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Abstract

This article discusses a more general contractive condition for a class of extended
(p ≥ 2) -cyclic self-mappings on the union of a finite number of subsets of a metric
space which are allowed to have a finite number of successive images in the same
subsets of its domain. If the space is uniformly convex and the subsets are non-
empty, closed and convex, then all the iterates converge to a unique closed limiting
finite sequence which contains the best proximity points of adjacent subsets and
reduces to a unique fixed point if all such subsets intersect.

1. Introduction
A general contractive condition of rational type has been proposed in [1,2] for a partially

ordered metric space. Results about the existence of a fixed point and then its unique-

ness under supplementary conditions are proved in those articles. The general rational

contractive condition of [3] includes as particular cases several of the existing ones

[1,4-12] including Banach’s principle [5] and Kannan’s fixed point theorems [4,8,9,11].

The general rational contractive conditions of [1,2] are applicable only on distinct points

of the considered metric spaces. In particular, the fixed point theory for Kannan’s map-

pings is extended in [4] by the use of a non-increasing function affecting to the contrac-

tive condition and the best constant to ensure that a fixed point is also obtained. Three

fixed point theorems which extended the fixed point theory for Kannan’s mappings were

proved in [11]. On the other hand, important attention has been paid during the last

decades to the study of standard contractive and Meir-Keeler-type contractive cyclic

self-mappings (see, for instance, [13-22]). More recent investigation about cyclic self-

mappings is being devoted to its characterization in partially ordered spaces and to the

formal extension of the contractive condition through the use of more general strictly

increasing functions of the distance between adjacent subsets. In particular, the unique-

ness of the best proximity points to which all the sequences of iterates converge is pro-

ven in [14] for the extension of the contractive principle for cyclic self-mappings in

uniformly convex Banach spaces (then being strictly convex and reflexive [23]) if the p

subsets Ai ⊂ X of the metric space (X, d), or the Banach space (X, || ||), where the cyclic

self-mappings are defined are non-empty, convex and closed. The research in [14] is

centred on the case of the cyclic self-mapping being defined on the union of two subsets
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of the metric space. Those results are extended in [14] for Meir-Keeler cyclic contraction

maps and, in general, for the self-mapping T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai be a p(≥ 2) -cyclic self-

mapping being defined on any number of subsets of the metric space with

p̄: =
{
1, 2, ..., p

}
.

Other recent researches which have been performed in the field of cyclic maps are

related to the introduction and discussion of the so-called cyclic representation of a set

M, decomposed as the union of a set of non-empty sets as M =
⋃m

i=1 Mi, with respect

to an operator f: M ® M [24]. Subsequently, cyclic representations have been used in

[25] to investigate operators from M to M which are cyclic �-contractions, where �:

R0+ ® R0+ is a given comparison function, M ⊂ X and (X, d) is a metric space. The

above cyclic representation has also been used in [26] to prove the existence of a fixed

point for a self-mapping defined on a complete metric space which satisfies a cyclic

weak �-contraction. In [27], a characterization of best proximity points is studied for

individual and pairs of non-self-mappings S, T: A ® B, where A and B are non-empty

subsets of a metric space. In general, best proximity points do not fulfil the usual “best

proximity” condition x = Sx = Tx under this framework. However, best proximity

points are proven to jointly globally optimize the mappings from x to the distances d

(x, Tx) and d(x, Sx). Furthermore, a class of cyclic �-contractions, which contain the

cyclic contraction maps as a subclass, has been proposed in [28] to investigate the con-

vergence and existence results of best proximity points in reflexive Banach spaces com-

pleting previous related results in [14]. Also, the existence and uniqueness of best

proximity points of p(≥ 2) -cyclic �-contractive self-mappings in reflexive Banach

spaces has been investigated in [29].

In this article, it is also proven that the distance between the adjacent subsets Ai, Ai

+1 ⊂ X are identical if the p(≥ 2) -cyclic self-mapping is non-expansive [16]. This article

is devoted to a generalization of the contractive condition of [1] for a class of extended

cyclic self-mappings on any number of non-empty convex and closed subsets Ai ⊂ X,

i ∈ p̄. The combination of constants defined the contraction may be different on each

of the subsets and only the product of all the constants is requested to be less than

unity. On the other hand, the self-mapping can perform a number of iterations on

each of the subsets before transferring its image to the next adjacent subset of the p(≥

2) -cyclic self-mapping. The existence of a unique closed finite limiting sequence on

any sequence of iterates from any initial point in the union of the subsets is proven if

X is a uniformly convex Banach space and all the subsets of X are non-empty, convex

and closed. Such a limiting sequence is of size q ≥ p (with the inequality being strict if

there is at least one iteration with image in the same subset as its domain) where p of

its elements (all of them if q = p) are best proximity points between adjacent subsets.

In the case that all the subsets Ai ⊂ X intersect, the above limit sequence reduces to a

unique fixed point allocated within the intersection of all such subsets.

2. Main results for non-cyclic self-mappings
Let (X, d) be a metric space for a metric d: X × X ® R0+ with a self-mapping T: X ®
X which has the following contractive condition proposed and discussed in [1]:

d
(
Tx,Ty

) ≤ α
d (x,Tx) d

(
y,Ty

)
d
(
x, y

) + βd
(
x, y

)
, x, y (�= x) ∈ X (2:1)
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for some real constants a, b Î R0+ and a + b < 1 where R0+ = {r Î R: r ≥ 0}.

A more general one involving powers of the distance is the following:

ds(x,y)
(
Tx,Ty

) ≤ α
dσ(x,y) (x,Tx) dr(x,y)

(
y,Ty

)
dσ(x,y)

(
x, y

) + βdt(x,y)
(
x, y

)
, x, y (�= x) ∈ X, (2:2)

where s, s, r, t: X × X ® R+ = {r Î R: r > 0} are continuous and symmetric with

respect to the order permutation of the arguments x and y. It is noted that if x = y

then (2.1) has a sense only if x is a fixed point, i.e. x = y = Tx = Ty implies that (2.1)

reduces to the inequality “0 ≤ 0”. The following result holds:

Theorem 2.1: Assume that the condition (2.2) holds for some symmetric continuous

functions subject to 0 <r(x, y) ≤ s(x, y)+ln(P-d(Tx, Ty)) if r(x, y) ≠ s(x, y) and

0 < t
(
x, y

) ≤ s
(
x, y

)
+ ln

(
Q − d

(
x, y

))
if t(x, y) ≠ s(x, y) for some real constants

α,β ,P,Q ≥ 0, subject to the constraint αP + βQ < 1. Then, d(Tn+1x, Tnx) ® 0 as n ®
∞; ∀ x Î X. Furthermore, {Tnx}n∈N0 is a Cauchy sequence.

If, in addition, (X, d) is complete then Tnx ® z as n ® ∞, for some z Î X. If,

furthermore, T: X ® X is continuous, then z = Tz is the unique fixed point of T: X ®
X.

Proof: If y = Tx, then the above given constraints on the symmetric functions

become 0 <r(x, x) ≤ s(x, x)+ln(P-d(Tx, T2x)) if r(x, x) ≠ s(x, x) and

0 < t (x, x) ≤ s (x, x) + ln (Q − d (x,Tx)) if t(x, x) ≠ s(x, x). If y = x = Tx, then d(Tn+1x,

Tnx) ® 0 as n ® ∞; x Î X follows directly from (2.2) since ds(x, x)(Tn+1x, Tnx) = 0.

Now, take y = Tx so that for any x ≠ Tx for x, Tx Î X and note that the conditions 0

<r(x, x) ≤ s(x, x)+ln(P-d(Tx, T2x)) if r(x, x) ≠ s(x, x) and

0 < t (x, x) ≤ s (x, x) + ln (Q − d (x,Tx)) if t(x, x) ≠ s(x, x) are identical to

dr(x,x) (x,Tx) ≤ Pds(x,x) (x,Tx) ; dt(x,x) (x,Tx) ≤ Qds(x,x) (x,Tx) (2:3)

Thus, one gets from (2.1):

ds(x,x)
(
Tx,T2x

) ≤ αdr(x,x)
(
Tx,T2x

)
+βdt(x,x) (x,Tx) ≤ αPds(x,x)

(
Tx,T2x

)
+βQds(x,x) (x,Tx) (2:4)

so that, since k: =
βQ

1 − αP
< 1, one gets from (2.4) proceeding by complete induction

for n Î N0

0 ← ds(x,x)
(
Tn+2x,Tn+1x

) ≤ β Q
1 − αP

ds(x,x)
(
Tn+1x,Tnx

) ≤ knds(x,x) (Tx, x) → 0 as n → ∞ (2:5)

what implies d(Tn+1x, Tnx) ≤ kn/s(x, x)d(Tx, x) ® 0 as n ® ∞; ∀ x Î X. Taking n, m(≥

n+2) Î N0, one can get from (2.5):

ds(x,x)
(
Tmx,Tn+1x

) ≤
⎛
⎝m−1∑

j=n

kj

⎞
⎠ ds(x,x) (Tx, x) ≤ kn

1 − k
ds(x,x) (Tx, x) → 0 as n → ∞ (2:6)

so that

d
(
Tmx,Tn+1x

) ≤
⎛
⎝m−1∑

j=n

kj

⎞
⎠

1/s(x,x)

d (Tx, x) ≤
(

kn

1 − k

)1/s(x,x)

d (Tx, x) → 0 as n,m → ∞ (2:7)
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what proves that {Tnx}n∈N0 is a Cauchy sequence. Such a Cauchy sequence has a

limit z = lim
n→∞ Tnx in X if (X, d) is complete from the convergence property of Cauchy

sequences to points of the space X. If, in addition, T: X ® X is continuous then

Tz = T
(
lim
n→∞ Tnx

)
= lim

n→∞ Tn+1x = z so that the limit of the sequence is a fixed point.

The uniqueness of the fixed point is now proven (i.e. z is not dependent on of x) by

contradiction. Assume that there exists two distinct fixed points y = Ty and z = Tz in

X. Then, from (2.5):

d
(
Ty, y

)
= d (Tz, z) = 0 ⇒ (

0 < d
(
y, z

) ≤ d
(
y,Ty

)
+ d

(
Ty,Tz

)
+ d (Tz, z) = d

(
Ty,Tz

))
so that

0 < ds(y,z)
(
Ty,Tz

) ≤ α
dσ(y,z)

(
y,Ty

)
dr(y,z) (z,Tz)

dσ(y,z)
(
y, z

) +βdt(y,z)
(
y, z

)
= βdt(y,z)

(
Ty,Tz

) ≤ βQds(y,.z)
(
Ty,Tz

)

what implies βQ ≥ 1 if d(Ty, Tz) = d(y, z) > 0 contradicting d
(
Ty,Tz

)
= d

(
y, z

)
> 0.

Thus, y = z and hence the theorem. □
A simpler contractive condition leads to a close result to Theorem 2.1 as follows:

Corollary 2.2: Assume that the condition (2.2) is modified as follows:

ds
(
Tx,Ty

) ≤ α
ds (x,Tx) ds

(
y,Ty

)
ds

(
x, y

) + βds
(
x, y

)
(2:8)

for some real constants s Î R+, a, b Î R0+, subject to a+b < 1. Then, Theorem 2.1

holds.

Proof: Taking P = Q = 1 then (2.3)-(2.7) hold by replacing r(x), s(x), t(x) ® s Î R+.

Thus, Theorem 2.1 holds for this particular case. Hence, the corollary. □

3. Main results for p(≥ 2) -cyclic self-mappings and extended p-cyclic self-
mappings

Let T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai be an extended p(≥ 2) -cyclic self-mapping where Ai ≡ Ai+kp

⊂ X; ∀i ∈ p̄: =
{
1, 2, ...., p

}
, ∀ k Î N subject to the constraints T(Ai) ⊆Ai ∪ Ai+1, T

ℓ(Ai)

⊆ Ai+1; ∀� ∈ ji − 1 and Tji (Ai) ⊆ Ai+1 for some finite integers ji ≥ 1; ∀i ∈ p̄ (this implies

that q: =
∑p

i=1 ji ≥ p with equality standing if and only if ji ≥ 1; ∀i ∈ p̄, i.e. if the cyclic

mapping is of standard type) with Tk = T ◦ Tk−1 and T0 ≡ id. It is noted that the

extended p(≥ 2) -cyclic self-mapping T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is characterized by the p-

tuple of integers
(
ji:i ∈ p̄

)
, where

∑p
i=1 ji = q ≥ p and if, in particular, ji = 1; ∀i ∈ p̄ then

T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is the standard p-cyclic self-mapping. It is also noted that the

self-mappings Tji :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai and the composed mappings

Tq+ji :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai satisfying the extended inclusion constraint T(Ai) ⊆ Ai ∪ Ai+1,

subject to Tℓ(Ai) ⊆ Ai, Tji (Ai) ⊆ Ai+1; ∀� ∈ ji − 1; ∀i ∈ p̄, are not q-cyclic self-mappings

[13-17], except if q = p, since Tq+j� (Ai) ⊆ Ai+� fails for i, (� �= i) ∈ p̄ unless jℓ ≥ ji. The

contractive condition (2.1) becomes modified as follows:

ds(x,y)
(
Tx,Ty

) ≤ αi
dσ(x,y) (x,Tx) dr(x,y)

(
y,Ty

)
dσ(x,y)

(
x, y

) + βidt(x,y)
(
x, y

)
+ γiDs(x,y) (3:1)
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for x, y Î Ai ∪ Ai+1, Tx Î Ai ∪ Ai+1, Ty Î Ai+1 ∪ Ai+2 and some real constants gi Î
R0+ while Tx, Ty are not both in the same subset Aj for j = i, i+1, i+2 for any i ∈ p̄, and

ds(x,y)
(
Tx,Ty

) ≤ αi
dσ(x,y) (x,Tx) dr(x,y)

(
y,Ty

)
dσ(x,y)

(
x, y

) + βidt(x,y)
(
x, y

)
if x, y ∈ Ai,Tx,Ty ∈ Ai (3:2)

or if x, y Î Ai+1, Tx, Ty Î Ai+1 for any i ∈ p̄, where D: = dist(Ai, Ai+1) being zero if

∀i ∈ p̄; ∀i ∈ p̄. Fix y = Tx then, one can get from (3.2) for x Î Ai:

(1 − αiPi) ds(x,x)
(
Tx,T2x

) ≤ βidt(x,x) (x,Tx) + (1 − γi)D ≤ βiQids(x,x) (x,Tx) + γiDs(x,x) (3:3)

if Tx Î Ai+1, ∀i ∈ p̄, and

ds(x,x)
(
Tx,T2x

) ≤ αidr(x,x)
(
Tx,T2x

)
+βidt(x,x) (x,Tx) ≤ αiPids(x,x)

(
Tx,T2x

)
+βiQids(x,x) (x,Tx) (3:4)

if x, Tx Î Ai provided that the following upper-bounding conditions hold:

dr(x,x) (x,Tx) ≤ Pid
s(x,x) (x,Tx) ; dt(x,x) (x,Tx) ≤ Qid

s(x,x) (x,Tx) (3:5)

αi,βi,Pi,Qi ≥ 0

Thus, the following technical result holds which does not require completeness of

the metric space, uniform convexity assumption on some associated Banach space or

particular properties of the non-empty subsets Ai; ∀i ∈ p̄. The result will be then used

to obtain the property of convergence of the sequences of iterates to best proximity

points allocated in the various subsets.

Theorem 3.1: Let (X, d) a metric space and Ai ≡ Ai+kp⊂ X; ∀i ∈ p̄. Assume that

T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is an extended (p ≥ 2) p-cyclic map, subject to the extended con-

tractive condition (3.1), with T(Ai) ⊆ Ai ∪ Ai+1, T
ℓ(Ai) ⊆ Ai+1; ∀� ∈ ji − 1 and

Tji (Ai) ⊆ Ai+1 for some finite integers ji ≥ 1 and q: =
∑p

i=1 ji ≥ p; ∀i ∈ p̄. Define

ki: =
(

βiQi

1 − αiPi

)ji
, subject to k: =

[∏p
i=1 ki

]
< 1, and gi = 1-ki; ∀i ∈ p̄. Assume also that

s(x, x) > 0, s(x, x) > 0, 0 <r(x, x) ≤ s(x, x)+ln(P-d(Tx, T2x)) if r(x, x) ≠ s(x, x) and

0 < t (x, x) ≤ s (x, x) + ln (Q − d (x,Tx)) if t(x, x) ≠ s(x, x); ∀x ∈ ⋃
i∈p̄ Ai. Then, the fol-

lowing properties hold:

(i)

lim
n→∞ ds(x,x)

(
Tnq+ji x,Tnqx

)
= Ds(x,x); lim

n→∞ d
(
Tnq+ji x,Tnqx

)
= D ∀x ∈ Ai,∀i ∈ p̄;(3:6a)

lim
n→∞ d

(
Tnq+ji+ji+1x,Tnq+ji x

)
= D; lim

n→∞ d
(
Tnq+

∑m
�=i

j�x,Tnq+ji x
)
= D (3:6b)

lim
n→∞ d

(
Tnq+

∑m
�=i j�x,Tnq+

∑m′
�=i j�x

)
= D; ∀x ∈ Ai ∀i ∈ p̄, (3:6c)

with i ≤ m’ <m <p+i, jp+i = jp; ∀i ∈ p̄, and similarly:

lim sup
n→∞

ds(x,x)
(
Tnq+�x,Tnqx

) ≤
(

βiQi

1 − αiPi

)�

Ds(x,x); ∀x ∈ Ai;∀� ∈ ji − 1, ∀i ∈ p̄(3:7)

De la Sen and Agarwal Fixed Point Theory and Applications 2011, 2011:59
http://www.fixedpointtheoryandapplications.com/content/2011/1/59

Page 5 of 14



lim sup
n→∞

d
(
Tnq+�x,Tnqx

) ≤
(

βiQi

1 − αiPi

)�/s(x,x)

D; ∀x ∈ Ai;∀� ∈ ji − 1, ∀i ∈ p̄ (3:8)

(ii)

lim
n→∞ ds(x,x)

(
T(n+m)q+ji x,Tnqx

)
= Ds(x,x); lim

n→∞ d
(
T(n+m)q+ji x,Tnqx

)
= D; ∀x ∈ Ai, ∀m ∈ N, ∀i ∈ p̄ (3:9)

lim sup
n→∞

ds(x,x)
(
T(n+m)q+�x,Tnqx

)
≤

(
βiQi

1 − αiPi

)�

Ds(x,x); ∀x ∈ Ai; ∀� ∈ ji − 1, ∀m ∈ N, ∀i ∈ p̄ (3:10)

lim sup
n→∞

d
(
T(n+m)q+�x,Tnqx

)
≤

(
βiQi

1 − αiPi

)�/s(x,x)

D; ∀x ∈ Ai; ∀� ∈ ji − 1, ∀m ∈ N, ∀i ∈ p̄ (3:11)

Proof: The proof of Property (i) follows from the following inequalities which follow

by recursion from (3.3) to (3.5):

ds(x,x)
(
T�+1x,T�x

) ≤
(

βiQi

1 − αiPi

)�

ds(x,x) (x,Tx) (3:12)

ds(x,x)
(
Tji x,Tji−1x

) ≤ kid
s(x,x) (x,Tx) + (1 − ki)D

s(x,x) (3:13)

ds(x,x)
(
Tq+1x,Tqx

) ≤ kds(x,x) (x,Tx) + (1 − k)D (3:14)

∀x ∈ Ai,T�x ∈ Ai,Tjix ∈ Ai+1; ∀� ∈ ji − 1, ∀i ∈ p̄ since q: =
∑p

i=1 ji ≥ p. One can get

from (3.12) and (3.14) and, respectively, from (3.13) to (3.14):

ds(x,x)
(
Tq+�x,Tqx

) ≤
(

βiQi

1 − αiPi

)�

ds(x,x)
(
Tq+1x,Tqx

) ≤
(

βiQi

1 − αiPi

)� [
kds(x,x) (x,Tx) + (1 − k)D

]
(3:15)

ds(x,x)
(
Tq+ji x,Tqx

) ≤ kids(x,x)
(
Tq+1x,Tqx

)
+ (1 − ki)Ds(x,x)

≤ ki
[
kds(x,x) (x,Tx) + (1 − k)D

]
+ (1 − ki)Ds(x,x)

(3:16)

Proceeding recursively with (3.14) for n Î N, one can get:

ds(x,x)
(
Tnq+�x,Tnqx

) ≤
(

βiQi

1 − αiPi

)� [
knds(x,x) (x,Tx) +

(
1 − kn

)
Ds(x,x)

]
; x,T�x ∈ Ai (3:17)

for � ∈ ji − 1, and

Ds(x,x) ≤ ds(x,x)
(
Tnq+ji x,Tnqx

) ≤ ki
[
knds(x,x) (x,Tx) +

(
1 − kn

)
Ds(x,x)

]
+ (1 − ki)Ds(x,x) (3:18)

; ∀x Î Ai; T
nqx Î Ai; Tnq+ji x ∈ Ai+1; ∀i ∈ p̄. One can get (3.6a) from (3.18) and (3.7)-

(3.8) from (3.17), respectively, since k < 1 by taking limits as n ® ∞. Equations 3.6b

and 3.6c follow directly from (3.6a) as follows:

lim
n→∞ sup d

(
Tnq+ji+ji+1x,Tnq+ji x

) ≤ lim inf
n→∞

(
kid

(
Tnq+ji x,Tnqx

)
+ (1 − ki)D

)
= lim

n→∞
(
kid

(
Tnq+ji x,Tnqx

)
+ (1 − ki)D

)
= D

(3:19)

with Tnq+ji+ji+1x ∈ Ai+2; ∀i ∈ p̄ since Tnq+ji x ∈ Ai+1. Then,

∃ lim
n→∞ d

(
Tnq+ji+ji+1x,Tnq+ji x

)
= D .
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Proceeding recursively:

lim
n→∞ sup d

(
Tnq+

∑m
�=i j�x,Tnq+ji x

)
≤ lim inf

n→∞

(∏m−1

�=i1

[
k�

]
d
(
Tnq+ji x,Tnqx

)
+

(
1 −

∏m−1

�=i1

[
k�

]
i

)
D

)
= lim

n→∞
(
kid

(
Tnq+ji x,Tnqx

)
+ (1 − ki)D

)
= D

(3:20)

with i <m(Î N) <p+i, jp+i = jp, Tnq+
∑m

�=i j�x ∈ Ai+m+1; ∀i ∈ p̄ so that

∃ lim
n→∞ d

(
Tnq+

∑m
�=i j�x,Tnq+ji x

)
= D. In the same way, one can get:

lim
n→∞ sup d

(
Tnq+

∑m
�=i j�x,Tnq+

∑m−m′
�=i j�x

)
≤ lim inf

n→∞

(∏m−1

�=m−m′

[
k�

]
d
(
Tnq+

∑m−m′
�=i j�x,Tnqx

)
+

(
1 −

∏m−1

�=m−m′

[
k�

])
D

)
= lim

n→∞
(
kid

(
Tnq+ji x,Tnqx

)
+ (1 − ki)D

)
= D

(3:21)

with i ≤ m’+i ≤ (Î N) ≤ p+i, jp+i= jp, Tnq+
∑m−m1

�=i j�∈Ai+m−m1+1; ∀i ∈ p̄. Then,

∃ lim
n→∞ d

(
Tnq+

∑m
�=i j�x,Tnq+

∑m−m′
�=i j�x

)
= D. Property (i) has been proven. Now, note from

(3.16), (3.15) and (3.18) that

Ds(x,x) ≤ ds(x,x)
(
T(n+m)q+�x,Tnqx

)
≤

(
βiQi

1 − αiPi

)�

ds(x,x)
(
T(n+m)qx,Tnqx

)
≤ ki

[
kn+mds(x,x) (x,Tx) +

(
1 − kn+m

)
Ds(x,x)

]
+ (1 − ki)D

s(x,x)

(3:22)

Ds(x,x) ≤ ds(x,x)
(
T(n+m)q+ji x,T(n+m)qx

)
≤ kid

s(x,x)
(
T(n+m)qx,Tnqx

)
≤ ki

[
kn+mds(x,x) (x,Tx) +

(
1 − kn+m

)
Ds(x,x)

]
+ (1 − ki)D

s(x,x)
(3:23)

; ∀x ∈ Ai,T�x ∈ Ai,Tjix ∈ Ai+1; ∀� ∈ ji − 1, ∀m ∈ N,∀i ∈ p̄. Hence, Property (ii). □
Remark 3.2. It is noted that if Ai ∩ A� = ∅ and x Î Aj for some i, � ( �= i) ∈ p̄ and jℓ <ji

then d
(
T(n+1)q+�x,Tnq+�x

) → D as n ® ∞ for all ℓ <ji. □
The following result is concerned with the proved property that distances of iterates

obtained through the composed self-mapping Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai starting from a

point x in any of the subsets, and located within two distinct of such subsets for all

the iteration steps, asymptotically converge to the distance D between such subsets in

uniformly convex Banach spaces, with at least one of them being convex. It is also

obtained a convergence property of the iterates of the composed self-mapping

Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai to limit points within each of the subsets.

Lemma 3.3: Let (X, || ||) be a uniformly convex Banach space endowed with the

norm || || and let d: X × X ®R0+ be a metric induced by such a norm || || so that (X,

d) is a complete metric space. Assume that the non-empty subsets Ai of X and the

extended p(≥ 2) -cyclic self-mapping T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai fulfil the constraints of

Theorem 3.1 and, furthermore, one subset is closed and another one is convex and

closed in each pair (Ai, Ai+1) of adjacent subsets, ∀i ∈ p̄. Then, the following properties

hold:

(i)

lim
n→∞ d

(
T(n+n′)q+ji x,Tnq+ji x

)
= lim

n→∞ d
(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m
�=i j�x

)
= 0 (3:24a)
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lim
n→∞ d

(
T(n+n′)q+ji x,Tnqx

)
= lim

n→∞ d
(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m′
�=i j�x

)
= D;∀x ∈ Ai,∀i ∈ p̄ (3:24b)

; ∀ x Î Ai, i ≤ m’ <m <p+i, jp+i= jp, m,m′ ∈ p̄,∀n′ ∈ N,∀i ∈ p̄. Furthermore, if Ai+1 is

convex, then Tnq+ji x → zi+1 ∈ Ai+1 as n ® ∞. Also,

Tnq+
∑m

�=1 j�x → zi+m+1 = T
∑m

�=1 j�zi (∈ Ai+m+1) as n ® ∞ with zi+m+1 ≡ zi+m+1-p, Ai+m+1 ≡ Ai

+m+1-p if m >p+1-i. Furthermore, if all the subsets Ai
(
i ∈ p̄

)
are closed and convex,

then Tqnx → z
(
∈ ⋂

i∈p̄ Ai

)
= Tqz as n ® ∞ if D = 0, that is if

⋂
i∈p̄ Ai �= ∅, so that

z ∈ ⋂
i∈p̄ Ai is the unique fixed point of Tq :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai in
⋂

i∈p̄ Ai.

(ii) If Ai or Ai+m+1 is convex then

lim
n→∞ d

(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m
�=i j�x

)
= 0 (3:25)

; ∀x ∈ Ai, i ≤ m < p + i, jp+i = jp, ∀n′ ∈ N0: = N ∪ {0} , ∀i ∈ p̄

Proof: Note from (3.6a) that
([
d
(
Tnq+ji x,Tnqx

) → D
] ∧

[
d
(
T(n+n′)q+ji x,Tnqx

)
→ D

])
⇒

(
d
(
T(n+n′)q+ji x,Tnq+ji x

)
→ 0

)
as n → ∞ (3:26a)

; ∀ x Î Ai, jp+i = jp, ∀ n’ Î N, ∀i ∈ p̄ with Tnqx Î Ai, Tnq+ji x,T(n+n′)q+ji x ∈ Ai+1 with Ai

+1 ≡ Ai+1-p if i >p-1, since (X, || ||) is a uniformly convex Banach space, d: X × X ®
R0+be a metric induced by the norm || ||, so that (X, d) is a complete metric space,

and Ai and Ai+1 are non-empty closed subsets of X and at least one of them is convex

(see Lemma 3.8 of [13]). Then lim
n→∞ d

(
T(n+n′)q+ji x,Tnq+ji x

)
= 0. On the other hand,

lim
n→∞ d

(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m
�=i j�x

)
= 0 is proven by replacing (3.26a) by

([
d
(
Tnq+

∑m
�=i j�x,Tnqx

)
→ D

]
∧

[
d
(
T(n+n′)q+

∑m
�=i j�x,Tnqx

)
→ D

])
⇒

(
d
(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m
�=i j�x

)
→ 0

)
as n → ∞

(3:26b)

with i ≤ m <p+i, ∀ n’ Î N. Thus, x Î Ai implies Tnq x Î Ai,

Tnq+
∑m

�=i j�x, T(n+n′)q+
∑m

�=i j�x ∈ Ai+m+1. The identities (3.24a) have been proven. To prove

(3.24b), note from Equation 3.24a of Property (i) and the triangle inequality that the

following holds:

lim
n→∞ d

(
T(n+n′)q+ji x,Tnqx

)
≤ lim

n→∞ d
(
Tnq+ji x,Tnqx

)
+ lim
n→∞ d

(
T(n+n′)q+ji x,Tnq+ji x

)
= lim

n→∞ d
(
Tnq+ji x,Tnqx

)
= D

(3:27)

lim
n→∞ d

(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m′
�=i j�x

)
≤ lim

n→∞ d
(
Tnq+

∑m
�=i j�x,Tnq+

∑m′
�=i j�x

)
+ lim
n→∞ d

(
Tnq+

∑m′
�=i j�x,T(n+n′)q+

∑m
�=i j�x

)
= lim

n→∞ d
(
Tnq+

∑m′
�=i j�x,T(n+n′)q+

∑m
�=i j�x

)
= D

(3:28)

; ∀ x Î Ai, i ≤ m ’ <m <p+i, jp+i= jp, ∀m,m′ ∈ p̄,∀n′ ∈ N,∀i ∈ p̄.

∃ lim
n→∞ d

(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m′
�=i j�x

)
= lim

n→∞ d
(
T(n+n′)q+ji x,Tnqx

)
= D. On the other

hand, note that
{
Tnq+ji x

}
n∈N is a Cauchy sequence since
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lim
n→∞ n′→∞

d
(
T(n+n′)q+

∑m
�=i j�x,Tnq+

∑m
�=i j�x

)
= 0 from (3.24a) which then has a limit in X

which is also in the closed and convex subset Ai+1 of X. The proof of

Tnq+
∑m

�=i j�x → zi+m+1 (∈ Ai+m+1) with Ai+m+1 ≠ Ai, since m <p+i, as n ® ∞ follows

from similar arguments since one of the subsets in each adjacent pair of subsets is

convex and both of them are closed by assumption so that

Tnq+
∑m

�=i j�x = T
∑m

�=i+1 j�
(
Tnq+ji x

) → zi+m+1 = T
∑m

�=i+1 j�zi+1 as n ® ∞; ∀ x Î Ai, ∀i ∈ p̄.

Finally, if the subsets intersect and are closed and convex then the composed self-

mapping Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is contractive, then continuous everywhere in its

definition domain, so that it converges to a unique fixed point in the non-empty,

closed and convex set
⋂

i∈p̄ Ai. Hence, Property (i).

To prove Property (ii), note from (3.6d) with m = i and m1 = 0 that([
d
(
T(n+n′)q+

∑m
�=i j�x,Tnqx

)
→ D

]
∧

[
d
(
Tnq+

∑m
�=i j�x,Tnqx

)
→ D

])
⇒

(
d
(
T(n+m)q+ji x,Tnq+ji x

)
→ 0

)
as n → ∞

(3:29)

; ∀ x Î Ai, i ≤ m <p+i, jp+i = jp, ∀ n’ Î N; ∀i ∈ p̄ with Tnqx Î Ai,

∀i ∈ p̄; ∀i ∈ p̄ with Ai+m+1 ≡ Ai+m+1-p if m >p-i-1; ∀i ∈ p̄, since (X, || ||) is a uniformly

convex Banach space (and then (X, d) is a complete metric space) and Ai and Ai+m+1

are non-empty closed subsets of X and Ai or Ai+m+1 is convex. Then, (3.25) follows in

the same way as Property (i). □
The following result concerning to convergence of the iterates to closed finite

sequences–eventually to unique fixed points if all the subsets intersect–is supported by

Theorem 3.1 and Lemma 3.3.

Theorem 3.4: Let Ai be non-empty closed and convex subsets of a uniformly convex

Banach space (X, || ||); ∀i ∈ p̄. Assume that T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is an extended (p ≥

2) -cyclic map, subject to the extended contractive condition (3.1), with T(Ai) ⊆ Ai ∪
Ai+1, T

ℓ(Ai) ⊆ Ai+1; ∀� ∈ ji − 1 and Tji (Ai) ⊆ Ai+1 for some finite integers ji ≥ 1, ∀i ∈ p̄

and q: =
∑p

i=1 ji ≥ p. Then, the following properties hold:

(i) Tqnx ® zi Î Ai, ∀ x Î Ai as n ® ∞ and there is a q-tuple:

ẑi: =
(
Tzi = Tq+1zi, ...,ωi+1 = Tji zi,Tji+1zi, ...,ωi+2 = Tji+ji+1zi,

Tji+ji+1+1zi, ...,ωi+p = ωi = zi = Tqzi
) (3:30)

; ∀i ∈ p̄ which is the unique limit sequence of limit points of any q-tuple of

sequences:

x̂qn: =
(
Tqn+1x, ...,Tqn+ji x,Tqn+ji+1x, ...,Tqn+ji+ji+1x, Tqn+ji+ji+1+1x, ...,T(q+1)nx

)
(3:31)

; ∀ x Î Ai, where Tk zi Î Ai; ∀ ∈ k ∈ ji − 1 ∪ {0}; ∀i ∈ p̄, ωi+ℓ Î Ai+ℓ is the unique

best proximity point in Ai+ℓ; ∀� ∈ p̄ such that D = dist(Ai, Ai+1) = d(ωi, ωi+1); ∀i ∈ p̄.

(ii) Assume that
⋂

i∈p̄ Ai �= ∅. Then, the self-mapping T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai has a

unique fixed point z ∈ ⋂
i∈p̄ Ai. Then, any q-tuple of sequences (3.31) converges to a

unique limit q-tuple (3.30) of the form ẑ: = (z, ...., z) for any x ∈ ⋃
i∈p̄ Ai and for any

i ∈ p̄.
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Proof: To keep a coherent treatment with the previous part of the manuscript and,

since (X, || ||) is a Banach space with norm || ||, we can use a norm-induced metric d:

X × X®R0+ which is equivalent to any other metric and then apply Theorem 3.1 to

the metric space (X, d) which is complete since (X, || ||) is a Banach space. Assume

the following cases:

(A) D = 0 so that Ai ∩ Aj �= ∅ for i, j ( �= i) ∈ p̄; i.e. all the subsets have a non-empty

intersection. Then, d
(
Tnq+ji x,Tnqx

) → 0, d(T(n+1)qx, Tnqx) ® 0 and d(Tnq+ℓx, Tnqx) ®

0; ∀ x Î Ai; ∀� ∈
{∑m+i−1

k=i jk:m ∈ p
}
, ∀i ∈ p̄ as n ® ∞ from Theorem 3.1, Equations 3.6

and 3.8, with Aj ≡ Aj-pfor 2p ≥ j >p. Thus, Tqnx(Î Ai) ® z, since {Tqnx}n Î N is a Cau-

chy sequence (and also Tqn+ℓx(Î Ai+ℓ) ® z) for some z ∈ ⋂
i∈p̄ Ai, since

⋂
i∈p̄ Ai is non-

empty, convex and closed from Banach contraction principle since k < 1. Since k < 1,

the composed self-mapping Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai is contractive, and then continuous,

and since (X, d) is complete, since the associated (X, || ||) is a Banach space,

z ∈ ⋂
i∈p̄ Ai is a unique fixed point of Tq :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai. Thus, again the continuity

of Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai and the fact that it has a unique fixed point z leads to the

identities Tq(Tz) = Tq+1z = T(Tqz) = Tz = Tq(Tqz) = Tqz so that z = Tz and then z is

also a fixed point of T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai. Furthermore, z is also the unique fixed

point of T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai as follows by contradiction. Assume that z is not unique.

Then, such that z is the unique fixed point of Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai and

∃y ( �= z) ∈ ⋂
i∈p̄ Ai such that y and z are both fixed points of T :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai.

Then, Tqy = T(Tqy) = Ty = y which contradicts that z is the unique fixed point of

Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai. Finally, as a result of the uniqueness of the fixed point, it fol-

lows directly that any q-tuple (3.30) converges to a unique q-tuple ẑ: = (z, ...., z) = ẑi;

∀i ∈ p̄ for any x ∈ ⋃
i∈p̄ Ai. Hence, Property (ii).

(B) D ≠ 0 so that Ai ∩ Aj �= ∅ for ∀i, j ( �= i) ∈ p̄. One can get from (3.6) to (3.8):

lim
n→∞ d

(
Tnq+ji xi,Tnqxi

)
= D, lim sup

n→∞
d
(
Tnq+�xi,Tnqxi

) ≤
(

βiQi

1 − αiPi

)�/s(x,x)

D, (3:32)

; ∀ xi Î Ai ; ∀� ∈ ji − 1, ∀i ∈ p̄. Thus:

lim
n→∞ d

(
T(n+1)q+ji xi,Tnqxi

)
= D, lim sup

n→∞
d
(
T(n+1)q+�xi,Tnqxi

) ≤
(

βiQi

1 − αiPi

)�/s(x,x)

D (3:33)

; ∀ xi Î Ai, ∀� ∈ ji − 1, ∀i ∈ p̄. One has from Lemma 3.3, Equation 3.24b and Propo-

sition 3.2 of [14]:

lim
mk>(nk→∞)

d
(
Tmkq+

∑m
�=i j�xi,Tnkq+

∑m′
�=i j�xi

)
= d (ωi+m+1,ωi+m′+1) = D (3:34)

, that is, the distance between the subsets Ai+m+1(≡ Ai+m+1-p if m >p+1-i) and Ai+m’+1

(≡ Ai+m’+1-p if m >m’ >p+1-i) of X equalizes that of two corresponding best proximity

points, for some convergent subsequences Tmkq+
∑m

�=i j�xi ∈ Ai+m+1 and

Tnkq+
∑m

�=i j�xi ∈ Ai+m′+1 and two best proximity points: ωi+m+1 Î Ai+m+1; ωi+m’+1 Î Ai

+m’+1. Then, again from Lemma 3.3 and (3.34), one can get
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lim
n→∞ d

(
T(n+n′)q+

∑m
�=i j�xi,Tnq+

∑m′
�=i j�xi

)
= lim

n→∞ d
(
T(n+n′)q+ji xi,Tnqxi

)
= d (ωi+m+1,ωi+m′+1) = D

(3:35)

Also, one has from Lemma 3.3, that lim
n→∞ d

(
Tnq+

∑m
�=i j�xi,T(n+1)q+

∑m
�=i j�xi

)
= 0 so that, by

taking into account (3.35), Tnq+
∑m

�=i j�xi → ωi+m+1
(∈ Ai+m+1 ≡ Ai+m+1−p if m > p + 1 − i

)
as

n ® ∞; x Î Ai, ∀i,m (≥ i) ∈ p̄ with jℓ = jℓ-pfor any ℓ >p, ∀ n’ Î N0, since

Tnq+
∑m

�=i j�xi ∈ Ai+m+1. That is, Tnq+
∑m

�=i j�xi converges to a best proximity point of Ai+m+1; ∀
xi Î Ai; ∀i ∈ p̄.

Now, take a sequence Tnq+
∑m

�=i j�+jxi where j ∈ jm+1 − 1. Then, Tnq+
∑m

�=i j�+jxi ∈ Ai+m+1;

∀j ∈ jm+1 − 1. Assume that
{
Tnq+

∑m
�=i j�+jxi

}
n∈N0

does not converge in Ai+m+1 so that one

can get from Theorem 3.1, Equation 3.8 and Lemma 3.3 (ii):

0 < lim inf
n→∞ d

(
T(n+1)q+

∑m
�=i j�+jxi,Tnq+

∑m
�=i j�xi

)

≤
(

βiQi

1 − αiPi

)j�/s(x,x)

lim
n→∞ d

(
T(n+1)q+

∑m
�=i j�xi,Tnq+

∑m
�=i j�xi

)
= 0;

∀xi ∈ Ai;∀� ∈ ji − 1,∀j ∈ jm+1 − 1, ∀i ∈ p̄

(3:36)

which is a contradiction. Then, ∃ lim
n→∞ d

(
T(n+1)q+

∑m
�=i j�+jxi,Tnq+

∑m
�=i j�xi

)
= 0 and{

Tnq+
∑m

�=i j�+jxi
}
n∈N0

is a Cauchy sequence with a limit in the closed and convex Ai+m+1

Î X for any j ∈ jm+1 − 1, ∀xi Î Ai and i ∈ p̄. It has been proven that x̂qn → ẑi; ∀i ∈ p̄

and the set
{
ωi:i ∈ p̄

}
is a set of best proximity points with ωi+1 = Tjiωi = Tji+qωi; ∀i ∈ p̄

and ωp+1 = ω1. It remains to prove that the elements of the limit sequence ẑi are not

dependent on the initial point xi Î Ai; ∀i,m (≥ i) ∈ p̄ to construct any sequence of iter-

ates except, perhaps, in the order that the limiting points are allocated within such a

limiting sequence. Proceed by contradiction by assuming that there are two distinct

best proximity points ωi, zi Î Ai for some i ∈ p̄ so that:

D = d
(
Tjiωi,ωi

)
< d

(
Tjiωi, zi

)
= d

(
Tji+nqωi,Tnqzi

)
(3:37)

since ωi, zi(≠ ωi) Î Ai are best proximity points and Tjiωi ∈ Ai+1. Since that the above

property holds irrespective of the integers i,m (≥ i) ∈ p̄ and n Î N0, the following con-

tradiction follows from (3.37), and Theorem 3.1, Equation 3.6a:

D = d
(
Tjiωi,ωi

)
= d

(
Tji zi, zi

)
< d

(
Tjiωi, zi

)
= d

(
ωi,Tji zi

)
= lim

n→∞ d
(
Tji+nqωi,Tnqzi

)
= D

(3:38)

irrespective of i ∈ p̄. Therefore, the best proximity points are unique within each of

the subsets. Furthermore, since T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai, the limit sequence (3.30) is

unique by successive iterations from any of the best proximity points. Since there is a

convergence to it from any initial point in
⋃

i∈p̄ Ai, any q-sequence of iterates converges

to such a limit sequence, irrespective of the initial point, except for the order of the

elements. □
Remark 3.5. Concerning with Theorem 3.4 (ii), note that T :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai is not

necessarily contractive when D = 0 although Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai be contractive.

De la Sen and Agarwal Fixed Point Theory and Applications 2011, 2011:59
http://www.fixedpointtheoryandapplications.com/content/2011/1/59

Page 11 of 14



However, the contractive property of Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai leads to that of

T :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai possessing also a unique fixed point in

⋂
i∈p̄ Ai which is that of

Tq :
⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai. It is also noted that the limit sequence is unique except in the

order of the elements in the sense that if a sequence of iterates x̂qn Equation 3.31 con-

verges to ẑi Equation 3.30 for any initial point x Î Ai, then for x Î Ak the limit

sequence being asymptotically reached will be:

ẑk: =
(
Tzk = Tq+1zk, ...,ωj+1 = Tjk zk,Tjk+1zk, ...,ωk+2 = Tjk+jk+1zi,

Tjk+jk+1+1zk, ...,ωk+p = ωk = zk = Tqzk
) (3:39)

which is identical to (3.30) except in the order of its elements. □
An example is given below

Example 3.6: Take p = 2 and subsets A1 ≡ C(a, 0, a-a0) and A2 ≡ C(-a, 0, a-a0) of R
2

are circles of centre in (a, 0) and (-a, 0), respectively, and radius a-a0 with a >a0 which

are defined by

A1: =
{(
x, y

) ∈ R2 : (x − a)2 + y2 ≤ (a − a0)2
}
;

A2: =
{(
x, y

) ∈ R2 : (x + a)2 + y2 ≤ (a − a0)2
} (3:40)

We consider the complete metric space (R2, d) with the Euclidean metric. It is clear

that such a space being considered as the Banach space (R2, || ||), endowed with the

Euclidean norm, is uniformly convex, then strictly convex and reflexive [23]. It is

noted that D = 2a0 = dist(A1, A2) and now consider the constraint (3.1) with functions

s, x, r, t: (A1 ∪ A2) × (A1 ∪ A2) ® R+ being constant identically unity. Assume that T

is some extended 2-cyclic self-mapping on A1 ∪ A2 with j1 = 2, j2 = 1. Thus, one can

get

g =
(
x, y

) ∈ A1 ⇒ Tg ∈ A1,T2g ∈ A2,T3g ∈ A1,T4g ∈ A1,T5g ∈ A2, (3:41a)

g =
(
x, y

) ∈ A2 ⇒ Tg ∈ A1,T2g ∈ A1,T3g ∈ A2,T4g ∈ A1,T5g ∈ A1, (3:41b)

Now, define also the family of parameterized circles

Âa1 : =
{(
x, y

) ∈ R2 : (x − a)2 + y2 ≤ a21
} ⊆ A1 being with A1 and contained in it (with

proper or improper set inclusion) of radius 0 <a1 ≤ a-a’ for a’ Î [0, a). It is noted that

Âa ≡ A1. Next, we define constructively a self-mapping which is an extended cyclic one

and which verifies the properties. Now, consider a self-mapping T: A1 ∪ A2 ® A1 ∪ A2

defined as follows:

g0 =
(
x0, y0

) ∈ A1;

g1 =
(
x1, y1

)
= Tg0 =

(
k̂1

(
x0, y0

)
x0, k̂1

(
x0, y0

)
y0

) (
∈ FrÂa1 ⊆ A1

)
=

{(
x, y

)
:
(
k̂1x0 − a

)2
+ k̂21y

2
0 = a21 ≤ (

a − a′)2}
(3:42)

The positive solution in k̂1 of the equality defining a circle Âa1 for a fixed a1 = a1(x0,

y0) ≤ a-a’ is defined below together with available point-dependent lower and upper-

bounds:
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a
2a + a0

≤ ax0
x20 + y20

≤ k̂1 = k̂1
(
x0, y0

)
=
2ax0 +

√
4a2x20 − 4

(
a2 − a21

) (
x20 + y20

)
2

(
x20 + y20

) ≤ 2ax0
x20 + y20

≤ a
x0

≤ k̄1: =
a
a0

(3:43)

It is noted that such a positive solution always exists everywhere in A1 since

a ≥ a1 ≥ a

√
1 − x20

x20 + y20
. Thus, the constraint (3.1) is fulfilled by any self-mapping T:

A1 ∪ A2 ® A1 ∪ A2 with 1 >a1 ≥ 0, β1 =
a

a0
(1 − α1) > 1 − α1 and

k1: = k̄21 =
(

a

a0

)2

=
(

β1

1 − α1

)2

> 1. It is noted that the condition (3.1) is not guaran-

teed to be contractive for any point of A1. It is also noted that if (x0, y0) Î Fr(A1) then

k̂1
(
x0, y0

)
= 1 with a0 = 0 so that g1 = Tg0 = g0. However, it can be noticed that g1 is

not a fixed point since g2 = Tg1 ≠ g1. Next, define:

g2 =
(
x2, y2

)
= Tg1 = T2g0 =

(
min

(
−k̂1x1,−k̂1a0

)
,−k̂1y1

)
(∈ A2)

⇒
[(
x1 = a0, y1 = 0

) ⇒
(
k̂1 = 1, x2 = −a0, y2 = 0

)]
⇒ d

(
g1, g2

)
= D

(3:44)

g3 =
(
x3, y3

)
= Tg2 = T2g1 = T3g0 =

(
max (−k2x2,−k2a0) ,−k2y2

)
(∈ A1)

⇒ [(
x2 = −a0, y2 = 0

) ⇒ (
x3 = a0, y3 = 0

)] ⇒ d
(
g3, g2

)
= D

(3:45)

under the contractive constant k2 defined as follows subject to constraints:

k2: =
β2

1 − α2
< k−1

1 =
(a0
a

)2
=

(
1 − α1

β1

)2

(3:46)

so that the composed extended cyclic self-mapping T3: A1 ∪ A2 ® A1 ∪ A2 is subject

to a the contractive condition (3.1) of contractive constant k = k1 k2 < 1 with s, x, r, t:

(A1 ∪ A2) × (A1 ∪ A2) ® R+, i.e. for the Euclidean distance. Consider initial points in

A2 as g0 = (x0, y0) Î A2. Thus, (a) first apply (3.45) with the replacements (x3, y3) ®
(x1, y1) Î A2 and g3 ® g1(x1, y1) Î A1; (b) then apply (3.42) with the replacement (x3,

y3) ® (x1, y1) and g1 ® g2 = (x2, y2) Î A1; (c) later on apply (3.44) with the replace-

ment (x2, y2) ® (x3, y3) and g2 ® g3(x3, y3) Î A2. Theorems 3.1 and 3.4 are fulfilled

and there is a limiting repeated sequence of three points S*: = ((-a0, 0)), (a0, 0), (a0, 0))

which are two best proximity points, one located in A2 and another one in A1,

repeated. It is noted that the repeated value of the best proximity point (a0, 0) in the

limiting sequence is due to the fact that the circumference being the boundary of A1 is

invariant under T, although infinitely many different cyclic self-mappings can be

defined on the same two subsets A1, 2 so that a limiting sequence is reached having a

common (perhaps only) the best proximity points with S*. It is also noted that if a0 ≠

0 then (a0, 0) is not a fixed point of T: A1 ∪ A2 ® A1 ∪ A2 since T(a0, 0) = (a0, 0) ⇒

T2(a0, 0) = (-a0, 0). However, if a0 = D = 0 then the intersection of both circles is {(0,

0)} so that the limiting sequence consists of a repeated fixed point.
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