup
n→∞

sup
x,y∈C

(‖ Tnx − Tny ‖ −hn ‖ x − y ‖) ≤ 0. (2:2)

Putting ξn = max{0, supx,yÎC(||T
nx - Tny|| - hn||x - y||)}, we see that ξn ® 0 as n ®

∞. Then, (2.2) is reduced to the following:

‖ Tnx − Tny ‖≤ hn ‖ x − y ‖ +ξn, ∀x, y ∈ C,n ≥ 1.

We remark that if hn ≡ 1, then the class of generalized asymptotically nonexpansive

mappings is reduced to the class of asymptotically nonexpansive mappings in the

intermediate.

In 2006, Chang et al. [6] considered the following implicit iterative algorithms for a

finite family of asymptotically nonexpansive mappings {T1, T2,..., TN} with {an} a real

sequence in (0, 1), {un} a bounded sequence in C and an initial point x0 Î C:

x1 = α1x0 + (1 − α1)T1x1 + u1,

x2 = α2x1 + (1 − α2)T2x2 + u2,

· · ·
xN = αNxN−1 + (1 − αN)TNxN + uN,

xN+1 = αN+1xN + (1 − αN+1)Tn
1xN+1 + uN+1,

· · ·
x2N = α2Nx2N−1 + (1 − α2N)T2

Nx2N + u2N,

x2N+1 = α2N+1x2N + (1 − α2N+1)T3
1x2N+1 + u2N+1,

· · · .
The above table can be rewritten in the following compact form:

xn = αnxn−1 + (1 − αn)T
j(n)
i(n)xn + un, ∀n ≥ 1,

where for each n ≥ 1 fixed, j(n) - 1 denotes the quotient of the division of n by N

and i(n) the rest, i.e., n = (j(n) - 1)N + i(n).

Based on the implicit iterative algorithm, they obtained, under the assumption that C +

C ⊂ C, weak and strong convergence theorems of common fixed points for a finite family

of asymptotically nonexpansive mappings {T1, T2,..., TN}; see [6] for more details.

Recently, Cianciaruso et al. [9] considered a Ishikawa-like iterative algorithm for the

class of asymptotically nonexpansive mappings in a Banach space. To be more precise,

they introduced and studied the following implicit iterative algorithm with errors.{
yn = (1 − βn − δn)xn + βnT

j(n)
i(n)xn + δnvn,

xn = (1 − αn − γn)xn−1 + αnT
j(n)
i(n)yn + γnun, ∀n ≥ 1,

(2:3)

where {an}, {bn}, {gn}, and {δn} are real number sequences in [0,1], {un} and {vn} are

bounded sequence in C. Weak and strong convergence theorems are established in a

uniformly convex Banach space; see [29] for more details.

In this paper, motivated and inspired by the results announced in Chang et al. [6],

Chidume and Shahzad [7], Cianciaruso et al. [9], Guo and Cho [10], Plubtieng et al.

[14], Qin et al. [15], Shzhzad and Zegeye [18], Thakur [21], Thianwan and Suantai

[22], Xu and Ori [23], Zhou and Chang [24], we consider the following Ishikawa-like

implicit iteration algorithm with errors for two finite families of generalized asymptoti-

cally nonexpansive mappings {T1, T2,..., TN} and {S1, S2,..., SN}.
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x0 ∈ C,

x1 = α1x0 + β1T1(α′
1x1 + β ′

1S1x1 + γ ′
1v1) + γ1u1,

x2 = α2x1 + β2T2(α′
2x2 + β ′

2S2x2 + γ ′
2v2) + γ2u2,

· · ·
xN = αNxN−1 + βNTN(α′

NxN + β ′
NSNxN + γ ′

NvN) + γNuN,

xN+1 = αN+1xN + βN+1TN+1(α′
N+1xN+1 + β ′

N+1SN+1xN+1

+ γ ′
N+1vN+1) + γN+1uN+1,

· · ·
x2N = α2Nx2N−1 + β2NT2N(α′

2Nx2N + β ′
2NS2Nx2N + γ ′

2Nv2N)

+ γ2Nu2N ,

x2N+1 = α2N+1x2N + β2N+1T2N+1(α′
2N+1x2N+1 + β ′

2N+1S2N+1x2N+1

+ γ ′
2N+1v2N+1) + γ2N+1u2N+1,

· · · ,
where {an}, {bn}, {gn}, {α′

n}, {β ′
n}, and {γ ′

n} are sequences in [0,1] such that

αn + βn + γn = α′
n + β ′

n + γ ′
n = 1 for each n ≥ 1. We have rewritten the above table in the

following compact form:

xn = αnxn−1 + βnT
j(n)
i(n)(α

′
nxn + β ′

nS
j(n)
i(n)xn + γ ′

nvn) + γnun, n ≥ 1,

where for each n ≥ 1 fixed, j(n) - 1 denotes the quotient of the division of n by N

and i(n) the rest, i.e., n = (j(n) - 1)N + i(n).

Putting yn = α′
nxn + β ′

nSnxn + γ ′
nvn, we have the following composite iterative algo-

rithm:{
yn = α′

nxn + β ′
nS

j(n)
i(n)xn + γ ′

nvn,

xn = αnxn−1 + βnT
j(n)
i(n)yn + γnun, n ≥ 1.

(2:4)

We remark that the implicit iterative algorithm (2.4) is general which includes (2.3) as

a special case.

Now, we show that (2.4) can be employed to approximate fixed points of generalized

asymptotically nonexpansive mappings which is assumed to be Lipschitz continuous.

Let Ti be a Lit-Lipschitz generalized asymptotically nonexpansive mapping with a

sequence {hin} ⊂ [1,∞) such that hin → 1 as n ® ∞ and Si be a Lis-Lipschitz generalized

asymptotically nonexpansive mapping with sequences {kin} ⊂ [1,∞) such that kin → 1

as n ® ∞ for each 1 ≤ i ≤ N. Define a mapping Wn : C ® C by

Wn(x) = αnxn−1 + βnT
j(n)
i(n)(α

′
nx + β ′

nS
j(n)
i(n)x + γ ′

nvn) + γnun, ∀n ≥ 1.

It follows that

‖ Wn(x) − Wn(y) ‖
≤ βn ‖ Tj(n)

i(n)(α
′
nx + β ′

nS
j(n)
i(n)x + γ ′

nvn) − Tj(n)
i(n)(α

′
ny + β ′

nS
j(n)
i(n)y + γ ′

nvn) ‖
≤ βnL(α′

n ‖ x − y ‖ +β ′
n ‖ Sj(n)i(n)x − Sj(n)i(n)y ‖)

≤ βnL(α′
n + β ′

nL) ‖ x − y ‖, ∀x, y ∈ C,
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where

L = max
{
L1t , . . . , L

N
t , L

1
s , . . . L

N
s

}
. (2:5)

If βnL(α′
n + β ′

nL) < 1 for all n ≥ 1, then Wn is a contraction. By Banach contraction

mapping principal, we see that there exists a unique fixed point xn Î C such that

xn = Wn(xn) = αnxn−1 + βnT
j(n)
i(n)(α

′
nx + β ′

nS
j(n)
i(n)x + γ ′

nvn)

+ γnun, ∀n ≥ 1.

That is, the implicit iterative algorithm (2.4) is well defined.

The purpose of this paper is to establish strong and weak convergence theorem of

fixed points of generalized asymptotically nonexpansive mappings based on (2.4).

Next, we recall some well-known concepts.

Let E be a real Banach space and UE = {x Î E : ||x|| = 1}. E is said to be uniformly

convex if for any ε Î (0, 2] there exists δ > 0 such that for any x, y Î UE,

‖ x − y ‖≥ ε implies
∥∥∥x + y

2

∥∥∥ ≤ 1 − δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to satisfy Opial’s condition [30] if for each sequence {xn} in E,

the condition that the sequence xn ® x weakly implies that

lim inf
n→∞ ‖ xn − x ‖< lim inf

n→∞ ‖ xn − y ‖

for all y Î E and y ≠ x. It is well known [30] that each lp (1 ≤ p < ∞) and Hilbert

spaces satisfy Opial’s condition. It is also known [29] that any separable Banach space

can be equivalently renormed to that it satisfies Opial’s condition.

Recall that a mapping T : C ® C is said to be demiclosed at the origin if for each

sequence {xn} in C, the condition xn ® x0 weakly and Txn ® 0 strongly implies Tx0 =

0. T is said to be semicompact if any bounded sequence {xn} in C satisfying limn®∞||xn
- Txn|| = 0 has a convergent subsequence.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1. [20]Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the

following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer. If
∑∞

n=0 cn < ∞and
∑∞

n=0 bn < ∞, then limn®∞

an exists.

Lemma 2.2. [17]Let E be a uniformly convex Banach space and 0 <l ≤ tn ≤ h < 1 for

all n ≥ 1. Suppose that {xn} and {yn} are sequences of E such that

lim sup
n→∞

‖ xn ‖≤ r, lim sup
n→∞

‖ yn ‖≤ r

and

lim
n→∞ ‖ tnxn + (1 − tn)yn ‖= r

hold for some r ≥ 0. Then limn®∞ ||xn - yn|| = 0.
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The following lemma can be obtained from Qin et al. [31] or Sahu et al. [32]

immediately.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T : C ® C be a Lipschitz generalized asymptotically nonexpansive mapping. Then I - T

is demiclosed at origin.

3 Main results
Now, we are ready to give our main results in this paper.

Theorem 3.1. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized

asymptotically nonexpansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n

® ∞ and Si : C ® C be a uniformly Lis-Lipschitz and generalized asymptotically nonex-

pansive mapping with a sequence {kin} ⊂ [1,∞), where kin → 1as n ® ∞ for each 1 ≤ i

≤ N. Assume that F =
⋂N

i=1 F(Ti)
⋂ ⋂N

i=1 F(Si) �= ∅. Let {un}, {vn} be bounded sequences

in C and en = max{hn, kn}, where hn = sup{hin : 1 ≤ i ≤ N}and kn = sup{kin : 1 ≤ i ≤ N}.
Let {an}, {bn}, {gn}, {α′

n}, {β ′
n}and {γ ′

n}be sequences in [0,1] such that

αn + βn + γn = α′
n + β ′

n + γ ′
n = 1for each n ≥ 1. Let {xn} be a sequence generated in (2.4).

Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}and

νin = max{0, supx,y∈C(‖ Sni x − Sni y ‖ −kin ‖ x − y ‖)}. Let ξn = max{μn, νn}, where

νn = max{νin : 1 ≤ i ≤ N}and νn = max{νin : 1 ≤ i ≤ N}. Assume that the following

restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞and
∑∞

n=1 γ ′
n < ∞;

(b)
∑∞

n=1 (en − 1) < ∞and
∑∞

n=1 ξn < ∞;

(c) βnL(α′
n + β ′

nL) < 1, where L is defined in (2.5);

(d) there exist constants l, h Î (0, 1) such that l ≤ an, α′
n ≤ η.

Then

lim
n→∞ ‖ xn − Trxn ‖= lim

n→∞ ‖ xn − Srxn ‖= 0, ∀r ∈ {1, 2, . . . ,N}.

Proof. Fixing f ∈ F , we see that∥∥yn − f
∥∥ =‖ α′

nxn + β ′
nS

j(n)
i(n)xn + γ ′

nvn − f ‖
≤ α′

n ‖ xn − f ‖ +β ′
n ‖ Sj(n)i(n)xn − f ‖ +γ ′

n ‖ vn − f ‖
≤ α′

n ‖ xn − f ‖ +β ′
nej(n) ‖ xn − f ‖ +β ′

nξj(n) + γ ′
n ‖ vn − f ‖

≤ ej(n) ‖ xn − f ‖ +β ′
nξj(n) + γ ′

n ‖ vn − f ‖

(3:1)

and

‖ xn − f ‖
=‖ αnxn−1 + βnT

j(n)
i(n)yn + γnun − f ‖

≤ αn ‖ xn−1 − f ‖ +βn ‖ Tj(n)
i(n)yn − f ‖ +γn ‖ un − f ‖

≤ αn ‖ xn−1 − f ‖ +βnej(n) ‖ yn − f ‖ +βnξj(n) + γn ‖ un − f ‖ .

≤ αn ‖ xn−1 − f ‖ +(1 − αn)ej(n) ‖ yn − f ‖ +βnξj(n) + γn ‖ un − f ‖ .

(3:2)
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Substituting (3.1) into (3.2), we see that

‖ xn − f ‖
≤ αn ‖ xn−1 − f ‖ +(1 − αn)ej(n)(ej(n) ‖ xn − f ‖ + β ′

nξj(n) + γ ′
n ‖ vn − f ‖)

+βnξj(n) + γn ‖ un − f ‖ .

≤ αn ‖ xn−1 − f ‖ +(1 − αn)e2j(n) ‖ xn − f ‖ +(1 + ej(n))ξj(n)

+ej(n)γ ′
n ‖ vn − f ‖ +γn ‖ un − f ‖ .

Notice that
∑∞

n=1 (en − 1) < ∞. We see from the restrictions (b) and (d) that there

exists a positive integer n0 such that

(1 − αn)e2j(n) ≤ R < 1, ∀n ≥ n0,

where R = (1 − λ)(1 + λ
2−2λ

). It follows that

∥∥xn − f
∥∥ ≤

(
1 +

(1 − αn)(e2j(n) − 1)

1 − (1 − αn)e2j(n)

)
‖ xn−1 − f ‖

+
(1 + ej(n))ξj(n) + ej(n)γ ′

n ‖ vn − f ‖ + γn ‖ un − f ‖
1 − (1 − αn)e2j(n)

≤
(
1 +

(1 +M1)(ej(n) − 1)

1 − R

)
‖ xn−1 − f ‖

+
(1 +M1)ξj(n) +M1M2γ

′
n +M3γn

1 − R
,

(3:3)

where M1 = supn≥1{en}, M2 = supn≥1{||vn - f||}, and M3 = supn≥1{||un - f||}. In view of

Lemma 2.1, we see that limn®∞ ||xn - f|| exists for each f ∈ F . This implies that the

sequence {xn} is bounded. Next, we assume that limn®∞ ||xn - f|| = d > 0. From (3.1),

we see that

‖ Tj(n)
i(n)yn − f + γn(un − Tj(n)

i(n)yn) ‖
≤‖ Tj(n)

i(n)yn − f ‖ +γn ‖ un − Tj(n)
i(n)yn ‖

≤ ej(n) ‖ yn − f ‖ +ξj(n) + γn ‖ un − Tj(n)
i(n)yn ‖

≤ e2j(n) ‖ xn − f ‖ +ej(n)ξj(n) + ej(n)γ ′
n ‖ vn − f ‖ +ξj(n)

+γn ‖ un − Tj(n)
i(n)yn ‖ .

This implies from the restrictions (a) and (b) that

lim sup
n→∞

‖ Tj(n)
i(n)yn − f + γn(un − Tj(n)

i(n)yn) ‖≤ d.

Notice that

‖ xn−1 − f + γn(un − Tj(n)
i(n)yn) ‖≤‖ xn−1 − f ‖ +γn ‖ un − Tj(n)

i(n)yn ‖ .

This shows from the restriction (a) that

lim sup
n→∞

‖ xn−1 − f + γn(un − Tj(n)
i(n)yn) ‖≤ d.
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On the other hand, we have

d = lim
n→∞ ‖ xn − f ‖

= lim
n→∞ ‖ αn(xn−1 − f + γn(un − Tj(n)

i(n)yn))

+ (1 − αn)(T
j(n)
i(n)yn − f + γn(un − Tj(n)

i(n)yn)) ‖ .

It follows from Lemma 2.2 that

lim
n→∞ ‖ Tj(n)

i(n)yn − xn−1 ‖= 0. (3:4)

Notice that

‖ xn − xn−1 ‖≤ βn ‖ Tj(n)
i(n)yn − xn−1 ‖ +γn ‖ un − xn−1 ‖ .

It follows from (3.4) and the restriction (a) that

lim
n→∞ ‖ xn − xn−1 ‖= 0. (3:5)

This implies that

lim
n→∞ ‖ xn − xn+l ‖= 0, ∀l = 1, 2, . . . ,N. (3:6)

Notice that

‖ xn − f + γ ′
n(vn − Sj(n)i(n)xn) ‖≤‖ xn − f ‖ +γ ′

n ‖ vn − Sj(n)i(n)xn ‖

and

‖ Sj(n)i(n)xn − f + γ ′
n(vn − Sj(n)i(n)xn) ‖

≤‖ Sj(n)i(n)xn − f ‖ +γ ′
n ‖ vn − Sj(n)i(n)xn ‖

≤ ej(n) ‖ xn − f ‖ +ξj(n) + γ ′
n ‖ vn − Sj(n)i(n)xn ‖ .

which in turn imply that

lim sup
n→∞

‖ xn − f + γ ′
n(vn − Sj(n)i(n)xn) ‖≤ d

and

lim sup
n→∞

‖ Sj(n)i(n)xn − f + γ ′
n(vn − Sj(n)i(n)xn) ‖≤ d.

On the other hand, we have

‖ xn − f ‖ =‖ αnxn−1 + βnT
j(n)
i(n)yn + γnun − f ‖

≤ αn ‖ xn−1 − f ‖ +βn ‖ Tj(n)
i(n)yn − f ‖ +γn ‖ un − f ‖

≤ αn ‖ xn−1 − Tk(n)
i(n) yn ‖ + ‖ Tj(n)

i(n)yn − f ‖ +γn ‖ un − f ‖
≤ αn ‖ xn−1 − Tk(n)

i(n) yn ‖ +ej(n) ‖ yn − f ‖ +ξj(n) + γn ‖ un − f ‖,
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from which it follows that lim infn®∞ ||yn - f|| ≥ d. In view of (3.1), we see that lim

supn®∞ ||yn - f|| ≤ d. This proves that

lim
n→∞ ‖ yn − f ‖= d.

Notice that

lim
n→∞ ‖ yn − f ‖ = lim

n→∞ ‖ α′
n(xn − f + γ ′

n(vn − Sj(n)i(n)xn))

+ (1 − α′
n)(S

j(n)
i(n)xn − f + γ ′

n(vn − Sj(n)i(n)xn)) ‖ .

This implies from Lemma 2.2 that

lim
n→∞ ‖ Sj(n)i(n)xn − xn ‖= 0. (3:7)

On the other hand, we have

‖ Tj(n)
i(n)xn − xn ‖

≤‖ Tj(n)
i(n)xn − Tj(n)

i(n)yn ‖ + ‖ Tj(n)
i(n)yn − xn−1 ‖ + ‖ xn−1 − xn ‖

≤‖ Tj(n)
i(n)xn − Tj(n)

i(n)yn ‖ + ‖ Tj(n)
i(n)yn − xn−1 ‖ + ‖ xn−1 − xn ‖

≤ L ‖ xn − yn ‖ + ‖ Tj(n)
i(n)yn − xn−1 ‖ + ‖ xn−1 − xn ‖

≤ Lβ ′
n ‖ Sj(n)i(n)xn − xn ‖ +Lγ ′

n ‖ vn − xn ‖ + ‖ Tj(n)
i(n)yn − xn−1 ‖

+ ‖ xn−1 − xn ‖ .

This combines with (3.4), (3.5), and (3.7) gives that

lim
n→∞ ‖ Tj(n)

i(n)xn − xn ‖= 0. (3:8)

Since n = (j(n) - 1)N + i(n), where i(n) Î {1, 2,..., N}, we see that

‖ xn − Si(n)xn ‖ ≤‖ xn − Sj(n)i(n)xn ‖ + ‖ Sj(n)i(n)xn − Si(n)xn ‖
≤‖ xn − Sj(n)i(n)xn ‖ +L ‖ Sj(n)−1

i(n) xn − xn ‖
≤‖ xn − Sj(n)i(n)xn ‖ +L(‖ Sj(n)−1

i(n) xn − Sj(n)−1
i(n−N)xn−N ‖

+ ‖ Sj(n)−1
i(n−N)xn−N − xn−N ‖ + ‖ xn−N − xn ‖).

(3:9)

Notice that

j(n − N) = j(n) − 1 and i(n − N) = i(n).

This in turn implies that

‖ Sj(n)−1
i(n) xn − Sj(n)−1

i(n−N)xn−N ‖ =‖ Sj(n)−1
i(n) xn − Sj(n)−1

i(n) xn−N ‖
≤ L ‖ xn − xn−N ‖

(3:10)

and

‖ Sj(n)−1
i(n−N)xn−N − xn−N ‖=‖ Sj(n−N)

i(n−N)xn−N − xn−N ‖ . (3:11)
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Substituting (3.10) and (3.11) into (3.9) yields that

‖ xn − Si(n)xn ‖ ≤‖ xn − Sj(n)i(n)xn ‖ +L(L ‖ xn − xn−N ‖
+ ‖ Sj(n−N)

i(n−N)xn−N − xn−N ‖).

It follows from (3.6) and (3.7) that

lim
n→∞ ‖ xn − Si(n)xn ‖= 0. (3:12)

In particular, we see that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
limj→∞ ‖ xjN+1 − S1xjN+1 ‖= 0,
limj→∞ ‖ xjN+2 − S2xjN+2 ‖= 0,

...
limj→∞ ‖ xjN+N − SNxjN+N ‖= 0.

For any r, s = 1, 2,..., N, we obtain that

‖ xjN+s − SrxjN+s ‖
≤‖ xjN+s − xjN+r ‖ + ‖ xjN+r − SrxjN+r ‖ + ‖ SrxjN+r − SrxjN+s ‖
≤ (1 + L) ‖ xjN+s − xjN+r ‖ + ‖ xjN+r − SrxjN+r ‖ .

Letting j ® ∞, we arrive at

lim
j→∞

‖ xjN+s − SrxjN+s ‖= 0,

which is equivalent to

lim
n→∞ ‖ xn − Srxn ‖= 0. (3:13)

Notice that

‖ xn − Ti(n)xn ‖ ≤‖ xn − Tj(n)
i(n)xn ‖ + ‖ Tj(n)

i(n)xn − Ti(n)xn ‖
≤‖ xn − Tj(n)

i(n)xn ‖ +L ‖ Tj(n)−1
i(n) xn − xn ‖

≤‖ xn − Tj(n)
i(n)xn ‖ +L(‖ Tj(n)−1

i(n) xn − Tj(n)−1
i(n−N)xn−N ‖

+ ‖ Tj(n)−1
i(n−N)xn−N − xn−N ‖ + ‖ xn−N − xn ‖).

(3:14)

On the other hand, we have

‖ Tj(n)−1
i(n) xn − Tj(n)−1

i(n−N)xn−N ‖ =‖ Tj(n)−1
i(n) xn − Tj(n)−1

i(n) xn−N ‖
≤ L ‖ xn − xn−N ‖

(3:15)

and

‖ Tj(n)−1
i(n−N)xn−N − xn−N ‖=‖ Tj(n−N)

i(n−N)xn−N − xn−N ‖ . (3:16)

Substituting (3.15) and (3.16) into (3.14) yields that

‖ xn − Ti(n)xn ‖ ≤‖ xn − Tk(n)
i(n) xn ‖ +L(L ‖ xn − xn−N ‖

+ ‖ Tk(n−N)
i(n−N) xn−N − xn−N ‖).

It follows from (3.6) and (3.8) that

lim
n→∞ ‖ xn − Ti(n)xn ‖= 0. (3:17)
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In particular, we see that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
limk→∞ ‖ xjN+1 − T1xjN+1 ‖= 0,
limk→∞ ‖ xjN+2 − T2xjN+2 ‖= 0,

...
limk→∞ ‖ xjN+N − TNxjN+N ‖= 0.

For any r, s = 1, 2,..., N, we obtain that

‖ xjN+s − TrxjN+s ‖
≤‖ xjN+s − xjN+r ‖ + ‖ xjN+r − TrxjN+r ‖ + ‖ TrxjN+r − TrxjN+s ‖
≤ (1 + L) ‖ xjN+s − xjN+r ‖ + ‖ xjN+r − TrxjN+r ‖ .

Letting j ® ∞, we arrive

lim
j→∞

‖ xjN+s − TrxjN+s ‖= 0,

which is equivalent to

lim
n→∞ ‖ xn − Trxn ‖= 0. (3:18)

This completes the proof. □
Now, we are in a position to give weak convergence theorems.

Theorem 3.2. Let E be a real Hilbert space and C be a nonempty closed convex subset

of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized asymptotically nonex-

pansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n ® ∞ and Si : C ® C

be a uniformly Lis-Lipschitz and generalized asymptotically nonexpansive mapping with a

sequence {kin} ⊂ [1,∞), where kin → 1as n ® ∞ for each 1 ≤ i ≤ N. Assume that

F =
⋂N

i=1 F(Ti)
⋂ ⋂N

i=1 F(Si) �= ∅. Let {un}, {vn} be bounded sequences in C and en = max

{hn, kn}, where hn = sup{hin : 1 ≤ i ≤ N}and kn = sup{kin : 1 ≤ i ≤ N}. Let {an}, {bn}, {gn},
{β ′

n}, {β ′
n}and {γ ′

n}be sequences in [0,1] such that αn + βn + γn = α′
n + β ′

n + γ ′
n = 1for each n

≥ 1. Let {xn} be a sequence generated in (2.4). Put

νin = max{0, supx,y∈C(‖ Sni x − Sni y ‖ −kin ‖ x − y ‖)}and
νin = max{0, supx,y∈C(‖ Sni x − Sni y ‖ −kin ‖ x − y ‖)}. Let ξn = max{μn, νn}, where

νn = max{νin : 1 ≤ i ≤ N}and νn = max{νin : 1 ≤ i ≤ N}. Assume that the following

restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞and
∑∞

n=1 γ ′
n < ∞;

(b)
∑∞

n=1 (en − 1) < ∞and
∑∞

n=1 ξn < ∞;

(c) βnL(α′
n + β ′

nL) < 1, where L is defined in (2.5);

(d) there exist constants l, h Î (0, 1) such that l ≤ an, α′
n ≤ η.

Then the sequence {xn} converges weakly to some point in F .

Proof. Since E is a Hilbert space and {xn} is bounded, we can obtain that there exists

a subsequence {xnp} of {xn} converges weakly to x* Î C. It follows from (3.13) and

(3.18) that

lim
p→∞ ‖ xnp − Trxnp ‖= lim

p→∞ ‖ xnp − Srxnp ‖= 0.
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Since I - Sr and I - Tr are demiclosed at origin by Lemma 2.3, we see that x∗ ∈ F .

Next, we show that the whole sequence {xn} converges weakly to x*. Suppose the con-

trary. Then there exists some subsequence {xnq} of {xn} such that {xnq} converges weakly
to x** Î C. In the same way, we can show that x∗∗ ∈ F . Notice that we have proved

that limn®∞ ||xn - f|| exists for each f ∈ F . By virtue of Opial’s condition of E, we

have

lim inf
p→∞ ‖ xnp − x∗ ‖ < lim inf

p→∞ ‖ xnp − x∗∗ ‖
= lim inf

q→∞ ‖ xnq − x∗∗ ‖
< lim inf

q→∞ ‖ xnq − x∗ ‖ .

This is a contradiction. Hence, x* = x**. This completes the proof. □
Remark 3.3. Theorem 3.2 which includes the corresponding results announced in

Chang et al. [6], Chidume and Shahzad [7], Guo and Cho [10], Plubtieng et al. [14],

Qin et al. [15], Thakur [21], Thianwan and Suantai [22], Xu and Ori [23], and Zhou

and Chang [24] as special cases mainly improves the results of Cianciaruso et al. [9] in

the following aspects.

(1) Extend the mappings from one family of mappings to two families of mappings;

(2) Extend the mappings from the class of asymptotically nonexpansive mappings

to the class of generalized asymptotically nonexpansive mappings.

If Sr = I for each r Î {1, 2,..., N} and γ ′
n = 0, then Theorem 3.2 is reduced to the

following.

Corollary 3.4. Let E be a real Hilbert space and C be a nonempty closed convex sub-

set of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized asymptotically non-

expansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n ® ∞ for each 1 ≤

i ≤ N. Assume that F =
⋂N

i=1 F(Ti) �= ∅. Let {un} be a bounded sequence in C and

hn = sup{hin : 1 ≤ i ≤ N}. Let {an}, {bn} and {gn} be sequences in [0,1] such that an + bn
+ gn = 1 for each n ≥ 1. Let {xn} be a sequence generated in the following process:

x0 ∈ C, xn = αnxn−1 + βnT
j(n)
i(n)xn + γnun, n ≥ 1. (3:19)

Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}. Let

μn = max{μi
n : 1 ≤ i ≤ N}. Assume that the following restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞;

(b)
∑∞

n=1 (hn − 1) < ∞and
∑∞

n=1 μn < ∞;

(c) bnL < 1, where L = max{Lit : 1 ≤ i ≤ N};
(d) there exist constants l, h Î (0, 1) such that l ≥ an, α′

n ≤ η.

Then the sequence {xn} converges weakly to some point in F .

Next, we are in a position to state strong convergence theorems in a Banach space.

Theorem 3.5. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized
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asymptotically nonexpansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n

® ∞ and Si : C ® C be a uniformly Lis-Lipschitz and generalized asymptotically nonex-

pansive mapping with a sequence {kin} ⊂ [1,∞), where kin → 1as n ® ∞ for each 1 ≤ i

≤ N. Assume that F =
⋂N

i=1 F(Ti)
⋂ ⋂N

i=1 F(Si) �= ∅. Let {un}, {vn} be bounded sequences

in C and en = max{hn, kn}, where hn = sup{hin : 1 ≤ i ≤ N}and kn = sup{kin : 1 ≤ i ≤ N}.
Let {an}, {bn}, {gn}, {α′

n}, {β ′
n}and {γ ′

n}be sequences in [0,1] such that

αn + βn + γn = α′
n + β ′

n + γ ′
n = 1for each n ≥ 1. Let {xn} be a sequence generated in (2.4).

Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}and

νin = max{0, supx,y∈C(‖ Sni x − Sni y ‖ −kin ‖ x − y ‖)}. Let ξn = max{μn, νn}, where

νn = max{νin : 1 ≤ i ≤ N}and νn = max{νin : 1 ≤ i ≤ N}. Assume that the following

restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞and
∑∞

n=1 γ ′
n < ∞;

(b)
∑∞

n=1 (en − 1) < ∞and
∑∞

n=1 ξn < ∞;

(c) βnL(α′
n + β ′

nL) < 1, where L is defined in (2.5);

(d) there exist constants l, h Î (0, 1) such that l ≥ an, α′
n ≤ η.

If one of mappings in {T1, T2,..., TN} or one of mappings in {S1, S2,..., SN} are semicom-

pact, then the sequence {xn} converges strongly to some point in F .

Proof. Without loss of generality, we may assume that S1 are semicompact. It follows

from (3.13) that

lim
n→∞ ‖ xn − S1xn ‖= 0.

By the semicompactness of S1, we see that there exists a subsequence {xnp} of {xn}
such that xnp → w ∈ C strongly. From (3.13) and (3.18), we have

‖ w − Srw ‖≤‖ w − xnp ‖ + ‖ xnp − Srxnp ‖ + ‖ Srxnp − Srw ‖

and

‖ w − Trw ‖≤‖ w − xnp ‖ + ‖ xnp − Trxnp ‖ + ‖ Trxnp − Trw ‖

Since Sr and Tr are Lipshcitz continuous, we obtain that w ∈ F . From Theorem 3.1,

we know that limn®∞||xn - f|| exists for each f ∈ F . That is, limn®∞||xn - w|| exists.

From xnp → w, we have

lim
n→∞ ‖ xn − w ‖= 0.

This completes the proof of Theorem 3.5. □
If Sr = I for each r Î {1, 2,..., N} and γ ′

n = 0, then Theorem 3.5 is reduced to the

following.

Corollary 3.6. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized

asymptotically nonexpansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n

® ∞ for each 1 ≤ i ≤ N. Assume that F =
⋂N

i=1 F(Ti) �= ∅. Let {un} be a bounded

sequence in C and hn = sup{hin : 1 ≤ i ≤ N}. Let {an}, {bn} and {gn} be sequences in

[0,1] such that an + bn + gn = 1 for each n ≥ 1. Let {xn} be a sequence generated in
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(3.19). Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}. Let

μn = max{μi
n : 1 ≤ i ≤ N}. Assume that the following restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞;

(b)
∑∞

n=1 (hn − 1) < ∞and
∑∞

n=1 μn < ∞;

(c) bnL < 1, where L = max{Lit : 1 ≤ i ≤ N};
(d) there exist constants l, h Î (0, 1) such that l ≥ an, α

′
n ≤ η.

If one of mappings in {T1, T2,..., TN} is semicompact, then the sequence {xn} converges

strongly to some point in F .

Theorem 3.7. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized

asymptotically nonexpansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n

® ∞ and Si : C ® C be a uniformly Lis-Lipschitz and generalized asymptotically nonex-

pansive mapping with a sequence {kin} ⊂ [1,∞), where kin → 1as n ® ∞ for each 1 ≤ i

≤ N. Assume that F =
⋂N

i=1 F(Ti)
⋂ ⋂N

i=1 F(Si) �= ∅. Let {un}, {vn} be bounded sequences

in C and en = max{hn, kn}, where hn = sup{hin : 1 ≤ i ≤ N}and kn = sup{kin : 1 ≤ i ≤ N}.
Let {an}, {bn}, {gn}, {α′

n}, {β ′
n}and {γ ′

n}be sequences in [0,1] such that

αn + βn + γn = α′
n + β ′

n + γ ′
n = 1for each n ≥ 1. Let {xn} be a sequence generated in (2.4).

Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}and

νin = max{0, supx,y∈C(‖ Sni x − Sni y ‖ −kin ‖ x − y ‖)}. Let ξn = max{μn, νn}, where

νn = max{νin : 1 ≤ i ≤ N}and νn = max{νin : 1 ≤ i ≤ N}. Assume that the following

restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞and
∑∞

n=1 γ ′
n < ∞;

(b)
∑∞

n=1 (en − 1) < ∞and
∑∞

n=1 ξn < ∞;

(c) βnL(α′
n + β ′

nL) < 1, where L is defined in (2.5);

(d) there exist constants l, h Î (0, 1) such that l ≥ an,.α′
n ≤ η.

If there exists a nondecreasing function g : [0, ∞) ® [0, ∞) with g(0) = 0 and g(m) > 0

for all m Î (0, ∞) such that

max
1≤r≤N

{‖ x − Srx ‖} + max
1≤r≤N

{‖ x − Trx ‖} ≥ g(dist(x,F)), ∀x ∈ C,

then the sequence {xn} converges strongly to some point in F .

Proof. In view of (3.13) and (3.18) that g(dist(xn,F)) → 0, which implies

dist(xn,F) → 0. Next, we show that the sequence {xn} is Cauchy. In view of (3.3), we

obtain by putting

an =
(1 +M1)(ej(n) − 1)

1 − R
and bn =

(1 +M1)ξj(n) +M1M2γ
′
n +M3γn

1 − R

that

‖ xn − f ‖≤ (1 + an) ‖ xn−1 − f ‖ +bn.
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It follows, for any positive integers m, n, where m >n >n0, that

‖ xm − p ‖≤ B ‖ xn − p ‖ +B
∞∑

i=n+1

bi + bm,

where B = exp{∑∞
n=1 an}. It follows that

‖ xn − xm ‖ ≤‖ xn − f ‖ + ‖ xm − f ‖

≤ (1 + B) ‖ xn − f ‖ +B
∞∑

i=n+1

bi + bm.

Taking the infimum over all f ∈ F , we arrive at

‖ xn − xm ‖≤ (1 + B)dist(xn,F) + B
∞∑

i=n+1

bi + bm.

In view of
∑∞

n=1 bn < ∞ and dist(xn,F) → 0, we see that {xn} is a Cauchy sequence

in C and so {xn} converges strongly to some x* Î C. Since Tr and Sr are Lipschitz for

each r Î {1, 2,..., N}, we see that F is closed. This in turn implies that x∗ ∈ F . This

completes the proof. □
If Sr = I for each r Î {1, 2,..., N} and γ ′

n = 0, then Theorem 3.7 is reduced to the

following.

Corollary 3.8. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let Ti : C ® C be a uniformly Lit-Lipschitz and generalized

asymptotically nonexpansive mapping with a sequence {hin} ⊂ [1,∞), where hin → 1as n

® ∞ for each 1 ≤ i ≤ N. Assume that F =
⋂N

i=1 F(Ti) �= ∅. Let {un} be a bounded

sequence in C and hn = sup{hin : 1 ≤ i ≤ N}. Let {an}, {bn} and {gn} be sequences in

[0,1] such that an + bn + gn = 1 for each n ≥ 1. Let {xn} be a sequence generated in

(3.19). Put μi
n = max{0, supx,y∈C(‖ Tn

i x − Tn
i y ‖ −hin ‖ x − y ‖)}. Let

μn = max{μi
n : 1 ≤ i ≤ N}. Assume that the following restrictions are satisfied:

(a)
∑∞

n=1 γn < ∞;

(b)
∑∞

n=1 (hn − 1) < ∞and
∑∞

n=1 μn < ∞;

(c) bnL < 1, where L = max{Lit : 1 ≤ i ≤ N};
(d) there exist constants l, h Î (0, 1) such that, l ≥ an, α′

n ≤ η.

If there exists a nondecreasing function g : [0, ∞) ® [0, ∞) with g(0) = 0 and g(m) > 0

for all m Î (0, ∞) such that

max
1≤r≤N

{‖ x − Trx ‖} ≥ g(dist(x,F)), ∀x ∈ C,

then the sequence {xn} converges strongly to some point in F .
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