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Abstract

We use strongly pseudocontractions to regularize a class of accretive variational
inequalities in Banach spaces, where the accretive operators are complements of
pseudocontractions and the solutions are sought in the set of fixed points of
another pseudocontraction. In this paper, we consider an implicit scheme that can
be used to find a solution of a class of accretive variational inequalities.
Our results improve and generalize some recent results of Yao et al. (Fixed Point
Theory Appl, doi:10.1155/2011/180534, 2011) and Lu et al. (Nonlinear Anal, 71(3-4),
1032-1041, 2009).
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1. Introduction
Throughout this paper, we always assume that E is a real Banach space, 〈· , ·〉 is the

dual pair between E and E*, and 2E denotes the family of all the nonempty subsets of

E. Let C be a nonempty closed convex subset of E and T : C ® E be a nonlinear map-

ping. Denote by Fix(T) the set of fixed points of T, that is, Fix(T) = {x Î C : Tx = x}.

The generalized duality mapping J : E ® 2E* is defined by

J(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||, ||f ∗|| = ||x||}, ∀x ∈ E.

In the sequel, we shall denote the single-valued duality mapping by j. When {xn} is a

sequence in E, xn ® x (xn ⇀ x, xn ⇁ x) will denote strong (respectively, weak and

weak*) convergence of the sequence {xn} to x.

A mapping T with domain D(T) and range R(T) in E is called pseudocontractive if

the inequality

||x − y|| ≤ ||x − y + t((I − T)x − (I − T)y)|| (1:1)

holds for each x, y Î D(T) and for all t >0. As a result of [1], it follows from (1.1)

that T is pseudocontractive if and only if there exists j (x - y) Î J(x - y) such that 〈Tx -

Ty, j(x - y)〉 ≤ ||x - y||2 for any x, y Î D(T). T is called strongly pseudocontractive if

there exist j(x - y) Î J (x - y) and b Î (0, 1) such that 〈Tx - Ty, j(x - y)〉 ≤ b ||x - y||2

for any x, y Î D(T). T is called Lipschitzian if there exists L ≥ 0 such that ||Tx - Ty||
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≤ L||x - y||, ∀ x, y Î D(T). If L = 1, then T is called nonexpansive, and it is called con-

traction if L Î [0, 1).

Let E = H be a Hilbert space with inner product 〈· , ·〉. Recall that T : C ® H is

called monotone if 〈Tx - Ty, x - y〉 ≥ 0, ∀ x, y Î C. A variational inequality problem,

denoted by VI(T, C), is to find a point x* with the property

x∗ ∈ C, such that 〈Tx∗, x − x∗〉 ≥ 0, ∀x ∈ C.

If the mapping T is a monotone operator, then we say that VI(T, C) is monotone.

In [2], Lu et al. considered the following type of monotone variational inequality pro-

blem in Hilbert spaces(denoted by VI(1.2))

find x∗ ∈ Fix(T) such that 〈(I − S)x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T), (1:2)

where T, S : C ® C are nonexpansive mappings and Fix(T) ≠ ∅. Let W denote the

set of solutions of the VI(1.2).

Very recently, Yao et al. [3] considered VI(1.2) in Hilbert spaces when T, S : C ® C

are pseudocontractions.

In this paper, we consider the following variational inequality problem in Banach

spaces (denoted by VI(1.3))

find x∗ ∈ Fix(T) such that 〈(I − S)x∗, j(x − x∗)〉 ≥ 0, ∀x ∈ Fix(T), (1:3)

where T, S : C ® C are pseudocontractions. Let Ω denote the set of solutions of the

VI(1.3) and assume that Ω is nonempty. Since I - S is accretive, then we say VI(1.3) is

an accretive variational inequality.

For solving the VI(T, C), hybrid methods were studied by Yamada [4] where he

assumed that T is Lipschitzian and strongly monotone. However, his methods do not

apply to the VI(1.2) since the mapping I - S fails, in general, to be strongly monotone,

though it is Lipschitzian. In fact the VI(1.2) is, in general, ill-posed, and thus regulari-

zation is needed. Let T, S : C ® C be nonexpansive and f : C ® C be contractive. In

2006, Moudafi and Mainge [5] studied the VI(1.2) by regularizing the mapping tS + (1

- t)T and defined {xs,t} as follows:

xs,t = sf (xs,t) + (1 − s)[tSxs,t + (1 − t)Txs,t], s, t ∈ (0, 1). (1:4)

Since Moudafi and Mainge’s regularization depends on t, the convergence of the

scheme (1.4) is more complicated. So Lu et al. [2] defined {xs,t} as follows by regulariz-

ing the mapping S:

xs,t = s[tf (xs,t) + (1 − t)Sxs,t] + (1 − s)Txs,t , s, t ∈ (0, 1). (1:5)

Note that Lu et al.’s regularization does no longer depend on t. And their result for

the regularization (1.5) is under dramatically less restrictive conditions than Moudafi

and Mainge’s [5].

Very recently, Yao et al. [3] extended Lu et al.’s result to a general case, i.e., in the

scheme (1.5), S, T are extended to Lipschitz pseudocontractive and f is extended to

strongly pseudocontractive. But in [3], after careful discussion, we observe that a conti-

nuity condition on f is necessary. So, in this paper, we modify it.

Motivated and inspired by the above work, in this paper, we use strongly pseudocon-

trations to regularize the ill-posed accretive VI(1.3), and analyze the convergence of
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the scheme (1.5). The results we obtained improve and extend the corresponding

results in [2,3].

2 Preliminaries
If Banach space E admits sequentially continuous duality mapping J from weak topol-

ogy from weak* topology, then by [6, Lemma 1], we get that duality mapping J is sin-

gle-valued. In this case, duality mapping J is also said to be weakly sequentially

continuous, i.e., for each {xn} ⊂ E with xn ⇀ x, then J(xn) ⇁ Jx[6,7].

A Banach space E is said to be satisfying Opial’s condition if for any sequence {xn} in

E, xn ⇀ x(n ® ∞) implies that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ E, with y �= x.

By [6, Lemma 1], we know that if E admits a weakly sequentially continuous duality

mapping, then E satisfies Opial’s condition.

Lemma 2.1([7]) Let C be a nonempty closed convex subset of a reflexive Banach

space E, which satisfies Opial’s condition, and suppose T : C ® E is nonexpansive.

Then, the mapping I - T is demiclosed at zero, i.e.,

xn ⇀ x, xn − Txn → 0 implies x = Tx.

Recall that S : C ® C is called accretive if I - S is pseudocontractive. We denote by Jr
the resolvent of S, i.e., Jr = (I + rS)-1. It is well known that Jr is nonexpansive, single-

valued and Fix(Jr) = S-1(0) = {z Î D(S) : 0 = Sz} for all r > 0. For more details, see

[8-10].

Let T : C ® C be a pseudocontractive mapping; then, I - T is accretive. We denote A

= J1 = (2I - T)-1. Then, Fix(A) = Fix(T) and A : R(2I - T) ® K is nonexpansive and sin-

gle-valued. The following lemma can be found in [11].

Lemma 2.2([11]) Let C be a nonempty closed convex subset of a real Banach space

E and T : C ® C be a continuous pseudocontractive map. We denote A = J1 = (2I -

T)-1. Then,

(i) [12, Theorem 6] The map A is a nonexpansive self-mapping on C, i.e., for all x,

y Î C, there hold

||Ax − Ay|| ≤ ||x − y|| and Ax ∈ C;

(ii) If limn®∞ ||xn - Txn|| = 0, then limn®∞ ||xn - Axn|| = 0.

We also need the following lemma.

Lemma 2.3 Let C be a nonempty closed convex subset of a real Banach space E.

Assume that F : C ® E is accretive and weakly continuous along segments; that is F(x

+ ty) ⇀ F(x) as t ® 0. Then, the variational inequality

x∗ ∈ C, 〈Fx∗, j(x − x∗)〉 ≥ 0, ∀x ∈ C (2:1)
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is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, j(x − x∗)〉 ≥ 0, ∀x ∈ C. (2:2)

Proof (2.1) ⇒ (2.2) Since F is accretive, we have

〈Fx − Fx∗, j(x − x∗)〉 ≥ 0

and so

〈Fx, j(x − x∗)〉 ≥ 〈Fx∗, j(x − x∗)〉 ≥ 0.

(2.2) ⇒ (2.1) For any x Î C, put w = tx + (1 - t)x*, ∀ t Î (0, 1). Then, w Î C. Taking

x = w in (2.2), we have

〈Fw, j(w − x∗)〉 = t〈Fw, j(x − x∗)〉 ≥ 0,

i.e.,

〈Fw, j(x − x∗)〉 ≥ 0.

Letting t ® 0 in the above inequality, since F is weakly continuous along segments, it

follows that (2.1) holds.

3. Main Results
Let C be a nonempty closed convex subset of a real Banach space E. Let f : C ® C be

a Lipschitz strongly pseudocontraction and T, S : C ® C be two continuous pseudo-

contractions. For s, t Î (0, 1), we define the following mapping

x �→ Ws,tx := s[tf (x) + (1 − t)Sx] + (1 − s)Tx.

It is easy to see that the mapping Ws,t : C ® C is a continuous strongly pseudocon-

tractive mapping. So, by [13], Ws,t has a unique fixed point which is denoted xs,t Î C;

that is

xs,t = Ws,txs,t = s[tf (xs,t) + (1 − t)Sxs,t] + (1 − s)Txs,t , s, t ∈ (0, 1). (3:1)

Theorem 3.1 Let E be a reflexive Banach space that admits a weakly sequentially

continuous duality mapping from E to E*. Let C be a nonempty closed convex subset

of E. Let f : C ® C be a Lipschitz strongly pseudocontraction, S : C ® C be a Lipschitz

pseudocontraction, and T : C ® C be a continuous pseudocontraction with Fix(T) ≠

∅. Suppose that the solution set Ω of the VI(1.3) is nonempty. Let for each (s, t) Î (0,

1)2, {xs,t} be defined by (3.1). Then, for each fixed t Î (0, 1), the net {xs,t} converges in

norm, as s ® 0, to a point xt Î Fix(T). Moreover, as t ® 0, the net {xt} converges in

norm to the unique solution x* of the following inequality variational(denoted by VI

(3.2)):

x∗ ∈ �, 〈(I − f )x∗, J(x − x∗)〉 ≥ 0, ∀x ∈ �. (3:2)

Hence, for each null sequence {tn} in (0,1), there exists another null sequence {sn} in

(0,1), such that the sequence xsn ,tn → x∗ in norm as n ® ∞.

Proof We divide our proofs into several steps as follows.

Step 1 For each fixed t Î (0, 1), the net {xs,t} is bounded.
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For any z Î Fix(T), for all s, t Î (0, 1), by (3.1), we have

||xs,t − z||2 = 〈s[tf (xs,t) + (1 − t)Sxs,t] + (1 − s)Txs,t − z, J(xs,t − z)〉
= st〈f (xs,t) − f (z), J(xs,t − z)〉 + s(1 − t)〈Sxs,t − Sz, J(xs,t − z)〉
+ (1 − s)〈Txs,t − Tz, J(xs,t − z)〉 + st〈f (z) − z, J(xs,t − z)〉
+ s(1 − t)〈Sz − z, J(xs,t − z)〉

≤ stβ||xs,t − z||2 + s(1 − t)||xs,t − z||2 + (1 − s)||xs,t − z||2
+ st||f (z) − z|| ||xs,t − z|| + s(1 − t)||Sz − z|| ||xs,t − z||

= (1 − st(1 − β))||xs,t − z||2 + s[t||f (z) − z||
+ (1 − t)||Sz − z||]||xs,t − z||,

which implies that

||xs,t − z|| ≤ t||f (z) − z||
t(1 − β)

+
(1 − t)||Sz − z||

t(1 − β)

≤ 1
t(1 − β)

max{||f (z) − z||, ||Sz − z||}.

Hence, for each t Î (0, 1), {xs,t} is bounded. Furthermore, by the Lipschitz continuity

of f and S, we obtain {f(xs,t)} and {Sxs,t}, which are both bounded for each t Î (0, 1).

From (3.1), we have

||Txs,t|| ≤ 1
1 − s

||xs,t|| + s

1 − s
||tf (xs,t) + (1 − t)Sxs,t||.

So {Txs,t} is also bounded as s ® 0 for each t Î (0, 1).

Step 2 xs,t ® xt Î Fix(T) as s ® 0.

From (3.1), for each t Î (0, 1), we get

xs,t − Txs,t = s[tf (xs,t) + (1 − t)Sxs,t − Txs,t] → 0, as s → 0. (3:3)

It follows from (3.1) that

||xs,t − z||2 = st〈f (xs,t) − f (z), J(xs,t − z)〉 + s(1 − t)〈Sxs,t − Sz, J(xs,t − z)〉
+ (1 − s)〈Txs,t − Tz, J(xs,t − z)〉 + st〈f (z) − z, J(xs,t − z)〉
+ s(1 − t) 〈Sz − z, J(xs,t − z)〉

≤ (1 − st(1 − β))||xs,t − z||2 + st〈f (z) − z, J(xs,t − z)〉
+ s(1 − t)〈Sz − z, J(xs,t − z)〉.

It turns out that

||xs,t − z||2 ≤ 1
t(1 − β)

〈tf (z) + (1 − t)Sz − z, J(xs,t − z)〉, ∀z ∈ Fix(T).

Assume that {sn} ⊂ (0, 1) is such that sn ® 0(n ® ∞), by the above inequality we

have

||xsn ,t − z||2 ≤ 1
t(1 − β)

〈tf (z) + (1 − t)Sz − z, J(xsn ,t − z)〉, ∀z ∈ Fix(T). (3:4)

Since
{
xsn ,t

}
is bounded, without loss of generality, we may assume that as sn ® 0,

xsn ,t ⇀ xt. Combining (3.3), Lemma 2.1 and 2.2, we obtain xt Î Fix(A) = Fix(T). Taking

z = xt in (3.4), we get
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||xsn ,t − xt||2 ≤ 1
t(1 − β)

〈tf (xt) + (1 − t)Sxt − xt, J(xsn ,t − xt)〉. (3:5)

Since xsn ,t ⇀ xt and J is weakly sequentially continuous, by (3.5) as sn ® 0, we obtain
xsn ,t → xt. This has proved that the relative norm compactness of the net {xs,t} as s ®
0.

Letting n ® ∞ in (3.4), we obtain

||xt − z||2 ≤ 1
t(1 − β)

〈tf (z) + (1 − t)Sz − z, J(xt − z)〉, ∀z ∈ Fix(T). (3:6)

So, xt is a solution of the following variational inequality:

xt ∈ Fix(T), 〈tf (z) + (1 − t)Sz − z, J(xt − z)〉 ≥ 0, ∀z ∈ Fix(T).

Letting C = Fix(T), F = t(I - f) + (1 - t)(I - S), by Lemma 2.3, we have the equivalent

dual variational inequality:

xt ∈ Fix(T), 〈tf (xt) + (1 − t)Sxt − xt, J(xt − z)〉 ≥ 0, ∀z ∈ Fix(T). (3:7)

Next, we prove that for each t Î (0, 1), as s ® 0, {xs,t} converges in norm to xt Î Fix

(T). Assume xs′n,t → x′
t as s′n → 0. Similar to the above proof, we have x′

t ∈ Fix(T),

which solves the following variational inequality:

x′
t ∈ Fix(T), 〈tf (x′

t) + (1 − t)Sx′
t − x′

t, J(x
′
t − z)〉 ≥ 0, ∀z ∈ Fix(T). (3:8)

Taking z = x′
t in (3.7) and z = xt in (3.8), we have

〈tf (xt) + (1 − t)Sxt − xt, J(xt − x′
t)〉 ≥ 0, (3:9)

〈tf (x′
t) + (1 − t)Sx′

t − x′
t, J(x

′
t − xt)〉 ≥ 0. (3:10)

Adding up (3.9) and (3.10), and since f is strongly pseudocontractive and S is pseu-

docontractive, we have

0 ≤ t〈(I − f )xt − (I − f )x′
t, J(x′

t − xt)〉 + (1 − t)〈(I − S)xt − (I − S)x′
t, J(x′

t − xt)〉
≤ −t(1 − β)||x′

t − xt||2,

which implies that x′
t = xt. Hence, the net {xs,t} converges in norm to xt Î Fix(T) as s

® 0.

Step 3 {xt} is bounded.

Since Ω ⊂ Fix(T), for any y Î Ω, taking z = y in (3.7) we obtain

〈tf (xt) + (1 − t)Sxt − xt, J(xt − y)〉 ≥ 0. (3:11)

Since I - S is accretive, for any y Î Ω, we have

〈Sxt − xt, J(xt − y)〉 ≤ 〈Sy − y, J(xt − y)〉 ≤ 0. (3:12)

Combining (3.11) and (3.12), we have

〈f (xt) − xt, J(xt − y)〉 ≥ 0, ∀y ∈ �, (3:13)

i.e.,

〈f (xt) − y + y − xt, J(xt − y)〉 ≥ 0, ∀y ∈ �.
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Hence,

||xt − y||2 ≤ 〈f (xt) − y, J(xt − y)〉
= 〈f (xt) − f (y), J(xt − y)〉 + 〈f (y) − y, J(xt − y)〉
≤ β||xt − y||2 + 〈f (y) − y, J(xt − y)〉.

Hence,

||xt − y||2 ≤ 1
1 − β

〈f (y) − y, J(xt − y)〉, (3:14)

which implies that

||xt − y|| ≤ 1
1 − β

||f (y) − y||.

So {xt} is bounded.

Step 4 xt ® x* Î Ω which is a solution of variational inequality (3.2).

Since f is strongly pseudocontractive, it is easy to see that the solution of the varia-

tional inequality (3.2) is unique.

Next, we prove that ωw(xt) ⊂ Ω; namely, if (tn) is a null sequence in (0,1) such that

xtn ⇀ x′ as n ® ∞, then x’ Î Ω. Indeed, it follows from (3.7) that

〈(I − S)xt, J(z − xt)〉 ≥ t
1 − t

〈(I − f )xt, J(xt − z)〉.

Since I - S is accretive, from the above inequality, we have

〈(I − S)z, J(z − xt)〉 ≥ t
1 − t

〈(I − f )xt, J(xt − z)〉, ∀z ∈ Fix(T). (3:15)

Letting t = tn ® 0 in (3.15), we have

〈(I − S)z, J(z − x′)〉 ≥ 0, ∀z ∈ Fix(T),

which is equivalent to its dual variational inequality by Lemma 2.3

〈(I − S)x′, J(z − x′)〉 ≥ 0, ∀z ∈ Fix(T).

Since Fix(T) is closed convex, then Fix(T) is weakly closed. Thus, x’ Î Fix(T) by vir-

tue of xt Î Fix(T). So, x’ Î Ω.

Finally, we show that x’ = x*, the unique solution of VI(3.2). In fact, taking t = tn and

y = x’ in (3.14), we obtain

||xtn − x′||2 ≤ 1
1 − β

〈f (x′) − x′, J(xtn − x′)〉,

which together with xtn ⇀ x′ implies that xtn ⇀ x′ as tn ® 0. Let t = tn ® 0 in (3.13),

we have

〈f (x′) − x′, J(x′ − y)〉 ≥ 0, ∀y ∈ �. (3:16)

It follows from (3.16) and x’ Î Ω that x’ is a solution of VI(3.2). By uniqueness, we

have x’ = x*. Therefore, xt ® x* as t ® 0.

By Theorem 3.1, we have the following corollary directly.
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Corollary 3.1([2, Theorem 3.3]) Let C be a nonempty closed convex subset of a real

Hilbert space H. Let f : C ® C be a contraction, S, T : C ® C be nonexpansive with

Fix(T) ≠ ∅. Suppose that the solution set W of the VI(1.2) is nonempty. Let for each

(s, t) Î (0, 1)2, {xs,t} be defined by (3.1). Then, for each fixed t Î (0, 1), the net {xs,t}

converges in norm, as s ® 0, to a point xt Î Fix(T). Moreover, as t ® 0, the net {xt}

converges in norm to the unique solution x* of the following inequality variational:

x∗ ∈ W, 〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ W.

Hence, for each null sequence {tn} in (0,1), there exists another null sequence {sn} in

(0,1), such that the sequence xsn ,tn → x∗ in norm as n ® ∞.

Remark Theorem 3.1 improves and generalizes Theorem 3.1 of Yao et al.[3] in the

following aspects:

(i) Theorem 3.1 generalizes Theorem 3.1 in [3] from Hilbert spaces to more gen-

eral Banach spaces;

(ii) The mappings T in [3, Theorem 3.1] is weakened from Lipschitzian to

continuous;

(iii) We modify the condition of f, i.e., we suppose that f is Lipschitz strongly

pseudocontractive.
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