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Abstract

Suppose K is a nonempty closed convex subset of a complete CAT(0) space X with
the nearest point projection P from X onto K. Let T : K ® X be a nonself mapping,
satisfying Condition (E) with F(T): = {x Î K : Tx = x} ≠ ∅. Suppose {xn} is generated
iteratively by x1 Î K, xn+1 = P ((1 - an)xn ⊕ anTP [(1 - bn)xn ⊕ bnTxn]),n ≥ 1, where
{an} and {bn} are real sequences in [ε, 1 - ε] for some ε Î (0, 1). Then, {xn}
Δ-converges to some point x⋆ in F(T). This extends a result of Laowang and Panyanak
[Fixed Point Theory Appl. 367274, 11 (2010)] for nonself mappings satisfying
Condition (E).
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1 Introduction
In 2010, Laowang and Panyanak [1] studied an iterative scheme and proved the follow-

ing result: let K be a nonempty closed convex subset of a complete CAT(0) space X,

(the initials of term “CAT” are in honor of E. Cartan, A.D. Alexanderov and V.A.

Toponogov) with the nearest point projection P from X onto K. Let T : K ® X be a

nonexpansive nonself mapping with nonempty fixed point set. If {xn} is generated itera-

tively by

x1 ∈ K, xn+1 = P((1 − αn)xn ⊕ αnTP[(1 − βn)xn ⊕ βnTxn]), (1:1)

where {an} and {bn} are real sequences in [ε, 1 - ε] for some ε Î (0, 1), then {xn} is

Δ-convergent to a fixed point of T. In this article, this result is extended for nonself

mappings satisfying Condition (E).

Let K be a nonempty subset of a CAT(0) space X and T : K ® X be a mapping. A

point x Î K is called a fixed point of T, if x = Tx. We shall denote the fixed point set of

T by F(T). Moreover, T is called nonexpansive if for each x, y Î K, d(Tx, Ty) ≤ d(x, y).

In 2011, Falset et al. [2] introduced Condition (E) as follows:

Definition 1.1. Let K be a bounded closed convex subset of a complete CAT(0)

space X. A mapping T : K ® X is called to satisfy Condition (Eμ) on C, if there exists

μ ≥ 1 such that

d(x,Ty) ≤ μd(Tx, x) + d(x, y)

holds, for all x, y Î K. It is called, T satisfies Condition (E) on C whenever T satisfies

(Eμ) for some μ ≥ 1.
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Proposition 1.2 [2]. Every nonexpansive mapping satisfies Condition (E), but the

inverse is not true.

Now, we need some fact about CAT(0) spaces as follows:

Let (X, d) be a metric space. A geodesic path joining x Î X to y Î X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c

(l) = y and d(c(t), c(t’)) = ||t - t’|| for all t, t’ Î [0, l]. In particular, c is an isometry and d(x,

y) = l. The image a of c is called a geodesic (or metric) segment joining x and y. When it

is unique, this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space,

if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if

there is exactly one geodesic joining x to y, for each x, y Î X. A subset Y ⊂ X is said to be

convex if Y includes every geodesic segment joining any two of its points. A geodesic

triangle Δ(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the

vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A

comparison triangle for geodesic triangle Δ(x1, x2, x3) in (X, d) is a triangle

�̄(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that dE2 (x̄i, x̄j) = d(xi, xj) for

i, j Î {1, 2, 3}. A geodesic metric space is said to be a CAT(0) space [3], if all geodesic tri-

angles of appropriate size satisfy the following comparison axiom. Let Δ be a geodesic tri-

angle in X and �̄ be a comparison triangle for Δ. Then Δ is said to satisfy the CAT(0)

inequality if for all x, y Î Δ and all comparison points x̄, ȳ ∈ �̄ ,

d(x, y) ≤ dE2 (x̄, ȳ). (1:2)

If x, y1, y2 are points in a CAT(0) space and y0 is the midpoint of the segment [y1,

y2], then the CAT(0) inequality implies

d(x, y0)2 ≤ 1
2
d(x, y1)2 +

1
2
d(x, y2)2 − 1

4
d(y1, y2)2. (CN)

In fact, a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequal-

ity (Courbure negative)[[3], p. 163].

Lemma 1.3. Let (X, d) be a CAT(0) space.

1. [[3], Proposition 2.4] Let K be a convex subset of X which is complete in the

induced metric. Then for every x Î X, there exists a unique point P(x) Î K such

that d(x, P(x)) = inf{d(x, y): y Î K}. Moreover, the map x ® P(x) is a nonexpansive

retract from X onto K.

2. [[4], Lemma 2.1] For x, y Î X and t Î [0, 1], there exists a unique point z Î [x,

y] such that

d(x, z) = td(x, y), d(y, z) = (1 − t)d(x, y)

one uses the notation (1 - t)x ⊕ ty for the unique point z.

3. [[4], Lemma 2.4] For x, y, z Î X and t Î [0, 1], one has

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z).

[[4], Lemma 2.5] For x, y, z Î X and t Î [0, 1], one has

d((1 − t)x ⊕ ty, z)2 ≤ (1 − t)d(x, z)2 + td(y, z)2 − t(1 − t)d(x, y)2.
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Let {xn} be a bounded sequence in a CAT(0) space X. For x Î X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known [[5], Proposition 7], in a CAT(0) space X, A({xn}) consists of exactly one

point.

Definition 1.4. [[6], Definition 3.1] A sequence {xn} in a CAT(0) space X is said

Δ-converges to x Î X, if x is the unique asymptotic center of {un} for every subse-

quence {un} of {xn}. In this case, one can write Δ - limn xn = x and call x the Δ - lim

of {xn}.

Lemma 1.5. Let (X, d) be a CAT(0) space.

1. [[6], p. 3690] Every bounded sequence in X has a Δ-convergent subsequence.

2. [[7], Proposition 2.1] If K is a closed convex subset of X and if {xn} is a bounded

sequence in K, then the asymptotic center of {xn} is in K.

3. [[4], Lemma 2.8] If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is

a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then

x = u.

2 Main results
The following lemma was proved by Dhompongsa and Panyanak in the case of nonex-

pansive [[4], Lemma 2.10].

Lemma 2.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X,

and T : K ® X be a nonself mapping, satisfying Condition (E). Suppose {xn} is a

bounded sequence in K such that limn d(xn, Txn) = 0 and {d(xn, v)} converges for all v

Î F (T). Then

ωw(xn) ⊂ F(T),

where ωw(xn) :=
⋃

A({un})and the union is taken over all subsequences {un} of {xn}.

Moreover, ωw(xn) consists of exactly one point.

Proof. Let u Î ωw(xn), then there exists a subsequence {un} of {xn} such that A({un})

= {u}. By part (1) and (2) of Lemma 1.5, there exists a subsequence {vn} of {un} such

that Δ - limnvn = v Î K. We show v Î F (T). In order to prove this, by Condition (E),

one can write

d(xn,Tv) ≤ μd(Txn, xn) + d(xn, v)

for some μ ≥ 1. Therefore

lim supn d(xn,Tv) ≤ lim supn(μd(Txn, xn) + d(xn, v))

= lim supn d(xn, v).
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The uniqueness of asymptotic center, implies v Î K and T(v) = v. By part (3) Lemma

1.5, u = v. Therefore ωw(xn) ⊂ F(T). Let {un} be a subsequence of {xn} with A({un}) =

{u} and A({xn}) = {x}. Since u Î ωw(xn) ⊂ F(T), {d(xn, v)} converges. By part (3) Lemma

1.5, x = u. This shows that ωw(xn) consists of exactly one point. □
Theorem 2.2. Let K be a nonempty closed convex subset of a complete CAT(0) space

X, and T : K ® X be a nonself mapping, satisfying Condition (E) with x⋆ Î F(T) = {x Î
K : Tx = x}. Let {an} and {bn} be sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting

from arbitrary x1 Î K, define the sequence {xn} by xn+1 = P((1 - an)xn ⊕ anTP[(1 - bn)
xn ⊕ bnTxn]), n ≥ 1. Then limn®∞ d(xn, x

⋆) exists.

Proof. By part (1) of Lemma 1.3, the nearest point projection P from X onto K is

nonexpansive. Then,

d(xn+1, x�) = d(P((1 − αn)xn ⊕ αnTP[(1 − βn)xn ⊕ βnTxn]),Px�)

≤ d((1 − αn)xn ⊕ αnTP[(1 − βn)xn ⊕ βnTxn], x�)

= (1 − αn)d(xn, x�) + αnd(TP[(1 − βn)xn ⊕ βnTxn], x�).

But by Condition (E), for some μ ≥ 1, we have

(1 − αn)d(xn, x�) + αnd(TP[(1 − βn)xn ⊕ βnTxn], x�)

≤ (1 − αn)d(xn, x�) + αn(μd(Tx�, x�) + d(P[(1 − βn)xn ⊕ βnTxn], x�))

≤ (1 − αn)d(xn, x�) + αn[(1 − βn)d(xn, x�) + βnd(xn, x�)]

= d(xn, x�).

Consequently, d(xn+1, x
⋆) ≤ d(xn, x

⋆). Then d(xn, x
⋆) ≤ d(x1, x

⋆) for all n ≥ 1. This

implies {d(xn, x�)}∞n=1 is bounded and decreasing. Hence, limn®∞ d(xn, x
⋆) exists. □

Theorem 2.3. Let K be a nonempty closed convex subset of a complete CAT(0) space

X, and T : K ® X be a nonself mapping, satisfying Condition (E) with F(T) ≠ ∅. Let

{an} and {bn} be sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting from arbitrary x1 Î
K, define the sequence {xn} by xn+1 = P((1 - an)xn ⊕ anTP [(1 - bn)xn ⊕ bnTxn]), n ≥ 1.

Then limn®∞ d(xn, Txn) = 0.

Proof. Let x⋆ Î F(T). By Theorem 2.2, limn®∞ d(xn, x
⋆) exists. Set

lim
n→∞d(xn, x�) = r.

If r = 0, by the Condition (E), for some μ ≥ 1,

d(xn,Txn) ≤ d(x�, xn) + d(x�,Txn)

≤ d(x�, xn) + μd(x�,Tx�) + d(x�, xn).

Therefore limn®∞ d(xn, Txn) = 0.

If r >0, set yn = P [(1 - bn)xn ⊕ bnTxn]. By part (4) of Lemma 1.3,

d(yn, x�)2 = d(P[(1 − βn)xn ⊕ βnTxn],Px�)2

≤ d([(1 − βn)xn ⊕ βnTxn], x�)2

≤ (1 − βn)d(xn, x�)2 + βnd(Txn, x�)2 − βn(1 − βn)d(xn,Txn)2

≤ (1 − βn)d(xn, x�)2 + βnd(Txn, x�)2.

(2:3)
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Using Condition (E), for some μ ≥ 1,

(1 − βn)d(xn, x�)2 + βnd(Txn, x�)2

≤ (1 − βn)d(xn, x�)2 + βn(μd(Tx�, x�) + d(xn, x�))2

= d(xn, x�)2.

(2:4)

Therefore by inequities (2.3) and (2.4), one can get

d(yn, x�) ≤ d(xn, x�). (2:5)

Part (4) of Lemma 1.3, shows

d(xn+1, x�)2 = d(P[(1 − αn)xn ⊕ αnTyn],Px�)2

≤ d((1 − αn)xn ⊕ αnTyn, x�)2

≤ (1 − αn)d(xn, x�)2 + αnd(Tyn, x�)2 − αn(1 − αn)d(xn,Tyn)2

≤ (1 − αn)d(xn, x�)2 + αn(μd(Tx�, x�) + d(yn, x�))2

− αn(1 − αn)d(xn,Tyn)2

= (1 − αn)d(xn, x�)2 + αnd(yn, x�)2 − αn(1 − αn)d(xn,Tyn)2

≤ (1 − αn)d(xn, x�)2 + αnd(xn, x�)2 − αn(1 − αn)d(xn,Tyn)2

= d(xn, x�)2 − αn(1 − αn)d(xn,Tyn)2.

Therefore

d(xn+1, x�)2 ≤ d(xn, x�)2 − W(αn)d(xn,Tyn)2,

where W(a) = a(1 - a). Since a Î [ε, 1 - ε], W(an) ≥ ε2.

Therefore

ε2
∞∑

n=1

d(xn,Tyn)2 ≤ d(x1, x�)2 < ∞.

This implies limn®∞ d(xn, Tyn) = 0.

By Condition (E), for some μ ≥ 1, we have

d(xn, x�) ≤ d(xn,Tyn) + d(Tyn, x�)

≤ d(xn,Tyn) + μd(Tx�, x�) + d(yn, x�)

= d(xn,Tyn) + d(yn, x�).

Hence

r ≤ lim inf
n→∞ d(yn, x�).

On the other hand, from (2.5),

lim sup
n→∞

d(yn, x�) ≤ r.

This implies

lim
n→∞d(yn, x�) = r.
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Thus (2.5) shows

lim
n→∞d((1 − βn)xn ⊕ βnTxn], x�) = r.

Since T satisfies Condition (E), we have

d(Txn, x�) ≤ μd(Tx�, x�) + d(xn, x�)

= d(xn, x�)

Thus

lim sup
n→∞

d(Txn, x�) ≤ r.

Now, by [[1], Lemma 2.9], limn®∞ d(xn, Txn) = 0. □
Theorem 2.4. Let K be a nonempty closed convex subset of a complete CAT(0) space

X, and T : K ® X be a nonself mapping, satisfying Condition (E) with F(T) ≠ ∅.

Assume {an} and {bn} are sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting from arbi-

trary x1 Î K, define the sequence {xn} by xn+1 = P((1 - an)xn ⊕ anTP[(1 - bn)xn ⊕
bnTxn]), n ≥ 1. Then {xn} is Δ-convergent to some point x⋆ in F(T).

Proof. By Theorem 2.3, limn®∞ d(xn, Txn) = 0. The proof of Theorem 2.2 shows {d

(xn, v)} is bounded and decreasing for each v Î F (T), and so it is convergent. By

Lemma 2.1, ωw(xn) consists exactly one point which is a fixed point of T. Conse-

quently, the sequence {xn} is Δ-convergent to some point x⋆ in F(T). □
The following definition is recalled from [8].

Definition 2.5. A mapping T : K ® X is said to satisfy Condition I, if there exists a

nondecreasing function f : [0, ∞) ® [0, ∞) with f(0) = 0 and f(r) > 0 for all r >0 such

that

d(x,Tx) ≥ f (d(x, F(T))),

where x Î K.

With respect to the above definition, we have the following theorem [[1], Theorem

3.4].

Theorem 2.6. Let K be a nonempty closed convex subset of a complete CAT(0) space

X, and T : K ® X be a nonself mapping, satisfying condition (E) with F(T) ≠ ∅. Assume

{an} and {bn} are sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting from arbitrary x1 Î
K, define the sequence {xn} by xn+1 = P((1 - an)xn ⊕ anTP [(1 - bn)xn ⊕ bnTxn]), n ≥ 1.

If T satisfies condition I, then {xn} converges strongly to a fixed point of T.

We state another strong convergence theorem [[1], Theorem 3.5] as follows:

Theorem 2.7. Let K be a nonempty compact convex subset of a complete CAT(0)

space X, and T : K ® X be a nonself mapping, satisfying condition (E) with F(T) ≠ ∅.

Assume {an} and {bn} are sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting from arbi-

trary x1 Î K, define the sequence {xn} by xn+1 = P((1 - an)xn ⊕ anTP[(1 - bn)xn ⊕
bnTxn]),n ≥ 1. Then, {xn} converges strongly to a fixed point of T.

Another result in [1] is to obtain the Δ-convergence of a defined sequence, to a com-

mon fixed point of two nonexpansive self-mappings. According to the present setting,

we can state the following result.

Theorem 2.8. Let K be a nonempty closed convex subset of a complete CAT(0) space

X, and S, T : K ® X be two nonself mappings, satisfying Condition (E) with F(S) ∩ F(T)
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≠ ∅. Assume {an} and {bn} are sequences in [ε, 1 - ε] for some ε Î (0, 1). Starting from

arbitrary x1 Î K, define the sequence {xn} by xn+1 = (1 - an)xn ⊕ anS[(1 - bn)xn ⊕
bnTxn], n ≥ 1. Then {xn} is Δ-convergent to a common fixed point of S and T.

Authors’ contributions
The authors have contributed in obtaining the new results presented in this article. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 May 2011 Accepted: 13 October 2011 Published: 13 October 2011

References
1. Laowang, W, Panyanak, B: Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces. Fixed Point

Theory Appl. 367274, 11 (2010)
2. Garcia-Falset, J, Liorens-Fuster, E, Suzuki, T: Fixed point theory for a class of generalized nonexpansive mapping. J Math

Anal Appl. 375, 185–195 (2011). doi:10.1016/j.jmaa.2010.08.069
3. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences.

Springer, Berlin319 (1999)
4. Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput Math Appl. 56, 2572–2579 (2008).

doi:10.1016/j.camwa.2008.05.036
5. Dhompongsa, S, Kirk, WA, Sims, B: Fixed point of uniformly lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006).

doi:10.1016/j.na.2005.09.044
6. Kirk, W, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008). doi:10.1016/j.

na.2007.04.011
7. Dhompongsa, S, Kirk, WA, Panyanak, B: Nonexpansive set-valued mappings in metric and Banach spaces. J Nonlinear

Convex Anal. 8, 35–45 (2007)
8. Senter, HF, Dotson, WG: Approximating fixed points of nonexpansive mappings. Proc Am Math Soc. 44, 375–380 (1974).

doi:10.1090/S0002-9939-1974-0346608-8

doi:10.1186/1687-1812-2011-65
Cite this article as: Razani and Shabani: Approximating fixed points for nonself mappings in CAT(0) spaces. Fixed
Point Theory and Applications 2011 2011:65.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Razani and Shabani Fixed Point Theory and Applications 2011, 2011:65
http://www.fixedpointtheoryandapplications.com/content/2011/1/65

Page 7 of 7

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Main results
	Authors' contributions
	Competing interests
	References

