# RESEARCH

# **Open Access**

# A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces

Hassan Azadi Kenary<sup>1</sup>, Sun Young Jang<sup>2</sup> and Choonkil Park<sup>3\*</sup>

\* Correspondence: baak@hanyang. ac.kr

<sup>3</sup>Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea Full list of author information is available at the end of the article

# Abstract

Using direct method, Kenary (Acta Universitatis Apulensis, to appear) proved the Hyers-Ulam stability of the following functional equation

$$f(mx + ny) = \frac{(m+n)f(x+y)}{2} + \frac{(m-n)f(x-y)}{2}$$

in non-Archimedean normed spaces and in random normed spaces, where *m*, *n* are different integers greater than 1. In this article, using fixed point method, we prove the Hyers-Ulam stability of the above functional equation in various normed spaces. **2010 Mathematics Subject Classification**: 39B52; 47H10; 47S40; 46S40; 30G06; 26E30; 46S10; 37H10; 47H40.

**Keywords:** Hyers-Ulam stability, non-Archimedean normed space, random normed space, fuzzy normed space, fixed point method

# 1. Introduction

A classical question in the theory of functional equations is the following: "When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?" If the problem accepts a solution, then we say that the equation is *stable*. The first stability problem concerning group homomorphisms was raised by Ulam [1] in 1940. In the following year, Hyers [2] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [3] proved a generalization of Hyers' theorem for additive mappings. Furthermore, in 1994, a generalization of the Rassias' theorem was obtained by Găvruta [4] by replacing the bound  $\varepsilon$  ( $||x||^p + ||y||^p$ ) by a general control function  $\varphi(x, y)$ .

The functional equation f(x + y) + f(x - y) = 2f(x) + 2f(y) is called a *quadratic functional equation*. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. In 1983, the Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [5] for mappings  $f: X \rightarrow Y$ , where Xis a normed space and Y is a Banach space. In 1984, Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [7] proved the Hyers-Ulam stability of the quadratic functional equation.



© 2011 Kenary et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [8-12]).

Using fixed point method, we prove the Hyers-Ulam stability of the following functional equation

$$f(mx + ny) = \frac{(m+n)f(x+y)}{2} + \frac{(m-n)f(x-y)}{2}$$
(1)

in various spaces, which was introduced and investigated in [13].

# 2. Preliminaries

In this section, we give some definitions and lemmas for the main results in this article.

A *valuation* is a function  $|\cdot|$  from a field  $\mathbb{K}$  into  $[0, \infty)$  such that, for all  $r, s \in \mathbb{K}$ , the following conditions hold:

(a) 
$$|r| = 0$$
 if and only if  $r = 0$ ;

(b) |rs| = |r||s|;

(c)  $|r + s| \le |r| + |s|$ .

A field  $\mathbb{K}$  is called a *valued field* if  $\mathbb{K}$  carries a valuation. The usual absolute values of  $\mathbb{R}$  and  $\mathbb{C}$  are examples of valuations.

In 1897, Hensel [14] has introduced a normed space which does not have the Archimedean property.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

 $|r+s| \le \max\{|r|, |s|\}$ 

for all  $r, s \in \mathbb{K}$  then the function  $|\cdot|$  is called a *non-Archimedean valuation* and the field is called a *non-Archimedean field*. Clearly, |1| = |-1| = 1 and  $|n| \le 1$  for all  $n \in \mathbb{N}$ .

A trivial example of a non-Archimedean valuation is the function  $|\cdot|$  taking everything except for 0 into 1 and |0| = 0.

**Definition 2.1**. Let *X* be a vector space over a field  $\mathbb{K}$  with a non-Archimedean valuation  $|\cdot|$ . A function  $||\cdot||: X \to [0, \infty)$  is called a *non-Archimedean norm* if the following conditions hold:

(a) ||x|| = 0 if and only if x = 0 for all  $x \in X$ ;

(b) ||rx|| = |r| ||x|| for all  $r \in \mathbb{K}$  and  $x \in X$ ;

(*c*) the strong triangle inequality holds:

 $||x + y|| \le \max\{||x||, ||y||\}$ 

for all  $x, y \in X$ . Then  $(X, || \cdot ||)$  is called a *non-Archimedean normed space*.

**Definition 2.2.** Let  $\{x_n\}$  be a sequence in a non-Archimedean normed space *X*.

(a) The sequence  $\{x_n\}$  is called a *Cauchy sequence* if, for any  $\varepsilon > 0$ , there is a positive integer N such that  $||x_n - x_m|| \le \varepsilon$  for all  $n, m \ge N$ .

(b) The sequence  $\{x_n\}$  is said to be *convergent* if, for any  $\varepsilon > 0$ , there are a positive integer N and  $x \in X$  such that  $||x_n - x|| \le \varepsilon$  for all  $n \ge N$ . Then the point  $x \in X$  is called the *limit* of the sequence  $\{x_n\}$ , which is denote by  $\lim_{n\to\infty} x_n = x$ .

(c) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a *non-Archimedean Banach space*.

It is noted that

$$||x_n - x_m|| \le \max\{||x_{j+1} - x_j||: m \le j \le n - 1\}$$

for all  $m, n \ge 1$  with n > m.

In the sequel (in random stability section), we adopt the usual terminology, notions, and conventions of the theory of random normed spaces as in [15].

Throughout this article (in random stability section), let  $\Gamma^+$  denote the set of all probability distribution functions  $F : \mathbb{R} \cup [-\infty, +\infty] \rightarrow [0,1]$  such that F is left-continuous and nondecreasing on  $\mathbb{R}$  and F(0) = 0,  $F(+\infty) = 1$ . It is clear that the set  $D^+ = \{F \in \Gamma^+ : l^-F(-\infty) = 1\}$ , where  $l^-f(x) = \lim_{t\to x^-} f(t)$ , is a subset of  $\Gamma^+$ . The set  $\Gamma^+$  is partially ordered by the usual point-wise ordering of functions, i.e.,  $F \leq G$  if and only if  $F(t) \leq G$  (t) for all  $t \in \mathbb{R}$ . For any  $a \geq 0$ , the element  $H_a(t)$  of  $D^+$  is defined by

$$H_a(t) = \begin{cases} 0 \text{ if } t \leq a, \\ 1 \text{ if } t > a. \end{cases}$$

We can easily show that the maximal element in  $\Gamma^+$  is the distribution function  $H_0(t)$ .

**Definition 2.3.** [15] A function  $T : [0, 1]^2 \rightarrow [0, 1]$  is a *continuous triangular norm* (briefly, a *t*-norm) if *T* satisfies the following conditions:

(*a*) *T* is commutative and associative;

- (*b*) *T* is continuous;
- (c) T(x, 1) = x for all  $x \in [0, 1]$ ;

(*d*)  $T(x, y) \leq T(z, w)$  whenever  $x \leq z$  and  $y \leq w$  for all  $x, y, z, w \in [0, 1]$ .

Three typical examples of continuous *t*-norms are as follows: T(x, y) = xy,  $T(x, y) = \max\{a + b - 1, 0\}$ , and  $T(x, y) = \min(a, b)$ .

**Definition 2.4.** [16] A *random normed space* (briefly, *RN*-space) is a triple (X,  $\mu$ , T), where X is a vector space, T is a continuous t-norm, and  $\mu : X \to D^+$  is a mapping such that the following conditions hold:

(a)  $\mu_x(t) = H_0(t)$  for all  $x \in X$  and t > 0 if and only if x = 0;

(b)  $\mu_{\alpha x}(t) = \mu_x(\frac{t}{|\alpha|})$  for all  $\alpha \in \mathbb{R}$  with  $\alpha \neq 0, x \in X$  and  $t \ge 0$ ;

(c)  $\mu_{x+y}(t+s) \ge T(\mu_x(t), \mu_y(s))$  for all  $x, y \in X$  and  $t, s \ge 0$ .

**Definition 2.5**. Let  $(X, \mu, T)$  be an RN-space.

(1) A sequence  $\{x_n\}$  in X is said to be *convergent* to a point  $x \in X$  (write  $x_n \to x$  as  $n \to \infty$ ) if  $\lim_{n\to\infty} \mu_{x_n-x}(t) = 1$  for all t > 0.

(2) A sequence  $\{x_n\}$  in X is called a *Cauchy sequence* in X if  $\lim_{n\to\infty} \mu_{x_n-x_m}(t) = 1$  for all t > 0.

(3) The *RN*-space (X,  $\mu$ , T) is said to be *complete* if every Cauchy sequence in X is convergent.

**Theorem 2.1.** [15] If  $(X, \mu, T)$  is an RN-space and  $\{x_n\}$  is a sequence such that  $x_n \rightarrow x_n$  then  $\lim_{n\to\infty} \mu_{x_n}(t) = \mu_x(t)$ .

**Definition 2.6.** [17]*Let* X *be a real vector space.* A *function*  $N : X \times \mathbb{R} \rightarrow [0, 1]$  *is called a fuzzy norm on* X *if for all* x,  $y \in X$  *and all* s,  $t \in \mathbb{R}$ ,

(N1) N(x, t) = 0 for  $t \le 0$ ;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3)  $N(cx, t) = N(x, \frac{t}{|c|}) if c \neq 0;$ 

 $(N4) N(x + y, s + t) \ge \min\{N(x, s), N(y, t)\};$ 

(N5) N(x,.) is a non-decreasing function of  $\mathbb{R}$  and  $\lim_{t\to\infty} N(x, t) = 1$ ;

(N6) for  $x \neq 0$ , N(x,.) is continuous on  $\mathbb{R}$ .

The pair (X, N) is called a fuzzy normed vector space. The properties of fuzzy normed vector space are given in [18].

**Example 2.1**. Let  $(X, || \cdot ||)$  be a normed linear space and  $\alpha, \beta > 0$ . Then

$$N(x,t) = \begin{cases} \frac{\alpha t}{\alpha t + \beta \|x\|} & t > 0, x \in X \\ 0 & t \le 0, x \in X \end{cases}$$

is a fuzzy norm on X.

**Definition 2.7.** [17]Let (X, N) be a fuzzy normed vector space. A sequence  $\{x_n\}$  in X is said to be convergent or converge if there exists an  $x \in X$  such that  $\lim_{t\to\infty} N(x_n - x, t) = 1$  for all t > 0. In this case, x is called the limit of the sequence  $\{x_n\}$  in X and we denote it by  $N - \lim_{t\to\infty} x_n = x$ .

**Definition 2.8.** [17]*Let* (*X*, *N*) *be a fuzzy normed vector space. A sequence*  $\{x_n\}$  *in X is called Cauchy if for each*  $\varepsilon > 0$  *and each* t > 0 *there exists an*  $n_0 \in \mathbb{N}$  *such that for all*  $n \ge n_0$  *and all* p > 0, we have  $N(x_{n+p} - x_n, t) > 1 - \varepsilon$ .

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

**Example 2.2.** Let  $N : \mathbb{R} \times \mathbb{R} \to [0, 1]$  be a fuzzy norm on  $\mathbb{R}$  defined by

$$N(x,t) = \begin{cases} \frac{t}{t+|x|} & t > 0\\ 0 & t \le 0 \end{cases}.$$

Then  $(\mathbb{R}, N)$  is a fuzzy Banach space.

We say that a mapping  $f: X \to Y$  between fuzzy normed vector spaces X and Y is continuous at a point  $x \in X$  if for each sequence  $\{x_n\}$  converging to  $x_0 \in X$ , then the sequence  $\{f(x_n)\}$  converges to  $f(x_0)$ . If  $f: X \to Y$  is continuous at each  $x \in X$ , then  $f: X \to Y$  is said to be continuous on X [19].

Throughout this article, assume that X is a vector space and that (Y, N) is a fuzzy Banach space.

**Definition 2.9.** Let *X* be a set. A function  $d : X \times X \rightarrow [0, \infty]$  is called a generalized metric on *X* if *d* satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all  $x, y \in X$ ;

(b) d(x, y) = d(y, x) for all  $x, y \in X$ ;

(c)  $d(x, z) \le d(x, y) + d(y, z)$  for all  $x, y, z \in X$ .

**Theorem 2.2.** [20,21]Let (X, d) be a complete generalized metric space and  $J : X \to X$ be a strictly contractive mapping with Lipschitz constant L < 1. Then, for all  $x \in X$ , either

 $d(J^n x, J^{n+1} x) = \infty$ 

for all non-negative integers n or there exists a positive integer  $n_0$  such that

(a)  $d(J^n x, J^{n+1} x) < \infty$  for all  $n_0 \ge n_0$ ;

(b) the sequence  $\{J^n x\}$  converges to a fixed point  $y^*$  of J;

(c)  $y^*$  is the unique fixed point of J in the set  $Y = \{y \in X : d(J^{n_0}x, y) < \infty\}$ ;

(d)  $d(y, y^*) \leq \frac{1}{1-l} d(y, Jy)$  for all  $y \in Y$ .

### 3. Non-Archimedean stability of the functional equation (1)

In this section, using the fixed point alternative approach, we prove the Hyers-Ulam stability of the functional equation (1) in non-Archimedean normed spaces.

Throughout this section, let X be a non-Archimedean normed space and Y a complete non-Archimedean normed space. Assume that  $|m| \neq 1$ .

**Lemma 3.1.** Let X and Y be linear normed spaces and  $f: X \rightarrow Y$  a mapping satisfying (1). Then f is an additive mapping.

*Proof.* Letting y = 0 in (1), we obtain

f(mx) = mf(x)

for all  $x \in X$ . So one can show that

 $f(m^n x) = m^n f(x)$ 

for all  $x \in X$  and all  $n \in \mathbb{N}$ .

**Theorem 3.1.** Let  $\zeta : X^2 \to [0, \infty)$  be a function such that there exists an L < 1 with

 $|m|\zeta(x, \gamma) \leq L\zeta(mx, m\gamma)$ 

for all  $x, y \in X$ . If  $f: X \to Y$  is a mapping satisfying f(0) = 0 and the inequality

$$\left| f(mx + n\gamma) - \frac{(m+n)f(x+\gamma)}{2} - \frac{(m-n)f(x-\gamma)}{2} \right| \le \zeta(x,\gamma)$$
(2)

for all  $x, y \in X$ , then there is a unique additive mapping  $A : X \to Y$  such that

$$\|f(x) - A(x)\| \le \frac{L\zeta(x,0)}{|m| - |m|L}.$$
(3)

*Proof.* Putting y = 0 and replacing x by  $\frac{x}{m}$  in (2), we have

$$\left\| mf\left(\frac{x}{m}\right) - f(x) \right\| \le \zeta\left(\frac{x}{m}, 0\right) \le \frac{L}{|m|} \zeta(x, 0)$$
(4)

for all  $x \in X$ . Consider the set

 $S := \{g : X \rightarrow Y; g(0) = 0\}$ 

and the generalized metric d in S defined by

 $d(f,g) = \inf \{ \mu \in \mathbb{R}^+ : \| g(x) - h(x) \| \le \mu \zeta(x,0), \quad \forall x \in X \},\$ 

where  $\inf \emptyset = +\infty$ . It is easy to show that (*S*, *d*) is complete (see [[22], Lemma 2.1]). Now, we consider a linear mapping  $J : S \to S$  such that

$$Jh(x) := mh\left(\frac{x}{m}\right)$$

for all  $x \in X$ . Let  $g, h \in S$  be such that  $d(g, h) = \varepsilon$ . Then we have

$$\parallel g(x) - h(x) \parallel \leq \varepsilon \zeta(x, 0)$$

for all  $x \in X$  and so

$$\| Jg(x) - Jh(x) \| = \left\| mg\left(\frac{x}{m}\right) - mh\left(\frac{x}{m}\right) \right\| \le |m|\varepsilon\zeta\left(\frac{x}{m}, 0\right) \le |m|\varepsilon\frac{L}{|m|}\zeta(x, 0)$$

for all  $x \in X$ . Thus  $d(g, h) = \varepsilon$  implies that  $d(Jg, Jh) \leq L\varepsilon$ . This means that

$$d(Jg, Jh) \leq Ld(g, h)$$

for all  $g, h \in S$ . It follows from (4) that

$$d(f, Jf) \leq \frac{L}{|m|}.$$

By Theorem 2.2, there exists a mapping  $A : X \to Y$  satisfying the following: (1) A is a fixed point of J, that is,

$$A\left(\frac{x}{m}\right) = \frac{1}{m}A(x) \tag{5}$$

for all  $x \in X$ . The mapping A is a unique fixed point of J in the set

 $\Omega = \{h \in S : d(g, h) < \infty\}.$ 

This implies that *A* is a unique mapping satisfying (5) such that there exists  $\mu \in (0, \infty)$  satisfying

$$\|f(x) - A(x)\| \le \mu \zeta(x,0)$$

for all  $x \in X$ .

(2)  $d(f^n f, A) \to 0$  as  $n \to \infty$ . This implies the equality

$$\lim_{n\to\infty} m^n f\left(\frac{x}{m^n}\right) = A(x)$$

for all  $x \in X$ .

(3)  $d(f, A) \leq \frac{d(f, Jf)}{1-L}$  with  $f \in \Omega$ , which implies the inequality

$$d(f,A) \le \frac{L}{|m| - |m|L}$$

This implies that the inequality (3) holds. By (2), we have

$$\left\| m^n f\left(\frac{mx+n\gamma}{m^n}\right) - \frac{m^n(m+n)f\left(\frac{x+\gamma}{m^n}\right)}{2} - \frac{m^n(m-n)f\left(\frac{x-\gamma}{m^n}\right)}{2} \right\|$$
$$\leq |m|^n \zeta\left(\frac{x}{m^n}, \frac{\gamma}{m^n}\right) \leq |m|^n \cdot \frac{L^n}{|m|^n} \zeta\left(x, \gamma\right)$$

for all  $x, y \in X$  and  $n \ge 1$  and so

$$\left\|A(mx+ny) - \frac{(m+n)A(x+y)}{2} - \frac{(m-n)A(x-y)}{2}\right\| = 0$$

for all  $x, y \in X$ .

On the other hand

$$mA\left(\frac{x}{m}\right) - A(x) = \lim_{n \to \infty} m^{n+1}f\left(\frac{x}{m^{n+1}}\right) - \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right) = 0.$$

Therefore, the mapping  $A : X \to Y$  is additive. This completes the proof.  $\Box$ 

**Corollary 3.1.** Let  $\theta \ge 0$  and p be a real number with  $0 . Let <math>f : X \to Y$  be a mapping satisfying f(0) = 0 and the inequality

$$\left\|f(mx+ny) - \frac{(m+n)f(x+y)}{2} - \frac{(m-n)f(x-y)}{2}\right\| \le \theta(||x||^p + ||y||^p)$$
(6)

for all  $x, y \in X$ . Then, for all  $x \in X$ ,

 $A(x) = \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$ 

exists and  $A: X \to Y$  is a unique additive mapping such that

$$\|f(x) - A(x)\| \le \frac{|m|\theta| |x||^p}{|m|^{p+1} - |m|^2}$$
(7)

for all  $x \in X$ .

Proof. The proof follows from Theorem 3.1 if we take

$$\zeta(x, \gamma) = \theta(||x||^p + ||\gamma||^p)$$

for all  $x, y \in X$ . In fact, if we choose  $L = |m|^{1-p}$ , then we get the desired result.  $\Box$ **Theorem 3.2**. Let  $\zeta : X^2 \to [0, \infty)$  be a function such that there exists an L < 1 with

$$\frac{\zeta(mx,my)}{|m|} \leq L\zeta(x,y)$$

for all  $x, y \in X$ . Let  $f : X \to Y$  be a mapping satisfying f(0) = 0 and (2). Then there is a unique additive mapping  $A : X \to Y$  such that

$$|| f(x) - A(x) || \le \frac{\zeta(x, 0)}{|m| - |m|L}.$$

*Proof.* The proof is similar to the proof of Theorem 3.1.  $\Box$ 

**Corollary 3.2**. Let  $\theta \ge 0$  and p be a real number with p > 1. Let  $f : X \to Y$  be a mapping satisfying f(0) = 0 and (6). Then, for all  $x \in X$ 

$$A(x) = \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

exists and  $A: X \to Y$  is a unique additive mapping such that

$$|| f(x) - A(x) || \le \frac{\theta ||x||^p}{|m| - |m|^p}$$

for all  $x \in X$ .

Proof. The proof follows from Theorem 3.2 if we take

 $\zeta(x, y) = \theta(||x||^p + ||y||^p)$ 

for all  $x, y \in X$ . In fact, if we choose  $L = |2m|^{p-1}$ , then we get the desired result.  $\Box$ **Example 3.1**. Let Y be a complete non-Archimedean normed space. Let  $f: Y \to Y$  be

$$f(z) = \begin{cases} z, \ z \in \{mx + ny : \| \ mx + ny \| < 1\} \cap \{x - y : \| \ x - y \| < 1\} \\ 0, \ otherwise \end{cases}$$

Then one can easily show that  $f: Y \rightarrow Y$  satisfies (3.5) for the case p = 1 and that there does not exist an additive mapping satisfying (3.6).

# 4. Random stability of the functional equation (1)

In this section, using the fixed point alternative approach, we prove the Hyers-Ulam stability of the functional equation (1) in random normed spaces.

**Theorem 4.1.** Let X be a linear space,  $(Y, \mu, T)$  a complete RN-space and  $\Phi$  a mapping from  $X^2$  to  $D^+$  ( $\Phi(x, y)$  is denoted by  $\Phi_{x,y}$ ) such that there exists  $0 < \alpha < \frac{1}{m}$  such that

$$\Phi_{mx,my}\left(\frac{t}{\alpha}\right) \le \Phi_{x,y}(t) \tag{8}$$

for all  $x, y \in X$  and t > 0. Let  $f: X \to Y$  be a mapping satisfying f(0) = 0 and

$$\mu_{f(mx+ny)-\frac{(m+n)f(x+y)}{2}-\frac{(m-n)f(x-y)}{2}}(t) \ge \Phi_{x,y}(t)$$
(9)

for all  $x, y \in X$  and t > 0. Then, for all  $x \in X$ 

$$A(x) := \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$$

exists and  $A: X \rightarrow Y$  is a unique additive mapping such that

$$\mu_{f(x)-A(x)}(t) \ge \Phi_{x,0}\left(\frac{(1-m\alpha)t}{\alpha}\right)$$
(10)

for all  $x \in X$  and t > 0.

*Proof.* Putting y = 0 in (9) and replacing x by  $\frac{x}{m}$ , we have

$$\mu_{mf\left(\frac{x}{m}\right)-f(x)}(t) \ge \Phi_{\frac{x}{m},0}(t) \tag{11}$$

for all  $x \in X$  and t > 0. Consider the set

 $S^* := \{g : X \to Y; g(0) = 0\}$ 

and the generalized metric  $d^*$  in  $S^*$  defined by

$$d^*(f,g) = \inf_{u \in (0,+\infty)} \{ \mu_{g(x)-h(x)}(ut) \ge \Phi_{x,0}(t), \quad \forall x \in X, t > 0 \},\$$

where inf  $\emptyset = +\infty$ . It is easy to show that (*S*<sup>\*</sup>, *d*<sup>\*</sup>) is complete (see [[22], Lemma 2.1]).

Now, we consider a linear mapping  $J: S^* \to S^*$  such that

$$Jh(x) := mh\left(\frac{x}{m}\right)$$

for all  $x \in X$ .

First, we prove that *J* is a strictly contractive mapping with the Lipschitz constant  $m\alpha$ . In fact, let *g*,  $h \in S^*$  be such that  $d^*(g, h) < \varepsilon$ . Then we have

 $\mu_{g(x)-h(x)}(\varepsilon t) \geq \Phi_{x,0}(t)$ 

for all  $x \in X$  and t > 0 and so

$$\mu_{Jg(x)-Jh(x)}(m\alpha\varepsilon t) = \mu_{mg\left(\frac{x}{m}\right)-mh\left(\frac{x}{m}\right)}(m\alpha\varepsilon t) = \mu_{g\left(\frac{x}{m}\right)-h\left(\frac{x}{m}\right)}(\alpha\varepsilon t)$$
$$\geq \Phi_{\frac{x}{m},0}(\alpha t)$$
$$\geq \Phi_{x,0}(t)$$

for all  $x \in X$  and t > 0. Thus  $d^*(g, h) < \varepsilon$  implies that  $d^*(Jg, Jh) < m\alpha\varepsilon$ . This means that

$$d^*(Jg, Jh) \leq m\alpha d(g, h)$$

for all  $g, h \in S^*$ . It follows from (11) that

$$d^*(f, Jf) \leq \alpha.$$

By Theorem 2.2, there exists a mapping  $A : X \to Y$  satisfying the following: (1) A is a fixed point of J, that is,

$$A\left(\frac{x}{m}\right) = \frac{1}{m}A(x) \tag{12}$$

for all  $x \in X$ . The mapping A is a unique fixed point of J in the set

 $\Omega=\{h\in S^*:d^*\bigl(g,h\bigr)<\infty\}.$ 

This implies that A is a unique mapping satisfying (12) such that there exists  $u \in (0, \infty)$  satisfying

$$\mu_{f(x)-A(x)}(ut) \geq \Phi_{x,0}(t)$$

for all  $x \in X$  and t > 0.

(2)  $d^*(J^n f, A) \to 0$  as  $n \to \infty$ . This implies the equality

$$\lim_{n\to\infty} m^n f\left(\frac{x}{m^n}\right) = A(x)$$

for all  $x \in X$ .

(3)  $d^*(f, A) \leq \frac{d^*(f, f)}{1-m\alpha}$  with  $f \in \Omega$ , which implies the inequality

$$d^*(f,A) \le \frac{\alpha}{1-m\alpha}$$

and so

$$\mu_{f(x)-A(x)}\left(\frac{\alpha t}{1-m\alpha}\right) \geq \Phi_{x,0}(t)$$

for all  $x \in X$  and t > 0. This implies that the inequality (10) holds. On the other hand

$$\frac{\mu}{m^n f\left(\frac{mx+ny}{m^n}\right) - \frac{m^n(m+n)f\left(\frac{x+y}{m^n}\right)}{2} - \frac{m^n(m-n)f\left(\frac{x-y}{m^n}\right)}{2}(t) \ge \Phi_{\frac{x}{m^n}, \frac{y}{m^n}}\left(\frac{t}{m^n}\right)$$

for all  $x, y \in X$ , t > 0 and  $n \ge 1$  and so, from (8), it follows that

$$\Phi_{\frac{x}{m^n},\frac{y}{m^n}}\left(\frac{t}{m^n}\right) \geq \Phi_{x,y}\left(\frac{t}{m^n\alpha^n}\right).$$

Since

$$\lim_{n\to\infty} \Phi_{x,\gamma}\left(\frac{t}{m^n\alpha^n}\right) = 1$$

for all  $x, y \in X$  and t > 0, we have

$$\mu_{A(mx+ny)-}\frac{(m+n)A(x+y)}{2}-\frac{(m-n)A(x-y)}{2}(t)=1$$

for all  $x, y \in X$  and t > 0. On the other hand

$$A(mx) - mA(x) = \lim_{n \to \infty} m^n f\left(\frac{x}{m^{n-1}}\right) - m \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$$
$$= m \left[\lim_{n \to \infty} m^{n-1} f\left(\frac{x}{m^{n-1}}\right) - \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)\right]$$
$$= 0.$$

Thus the mapping  $A : X \to Y$  is additive. This completes the proof.  $\Box$ 

**Corollary 4.1**. Let X be a real normed space,  $\theta \ge 0$  and let p be a real number with p >1. Let  $f: X \rightarrow Y$  be a mapping satisfying f(0) = 0 and

$$\mu_{f(mx+ny)-\frac{(m+n)f(x+y)}{2}-\frac{(m-n)f(x-y)}{2}}(t) \ge \frac{t}{t+\theta\left(||x||^{p}+||y||^{p}\right)}$$
(13)

for all  $x, y \in X$  and t > 0. Then, for all  $x \in X$ ,

$$A(x) = \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$$

exists and  $A: X \rightarrow Y$  is a unique additive mapping such that

$$\mu_{f(x)-A(x)}(t) \ge \frac{m^p (1-m^{1-p})t}{m^p (1-m^{1-p})t + \theta ||x||^p}$$
(14)

for all  $x \in X$  and t > 0.

Proof. The proof follows from Theorem 4.1 if we take

$$\Phi_{x,y}(t) = \frac{t}{t+\theta\left(||x||^p+||y||^p\right)}$$

for all  $x, y \in X$  and t > 0. In fact, if we choose  $\alpha = m^{-p}$ , then we get the desired result.  $\Box$ 

**Theorem 4.2.** Let X be a linear space,  $(Y, \mu, T)$  a complete RN-space and  $\Phi$  a mapping from  $X^2$  to  $D^+$  ( $\Phi(x, y)$ ) is denoted by  $\Phi_{x,y}$ ) such that for some  $0 < \alpha < m$ 

$$\Phi_{\frac{x}{m'}\frac{\gamma}{m}}(t) \leq \Phi_{x,\gamma}(\alpha t)$$

for all  $x, y \in X$  and t > 0. Let  $f: X \to Y$  be a mapping satisfying f(0) = 0 and

$$\mu_{f(mx+ny)-\frac{(m+n)f(x+y)}{2}-\frac{(m-n)f(x-y)}{2}}(t) \ge \Phi_{x,y}(t)$$

for all  $x, y \in X$  and t > 0. Then, for all  $x \in X$ ,

$$A(x) := \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

exists and  $A: X \rightarrow Y$  is a unique additive mapping such that

$$\mu_{f(x)-A(x)}(t) \ge \Phi_{x,0}((m-\alpha)t) \tag{15}$$

$$\mu_{f(mx+ny)-\frac{(m+n)f(x+y)}{2}-\frac{(m-n)f(x-y)}{2}}(t) \ge \frac{t}{t+\theta\left(||x||^{p}+||y||^{p}\right)}$$

for all  $x, y \in X$  and t > 0. Then, for all  $x \in X$ ,

$$A(x) = \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

exists and  $A: X \rightarrow Y$  is a unique additive mapping such that

$$\mu_{f(x)-A(x)}(t) \geq \frac{(m-m^p)t}{(m-m^p)t+\theta||x||^p}$$

for all  $x \in X$  and t > 0.

Proof. The proof follows from Theorem 4.2 if we take

$$\Phi_{x,y}(t) = \frac{t}{t + \theta\left(||x||^p + ||y||^p\right)}$$

for all  $x, y \in X$  and t > 0. In fact, if we choose  $\alpha = m^p$ , then we get the desired result.

**Example 4.1**. Let  $(Y, \mu, T)$  be a normed complete RN-space. Let  $f : Y \to Y$  be a mapping defined by

$$f(z) = \begin{cases} z, \ z \in \{mx + ny : \ ||mx + ny|| < 1\} \cap \{x - y : \ ||x - y|| < 1\} \\ 0, \ otherwise \end{cases}$$

Then one can easily show that  $f: Y \rightarrow Y$  satisfies (4.6) for the case p = 1 and that there does not exist an additive mapping satisfying (4.7).

# 5. Fuzzy stability of the functional equation (1)

Throughout this section, using the fixed point alternative approach, we prove the Hyers-Ulam stability of the functional equation (1) in fuzzy normed spaces.

In the rest of the article, assume that X is a vector space and that (Y, N) is a fuzzy Banach space.

**Theorem 5.1**. Let  $\phi: X^2 \to [0, \infty)$  be a function such that there exists an L < 1 with

$$\varphi\left(\frac{x}{m},\frac{\gamma}{m}\right) \leq \frac{L}{m}\varphi(x,\gamma)$$

for all  $x, y \in X$ . Let  $f: X \to Y$  be a mapping satisfying f(0) = 0 and

$$N\left(f(mx+ny) - \frac{(m+n)f(x+y)}{2} - \frac{(m-n)f(x-y)}{2}, t\right) \ge \frac{t}{t+\varphi(x,y)}$$
(16)

for all  $x, y \in X$  and all t > 0. Then the limit

$$A(x) := N - \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$$

exists for each  $x \in X$  and defines a unique additive mapping  $A : X \to Y$  such that

$$N(f(x) - A(x), t) \ge \frac{(m - mL)t}{(m - mL)t + L\varphi(x, 0)}$$

for all  $x, y \in X$  and all t > 0.

*Proof.* Putting y = 0 in (16) and replacing x by  $\frac{x}{m}$ , we have

$$N\left(mf\left(\frac{x}{m}\right)-f(x),t\right)\geq\frac{t}{t+\varphi\left(\frac{x}{2},0\right)}$$

for all  $x \in X$  and t > 0. Consider the set

 $s^{**} := \{g : X \to Y, g(0) = 0\}$ 

and the generalized metric  $d^{**}$  in  $S^{**}$  defined by

$$d^{**}(f,g) = \inf \left\{ \mu \in \mathbb{R}^+ : N(g(x) - h(x), \mu t) \ge \frac{t}{t + \varphi(x,0)}, \quad \forall x \in X, \ t > 0 \right\},$$

where  $\inf \emptyset = +\infty$ . It is easy to show that  $(S^{**}, d^{**})$  is complete (see [[22], Lemma 2.1]).

Now, we consider a linear mapping  $J: S^{**} \to S^{**}$  such that

$$Jg(x) := mg\left(\frac{x}{m}\right)$$

for all  $x \in X$ .

The rest of the proof is similar to the proof of Theorem 4.1.  $\Box$ 

**Corollary 5.1.** Let  $\theta \ge 0$  and let p be a real number with p > 1. Let X be a normed vector space with norm  $|| \cdot ||$ . Let  $f : X \to Y$  be a mapping satisfying f(0) = 0 and

$$N\left(f(mx+ny) - \frac{(m+n)f(x+y)}{2} - \frac{(m-n)f(x-y)}{2}, t\right) \ge \frac{t}{t+\theta\left(||x||^p + ||y||^p\right)} (17)$$

for all  $x, y \in X$  and all t > 0. Then

$$A(x) := N - \lim_{n \to \infty} m^n f\left(\frac{x}{m^n}\right)$$

exists for each  $x \in X$  and defines an additive mapping  $A : X \to Y$  such that

$$N(f(x) - A(x), t) \ge \frac{(m^{p+1} - m^2)t}{(m^{p+1} - m^2)t + m\theta ||x||^p}.$$
(18)

Proof. The proof follows from Theorem 5.1 by taking

 $\varphi(x, y) := \theta(||x||^p + ||y||^p)$ 

for all  $x, y \in X$ . Then we can choose  $L = m^{1-p}$  and we get the desired result.  $\Box$ **Theorem 5.2.** Let  $\phi : X^2 \to [0, \infty)$  be a function such that there exists an L < 1 with

 $\varphi(mx, my) \leq mL\varphi(x, y)$ 

for all  $x, y \in X$ . Let  $f: X \to Y$  be a mapping satisfying f(0) = 0 and

$$N\left(f(mx+ny)-\frac{(m+n)f(x+y)}{2}-\frac{(m-n)f(x-y)}{2},t\right)\geq\frac{t}{t+\phi(x,y)}$$

Page 13 of 14

for all  $x, y \in X$  and all t > 0. Then the limit

$$R(x) := N - \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

exists for each  $x \in X$  and defines an additive mapping  $A : X \to Y$  such that

$$N(f(x) - A(x), t) \ge \frac{(m - mL)t}{(m - mL)t + \varphi(x, 0)}$$

for all  $x, y \in X$  and all t > 0.

*Proof.* The proof is similar to that of the proofs of Theorems 4.1 and 5.1.  $\Box$ 

**Corollary 5.2.** Let  $\theta \ge 0$  and let p be a real number with  $0 . Let X be a normed vector space with norm <math>|| \cdot ||$ . Let  $f : X \to Y$  be a mapping satisfying f(0) = 0 and

$$N\left(f(mx+ny) - \frac{(m+n)f(x+y)}{2} - \frac{(m-n)f(x-y)}{2}, t\right) \ge \frac{t}{t+\theta\left(||x||^p + ||y||^p\right)}$$

for all  $x, y \in X$  and all t > 0. Then the limit

$$A(x) := N - \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

exists for each  $x \in X$  and defines a unique additive mapping  $A : X \to Y$  such that

$$N(f(x) - A(x), t) \geq \frac{(m - m^p)t}{(m - m^p)t + \theta ||x||^p}.$$

Proof. The proof follows from Theorem 5.2 by taking

 $\varphi(x, \gamma) := \theta(||x||^p + ||\gamma||^p)$ 

for all *x*, *y*,  $z \in X$ . Then we can choose  $L = m^{p-1}$  and we get the desired result.  $\Box$ 

**Example 5.1.** Let (Y, N) be a normed fuzzy Banach space. Let  $f : Y \to Y$  be a mapping defined by

$$f(z) = \begin{cases} z, \ z \in \{mx + ny : \| \ mx + ny \| < 1\} \cap \{x - y : \| \ x - y \| < 1\} \\ 0, \ otherwise \end{cases}$$

Then one can easily show that  $f: Y \rightarrow Y$  satisfies (5.2) for the case p = 1 and that there does not exist an additive mapping satisfying (5.3).

# 6. Conclusion

We linked here five different disciplines, namely, the random normed spaces, non-Archimedean normed spaces, fuzzy normed spaces, functional equations, and fixed point theory. We established the Hyers-Ulam stability of the functional equation (1) in various normed spaces by using fixed point method.

#### Acknowledgements

#### Author details

The second author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0013211).

<sup>&</sup>lt;sup>1</sup>Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran <sup>2</sup>Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea <sup>3</sup>Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

#### Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Received: 2 June 2011 Accepted: 25 October 2011 Published: 25 October 2011

#### References

- 1. Ulam, SM: Problems in Modern Mathematics. John Wiley and Sons, Science (1964)
- Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222–224 (1941). doi:10.1073/ pnas.27.4.222
- Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
- Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl. 184, 431–436 (1994). doi:10.1006/jmaa.1994.1211
- Skof, F: Local properties and approximation of operators. Rend Sem Mat Fis Milano. 53, 113–129 (1983). doi:10.1007/ BF02924890
- Cholewa, PW: Remarks on the stability of functional equations. Aequationes Math. 27, 76–86 (1984). doi:10.1007/ BF02192660
- 7. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ (2002)
- Kenary, HA: The probabilistic stability of a Pexiderial functional equation in random normed spaces. Rend Del Circolo Math Di Palermo. (to appear)
- Kenary, HA, Shafaat, Kh, Shafei, M, Takbiri, G: Hyers-Ulam-Rassias stability of the Appollonius quadratic mapping in RNspaces. J Nonlinear Sci Appl. 4, 110–119 (2011)
- 10. Park, C, Moradlou, F: Stability of homomorphisms and derivations on C\*-ternary rings. Taiwan J Math. 13, 1985–1999 (2009)
- 11. Saadati, R, Vaezpour, M, Cho, Y: A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces". J Inequal Appl 2009 (2009). Article ID 214530
- Saadati, R, Zohdi, MM, Vaezpour, SM: Nonlinear *L*-random stability of an ACQ functional equation. J Inequal Appl 2011 (2011). Article ID 194394
- 13. Kenary, HA: On the Hyers-Ulam-Rassias stability of a functional equation in non-Archimedean and random normed spaces. Acta Universitatis Apulensis. (to appear)
- 14. Hensel, K: Ubereine news Begrundung der Theorie der algebraischen Zahlen. Jahresber Deutsch Math Verein. 6, 83–88 (1897)
- Schewizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland, New York (1983)
- 16. Sherstnev, AN: On the notion of a random normed space. Dokl Akad Nauk SSSR 149, 280–283 (1963). (in Russian)
- 17. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math. 11, 687–705 (2003)
- Mirmostafaee, AK, Mirzavaziri, M, Moslehian, MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 159, 730–738 (2008). doi:10.1016/j.fss.2007.07.011
- 19. Bag, T, Samanta, SK: Fuzzy bounded linear operators. Fuzzy Sets Syst. 151, 513–547 (2005). doi:10.1016/j.fss.2004.05.004
- Diaz, J, Margolis, B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull Am Math Soc. 74, 305–309 (1968). doi:10.1090/S0002-9904-1968-11933-0
- 21. Cădariu, L, Radu, V: Fixed points and the stability of Jensen's functional equation. J Inequal Pure Appl Math 4 (2003). Art ID 4
- 22. Mihet, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl. 343, 567–572 (2008)

#### doi:10.1186/1687-1812-2011-67

Cite this article as: Kenary *et al.*: A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces. *Fixed Point Theory and Applications* 2011 2011:67.

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

#### Submit your next manuscript at > springeropen.com