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Abstract

Using direct method, Kenary (Acta Universitatis Apulensis, to appear) proved the
Hyers-Ulam stability of the following functional equation

f (mx + ny) =
(m + n)f (x + y)

2
+
(m − n)f (x − y)

2

in non-Archimedean normed spaces and in random normed spaces, where m, n are
different integers greater than 1. In this article, using fixed point method, we prove
the Hyers-Ulam stability of the above functional equation in various normed spaces.
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1. Introduction
A classical question in the theory of functional equations is the following: “When is it

true that a function which approximately satisfies a functional equation must be close

to an exact solution of the equation?” If the problem accepts a solution, then we say

that the equation is stable. The first stability problem concerning group homomorph-

isms was raised by Ulam [1] in 1940. In the following year, Hyers [2] gave a positive

answer to the above question for additive groups under the assumption that the groups

are Banach spaces. In 1978, Rassias [3] proved a generalization of Hyers’ theorem for

additive mappings. Furthermore, in 1994, a generalization of the Rassias’ theorem was

obtained by Găvruta [4] by replacing the bound ε (||x||p + ||y||p) by a general control

function j(x, y).
The functional equation f(x + y) + f(x - y) = 2f(x) + 2f(y) is called a quadratic func-

tional equation. In particular, every solution of the quadratic functional equation is

said to be a quadratic mapping. In 1983, the Hyers-Ulam stability problem for the

quadratic functional equation was proved by Skof [5] for mappings f : X ® Y, where X

is a normed space and Y is a Banach space. In 1984, Cholewa [6] noticed that the the-

orem of Skof is still true if the relevant domain X is replaced by an Abelian group and,

in 2002, Czerwik [7] proved the Hyers-Ulam stability of the quadratic functional

equation.
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The stability problems of several functional equations have been extensively investi-

gated by a number of authors, and there are many interesting results concerning this

problem (see [8-12]).

Using fixed point method, we prove the Hyers-Ulam stability of the following func-

tional equation

f (mx + ny) =
(m + n)f (x + y)

2
+
(m − n)f (x − y)

2
(1)

in various spaces, which was introduced and investigated in [13].

2. Preliminaries
In this section, we give some definitions and lemmas for the main results in this

article.

A valuation is a function | · | from a field K into [0, ∞) such that, for all r, s ∈ K, the

following conditions hold:

(a) |r| = 0 if and only if r = 0;

(b) |rs| = |r||s|;

(c) |r + s| ≤ |r| + |s|.

A field K is called a valued field if K carries a valuation. The usual absolute values of

ℝ and ℂ are examples of valuations.

In 1897, Hensel [14] has introduced a normed space which does not have the Archi-

medean property.

Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}

for all r, s ∈ K then the function | · | is called a non-Archimedean valuation and

the field is called a non-Archimedean field. Clearly, |1| = | -1| = 1 and |n| ≤ 1 for all

n Î N.

A trivial example of a non-Archimedean valuation is the function | · | taking every-

thing except for 0 into 1 and |0| = 0.

Definition 2.1. Let X be a vector space over a field K with a non-Archimedean

valuation | · |. A function || · || : X ® [0, ∞) is called a non-Archimedean norm if the

following conditions hold:

(a) ||x|| = 0 if and only if x = 0 for all x Î X;

(b) ||rx|| = |r| ||x|| for all r ∈ K and x Î X;

(c) the strong triangle inequality holds:

||x + y|| ≤ max{||x||, ||y||}

for all x, y Î X. Then (X, || · ||) is called a non-Archimedean normed space.

Definition 2.2. Let {xn} be a sequence in a non-Archimedean normed space X.

(a) The sequence {xn} is called a Cauchy sequence if, for any ε >0, there is a positive

integer N such that ||xn - xm|| ≤ ε for all n, m ≥ N.

(b) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive

integer N and x Î X such that ||xn - x|| ≤ ε for all n ≥ N. Then the point x Î X is

called the limit of the sequence {xn}, which is denote by limn®∞ xn = x.
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(c) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.

It is noted that

||xn − xm|| ≤ max{||xj+1 − xj ‖: m ≤ j ≤ n − 1}

for all m, n ≥ 1 with n > m.

In the sequel (in random stability section), we adopt the usual terminology, notions,

and conventions of the theory of random normed spaces as in [15].

Throughout this article (in random stability section), let Γ+ denote the set of all

probability distribution functions F : ℝ ∪ [-∞, +∞] ® [0,1] such that F is left-continu-

ous and nondecreasing on ℝ and F(0) = 0, F(+∞) = 1. It is clear that the set D+ = {F Î
Γ+ : l-F(-∞) = 1}, where l−f (x) = limt→x− f (t), is a subset of Γ+. The set Γ+ is partially

ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t) ≤ G

(t) for all t Î ℝ. For any a ≥ 0, the element Ha(t) of D
+ is defined by

Ha(t) =
{
0 if t ≤ a,
1 if t > a.

We can easily show that the maximal element in Γ+ is the distribution function

H0(t).

Definition 2.3. [15] A function T : [0, 1]2 ® [0, 1] is a continuous triangular norm

(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(x, 1) = x for all x Î [0, 1];

(d) T(x, y) ≤ T(z, w) whenever x ≤ z and y ≤ w for all x, y, z, w Î [0, 1].

Three typical examples of continuous t-norms are as follows: T(x, y) = xy, T(x, y) =

max{a + b - 1, 0}, and T(x, y) = min(a, b).

Definition 2.4. [16] A random normed space (briefly, RN-space) is a triple (X, μ, T),

where X is a vector space, T is a continuous t-norm, and μ : X ® D+ is a mapping

such that the following conditions hold:

(a) μx(t) = H0(t) for all x Î X and t >0 if and only if x = 0;

(b) μαx(t) = μx( t
|α| ) for all a Î ℝ with a ≠ 0, x Î X and t ≥ 0;

(c) μx+y(t + s) ≥ T (μx(t), μy(s)) for all x, y Î X and t, s ≥ 0.

Definition 2.5. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x Î X (write xn ® x as

n ® ∞) if limn→∞ μxn−x(t) = 1for all t >0.

(2) A sequence {xn} in X is called a Cauchy sequence in X if limn→∞ μxn−xm(t) = 1 for

all t >0.

(3) The RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is

convergent.

Theorem 2.1. [15]If (X, μ, T) is an RN-space and {xn} is a sequence such that xn ®
x, then limn→∞ μxn(t) = μx(t).

Definition 2.6. [17]Let X be a real vector space. A function N : X × ℝ ® [0, 1] is

called a fuzzy norm on X if for all x, y Î X and all s, t Î ℝ,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t >0;

Kenary et al. Fixed Point Theory and Applications 2011, 2011:67
http://www.fixedpointtheoryandapplications.com/content/2011/1/67

Page 3 of 14



(N3) N(cx, t) = N(x, t
|c|)if c ≠ 0;

(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};

(N5) N(x,.) is a non-decreasing function of ℝ and limt®∞ N (x, t) = 1;

(N6) for x ≠ 0, N(x,.) is continuous on ℝ.

The pair (X, N) is called a fuzzy normed vector space. The properties of fuzzy

normed vector space are given in [18].

Example 2.1. Let (X, || · ||) be a normed linear space and a, b >0. Then

N(x, t) =
{

αt
αt+β‖x‖ t > 0, x ∈ X
0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 2.7. [17]Let (X, N) be a fuzzy normed vector space. A sequence {xn} in X is

said to be convergent or converge if there exists an x Î X such that limt®∞ N (xn - x, t)

= 1 for all t >0. In this case, x is called the limit of the sequence {xn} in X and we

denote it by N - limt®∞ xn = x.

Definition 2.8. [17]Let (X, N) be a fuzzy normed vector space. A sequence {xn} in X is

called Cauchy if for each ε >0 and each t >0 there exists an n0 Î N such that for all n

≥ n0 and all p > 0, we have N (xn+p - xn, t) > 1 - ε.

It is well known that every convergent sequence in a fuzzy normed vector space is

Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be

complete and the fuzzy normed vector space is called a fuzzy Banach space.

Example 2.2. Let N : ℝ × ℝ ® [0, 1] be a fuzzy norm on ℝ defined by

N(x, t) =
{ t

t+|x| t > 0
0 t ≤ 0

.

Then (ℝ, N) is a fuzzy Banach space.

We say that a mapping f : X ® Y between fuzzy normed vector spaces X and Y is

continuous at a point x Î X if for each sequence {xn} converging to x0 Î X, then the

sequence {f(xn)} converges to f (x0). If f : X ® Y is continuous at each x Î X, then f :

X ® Y is said to be continuous on X [19].

Throughout this article, assume that X is a vector space and that (Y, N) is a fuzzy

Banach space.

Definition 2.9. Let X be a set. A function d : X × X ® [0, ∞] is called a generalized

metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y Î X;

(b) d(x, y) = d(y, x) for all x, y Î X;

(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z Î X.

Theorem 2.2. [20,21]Let (X, d) be a complete generalized metric space and J : X ® X

be a strictly contractive mapping with Lipschitz constant L <1. Then, for all x Î X,

either

d(Jnx, Jn+1x) = ∞

for all non-negative integers n or there exists a positive integer n0 such that

(a) d(Jnx, Jn+1x) < ∞ for all n0 ≥ n0;

(b) the sequence {Jnx} converges to a fixed point y* of J;

(c) y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
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(d) d(y, y∗) ≤ 1
1−L d(y, Jy)for all y Î Y.

3. Non-Archimedean stability of the functional equation (1)
In this section, using the fixed point alternative approach, we prove the Hyers-Ulam

stability of the functional equation (1) in non-Archimedean normed spaces.

Throughout this section, let X be a non-Archimedean normed space and Y a com-

plete non-Archimedean normed space. Assume that |m| ≠1.

Lemma 3.1. Let X and Y be linear normed spaces and f : X ® Y a mapping satisfy-

ing (1). Then f is an additive mapping.

Proof. Letting y = 0 in (1), we obtain

f (mx) = mf (x)

for all x Î X. So one can show that

f (mnx) = mnf (x)

for all x Î X and all n Î N.□
Theorem 3.1. Let ζ : X2 ® [0, ∞) be a function such that there exists an L <1 with

|m|ζ (x, y) ≤ Lζ (mx,my)

for all x, y Î X. If f : X ® Y is a mapping satisfying f(0) = 0 and the inequality∥∥∥∥f (mx + ny) − (m + n)f (x + y)
2

− (m − n)f (x − y)
2

∥∥∥∥ ≤ ζ (x, y) (2)

for all x, y Î X, then there is a unique additive mapping A : X ® Y such that

‖ f (x) − A(x) ‖≤ Lζ (x, 0)
|m| − |m|L . (3)

Proof. Putting y = 0 and replacing x by x
m in (2), we have

∥∥∥mf
( x

m

)
− f (x)

∥∥∥ ≤ ζ
( x

m
, 0

)
≤ L

|m| ζ (x, 0) (4)

for all x Î X. Consider the set

S := {g : X → Y; g(0) = 0}

and the generalized metric d in S defined by

d(f , g) = inf
{
μ ∈ R+ : ‖ g(x) − h(x) ‖≤ μζ (x, 0), ∀x ∈ X

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [[22], Lemma 2.1]).

Now, we consider a linear mapping J : S ® S such that

Jh(x) := mh
( x
m

)

for all x Î X. Let g, h Î S be such that d(g, h) = ε. Then we have

‖ g(x) − h(x) ‖≤ εζ (x, 0)

for all x Î X and so

‖ Jg(x) − Jh(x) ‖=
∥∥∥mg

( x

m

)
− mh

( x

m

)∥∥∥ ≤ |m|εζ
( x

m
, 0

)
≤ |m|ε L

|m|ζ (x, 0)
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for all x Î X. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h Î S. It follows from (4) that

d(f , Jf ) ≤ L

|m| .

By Theorem 2.2, there exists a mapping A : X ® Y satisfying the following:

(1) A is a fixed point of J, that is,

A
( x

m

)
=

1
m
A(x) (5)

for all x Î X. The mapping A is a unique fixed point of J in the set

� = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping satisfying (5) such that there exists μ Î (0, ∞)

satisfying

‖ f (x) − A(x) ‖≤ μζ (x, 0)

for all x Î X.

(2) d(Jnf, A) ® 0 as n ® ∞. This implies the equality

lim
n→∞ mnf

( x
mn

)
= A(x)

for all x Î X.

(3) d(f ,A) ≤ d(f ,J f )
1−L

with f Î Ω, which implies the inequality

d(f ,A) ≤ L

|m| − |m|L .

This implies that the inequality (3) holds. By (2), we have
∥∥∥∥∥mnf

(mx + ny
mn

)
− mn(m + n)f ( x+ymn )

2
− mn(m − n)f ( x−y

mn )

2

∥∥∥∥∥
≤ |m|nζ

( x

mn
,
y

mn

)
≤ |m|n · Ln

|m|n ζ (x, y)

for all x, y Î X and n ≥ 1 and so
∥∥∥∥A(mx + ny) − (m + n)A(x + y)

2
− (m − n)A(x − y)

2

∥∥∥∥ = 0

for all x, y Î X.

On the other hand

mA
( x
m

)
− A(x) = lim

n→∞ mn+1f
( x
mn+1

)
− lim

n→∞ mnf
( x
mn

)
= 0.

Therefore, the mapping A : X ® Y is additive. This completes the proof. □
Corollary 3.1. Let θ ≥ 0 and p be a real number with 0 < p <1. Let f : X ® Y be a

mapping satisfying f(0) = 0 and the inequality
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∥∥∥∥f (mx + ny) − (m + n)f (x + y)
2

− (m − n)f (x − y)
2

∥∥∥∥ ≤ θ(||x||p + ||y||p) (6)

for all x, y Î X. Then, for all x Î X,

A(x) = lim
n→∞ mnf

( x
mn

)

exists and A : X ® Y is a unique additive mapping such that

‖ f (x) − A(x) ‖≤ |m|θ ||x||p
|m|p+1 − |m|2 (7)

for all x Î X.

Proof. The proof follows from Theorem 3.1 if we take

ζ (x, y) = θ(||x||p + ||y||p)

for all x, y Î X. In fact, if we choose L = |m|1-p, then we get the desired result. □
Theorem 3.2. Let ζ : X2 ® [0, ∞) be a function such that there exists an L <1 with

ζ (mx,my)
|m| ≤ Lζ (x, y)

for all x, y Î X. Let f : X ® Y be a mapping satisfying f(0) = 0 and (2). Then there is

a unique additive mapping A : X ® Y such that

‖ f (x) − A(x) ‖≤ ζ (x, 0)
|m| − |m|L .

Proof. The proof is similar to the proof of Theorem 3.1. □
Corollary 3.2. Let θ ≥ 0 and p be a real number with p >1. Let f : X ® Y be a map-

ping satisfying f(0) = 0 and (6). Then, for all x Î X

A(x) = lim
n→∞

f (mnx)
mn

exists and A : X ® Y is a unique additive mapping such that

‖ f (x) − A(x) ‖≤ θ ||x||p
|m| − |m|p

for all x Î X.

Proof. The proof follows from Theorem 3.2 if we take

ζ (x, y) = θ(||x||p + ||y||p)

for all x, y Î X. In fact, if we choose L = |2m|p-1, then we get the desired result. □
Example 3.1. Let Y be a complete non-Archimedean normed space. Let f : Y ® Y be

a mapping defined by

f (z) =
{
z, z ∈ {mx + ny : ‖ mx + ny ‖< 1} ∩ {x − y : ‖ x − y ‖< 1}
0, otherwise

.

Then one can easily show that f : Y ® Y satisfies (3.5) for the case p = 1 and that

there does not exist an additive mapping satisfying (3.6).
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4. Random stability of the functional equation (1)
In this section, using the fixed point alternative approach, we prove the Hyers-Ulam

stability of the functional equation (1) in random normed spaces.

Theorem 4.1. Let X be a linear space, (Y, μ, T) a complete RN-space and F a mapping

from X2 to D+ (F(x, y) is denoted by Fx,y) such that there exists 0 < α < 1
msuch that

�mx,my

(
t
α

)
≤ �x,y(t) (8)

for all x, y Î X and t >0. Let f : X ® Y be a mapping satisfying f(0) = 0 and

μ
f (mx+ny)−

(m + n)f (x + y)
2

−
(m − n)f (x − y)

2

(t) ≥ �x,y(t)
(9)

for all x, y Î X and t >0. Then, for all x Î X

A(x) := lim
n→∞ mnf

( x
mn

)

exists and A : X ® Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ �x,0

(
(1 − mα)t

α

)
(10)

for all x Î X and t >0.

Proof. Putting y = 0 in (9) and replacing x by x
m, we have

μ
mf

( x
m

)
−f (x)

(t) ≥ � x
m ,0(t) (11)

for all x Î X and t >0. Consider the set

S∗ := {g : X → Y; g(0) = 0}

and the generalized metric d* in S* defined by

d∗(f , g) = inf
u∈(0,+∞)

{μg(x)−h(x)(ut) ≥ �x,0(t), ∀x ∈ X, t > 0},

where inf ∅ = +∞. It is easy to show that (S*, d*) is complete (see [[22], Lemma

2.1]).

Now, we consider a linear mapping J : S* ® S* such that

Jh(x) := mh
( x
m

)

for all x Î X.

First, we prove that J is a strictly contractive mapping with the Lipschitz constant

ma. In fact, let g, h Î S* be such that d*(g, h) < ε. Then we have

μg(x)−h(x)(εt) ≥ �x,0(t)

for all x Î X and t >0 and so

μJg(x)−Jh(x)(mαεt) = μ
mg

( x
m

)
−mh

( x
m

)(mαεt) = μ
g
( x
m

)
−h

( x
m

)(αεt)

≥ � x
m ,0(αt)

≥ �x,0(t)
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for all x Î X and t >0. Thus d*(g, h) < ε implies that d*(Jg, Jh) < maε. This means

that

d∗(Jg, Jh) ≤ mαd(g, h)

for all g, h Î S*. It follows from (11) that

d∗(f , J f ) ≤ α.

By Theorem 2.2, there exists a mapping A : X ® Y satisfying the following:

(1) A is a fixed point of J, that is,

A
( x

m

)
=

1
m
A(x) (12)

for all x Î X. The mapping A is a unique fixed point of J in the set

� = {h ∈ S∗ : d∗(g, h) < ∞}.

This implies that A is a unique mapping satisfying (12) such that there exists u Î (0,

∞) satisfying

μf (x)−A(x)(ut) ≥ �x,0(t)

for all x Î X and t >0.

(2) d*(Jnf, A) ® 0 as n ® ∞. This implies the equality

lim
n→∞ mnf

( x
mn

)
= A(x)

for all x Î X.

(3) d∗(f ,A) ≤ d∗(f ,Jf )
1−mα

with f Î Ω, which implies the inequality

d∗(f ,A) ≤ α

1 − mα

and so

μf (x)−A(x)

(
αt

1 − mα

)
≥ �x,0(t)

for all x Î X and t >0. This implies that the inequality (10) holds.

On the other hand

μ

mnf
(mx+ny

mn

)
−
mn(m + n)f

( x+y
mn

)
2

−
mn(m − n)f

( x−y
mn

)
2

(t) ≥ � x
mn ,

y
mn

(
t
mn

)

for all x, y Î X, t >0 and n ≥ 1 and so, from (8), it follows that

� x
mn ,

y
mn

(
t
mn

)
≥ �x,y

(
t

mnαn

)
.

Since

lim
n→∞ �x,y

(
t

mnαn

)
= 1
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for all x, y Î X and t >0, we have

μ
A(mx+ny)−

(m + n)A(x + y)
2

−
(m − n)A(x − y)

2

(t) = 1

for all x, y Î X and t >0.

On the other hand

A(mx) − mA(x) = lim
n→∞ mnf

( x
mn−1

)
− m lim

n→∞ mnf
( x
mn

)

= m
[
lim
n→∞ mn−1f

( x
mn−1

)
− lim

n→∞ mnf
( x
mn

)]

= 0.

Thus the mapping A : X ® Y is additive. This completes the proof. □
Corollary 4.1. Let X be a real normed space, θ ≥ 0 and let p be a real number with p

>1. Let f : X ® Y be a mapping satisfying f(0) = 0 and

μ
f (mx+ny)−

(m + n)f (x + y)
2

−
(m − n)f (x − y)

2

(t) ≥ t

t + θ
(||x||p + ||y||p) (13)

for all x, y Î X and t >0. Then, for all x Î X,

A(x) = lim
n→∞ mnf

( x
mn

)

exists and A : X ® Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ mp(1 − m1−p)t
mp(1 − m1−p)t + θ ||x||p (14)

for all x Î X and t >0.

Proof. The proof follows from Theorem 4.1 if we take

�x,y(t) =
t

t + θ
(||x||p + ||y||p)

for all x, y Î X and t >0. In fact, if we choose a = m-p, then we get the desired

result. □
Theorem 4.2. Let X be a linear space, (Y, μ, T) a complete RN-space and F a map-

ping from X2 to D+ (F(x, y) is denoted by Fx,y) such that for some 0 <a <m

� x
m ,

y
m
(t) ≤ �x,y(αt)

for all x, y Î X and t >0. Let f : X ® Y be a mapping satisfying f(0) = 0 and

μ
f (mx+ny)−

(m + n)f (x + y)
2

−
(m − n)f (x − y)

2

(t) ≥ �x,y(t)

for all x, y Î X and t >0. Then, for all x Î X,

A(x) := lim
n→∞

f (mnx)
mn

exists and A : X ® Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ �x,0((m − α)t) (15)
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for all x Î X and t >0.

Proof. The proof is similar to the proof of Theorem 4.1. □
Corollary 4.2. Let X be a real normed space, θ ≥ 0 and let p be a real number with 0

< p <1. Let f : X ® Y be a mapping satisfying f(0) = 0 and

μ
f (mx+ny)−

(m + n)f (x + y)
2

−
(m − n)f (x − y)

2

(t) ≥ t

t + θ
(||x||p + ||y||p)

for all x, y Î X and t >0. Then, for all x Î X,

A(x) = lim
n→∞

f (mnx)
mn

exists and A : X ® Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ (m − mp)t
(m − mp)t + θ ||x||p

for all x Î X and t >0.

Proof. The proof follows from Theorem 4.2 if we take

�x,y(t) =
t

t + θ
(||x||p + ||y||p)

for all x, y Î X and t >0. In fact, if we choose a = mp, then we get the desired result.

□
Example 4.1. Let (Y, μ, T) be a normed complete RN-space. Let f : Y ® Y be a map-

ping defined by

f (z) =
{
z, z ∈ {mx + ny : ||mx + ny|| < 1} ∩ {x − y : ||x − y|| < 1}
0, otherwise

.

Then one can easily show that f : Y ® Y satisfies (4.6) for the case p = 1 and that

there does not exist an additive mapping satisfying (4.7).

5. Fuzzy stability of the functional equation (1)
Throughout this section, using the fixed point alternative approach, we prove the

Hyers-Ulam stability of the functional equation (1) in fuzzy normed spaces.

In the rest of the article, assume that X is a vector space and that (Y, N) is a fuzzy

Banach space.

Theorem 5.1. Let � : X2 ® [0, ∞) be a function such that there exists an L <1 with

ϕ
( x

m
,
y

m

)
≤ L

m
ϕ(x, y)

for all x, y Î X. Let f : X ® Y be a mapping satisfying f(0) = 0 and

N
(
f (mx + ny) − (m + n)f (x + y)

2
− (m − n)f (x − y)

2
, t

)
≥ t

t + ϕ(x, y)
(16)

for all x, y Î X and all t >0. Then the limit

A(x) := N - lim
n→∞ mnf

( x
mn

)
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exists for each x Î X and defines a unique additive mapping A : X ® Y such that

N(f (x) − A(x), t) ≥ (m − mL)t
(m − mL)t + Lϕ(x, 0)

.

for all x, y Î X and all t >0.

Proof. Putting y = 0 in (16) and replacing x by x
m, we have

N
(
mf

( x
m

)
− f (x), t

)
≥ t

t + ϕ
( x
2 , 0

)

for all x Î X and t >0. Consider the set

s∗∗ := {g : X → Y, g(0) = 0}

and the generalized metric d** in S** defined by

d∗∗(f , g) = inf
{
μ ∈ R+ : N(g(x) − h(x),μt) ≥ t

t + ϕ(x, 0)
, ∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S**, d**) is complete (see [[22], Lemma

2.1]).

Now, we consider a linear mapping J : S** ® S** such that

Jg(x) := mg
( x
m

)

for all x Î X.

The rest of the proof is similar to the proof of Theorem 4.1. □
Corollary 5.1. Let θ ≥ 0 and let p be a real number with p >1. Let X be a normed

vector space with norm || · ||. Let f : X ® Y be a mapping satisfying f(0) = 0 and

N
(
f (mx + ny) − (m + n)f (x + y)

2
− (m − n)f (x − y)

2
, t

)
≥ t

t + θ
(||x||p + ||y||p)(17)

for all x, y Î X and all t >0. Then

A(x) := N - lim
n→∞ mnf

( x
mn

)

exists for each x Î X and defines an additive mapping A : X ® Y such that

N(f (x) − A(x), t) ≥ (mp+1 − m2)t
(mp+1 − m2)t +mθ ||x||p . (18)

Proof. The proof follows from Theorem 5.1 by taking

ϕ(x, y) := θ(||x||p + ||y||p)

for all x, y Î X. Then we can choose L = m1-p and we get the desired result. □
Theorem 5.2. Let � : X2 ® [0, ∞) be a function such that there exists an L <1 with

ϕ(mx,my) ≤ mLϕ(x, y)

for all x, y Î X. Let f : X ® Y be a mapping satisfying f(0) = 0 and

N
(
f (mx + ny) − (m + n)f (x + y)

2
− (m − n)f (x − y)

2
, t

)
≥ t

t + φ(x, y)
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for all x, y Î X and all t >0. Then the limit

R(x) := N - lim
n→∞

f (mnx)
mn

exists for each x Î X and defines an additive mapping A : X ® Y such that

N(f (x) − A(x), t) ≥ (m − mL)t
(m − mL)t + ϕ(x, 0)

for all x, y Î X and all t >0.

Proof. The proof is similar to that of the proofs of Theorems 4.1 and 5.1. □
Corollary 5.2. Let θ ≥ 0 and let p be a real number with 0 < p <1. Let X be a

normed vector space with norm || · ||. Let f : X ® Y be a mapping satisfying f(0) = 0

and

N
(
f (mx + ny) − (m + n)f (x + y)

2
− (m − n)f (x − y)

2
, t

)
≥ t

t + θ
(||x||p + ||y||p)

for all x, y Î X and all t >0. Then the limit

A(x) := N - lim
n→∞

f (mnx)
mn

exists for each x Î X and defines a unique additive mapping A : X ® Y such that

N(f (x) − A(x), t) ≥ (m − mp)t
(m − mp)t + θ ||x||p .

Proof. The proof follows from Theorem 5.2 by taking

ϕ(x, y) := θ(||x||p + ||y||p)

for all x, y, z Î X. Then we can choose L = mp-1 and we get the desired result. □
Example 5.1. Let (Y, N) be a normed fuzzy Banach space. Let f : Y ® Y be a map-

ping defined by

f (z) =
{
z, z ∈ {mx + ny : ‖ mx + ny ‖< 1} ∩ {x − y : ‖ x − y ‖< 1}
0, otherwise

.

Then one can easily show that f : Y ® Y satisfies (5.2) for the case p = 1 and that

there does not exist an additive mapping satisfying (5.3).

6. Conclusion
We linked here five different disciplines, namely, the random normed spaces, non-

Archimedean normed spaces, fuzzy normed spaces, functional equations, and fixed

point theory. We established the Hyers-Ulam stability of the functional equation (1) in

various normed spaces by using fixed point method.
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