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Abstract

In this article, we obtain some new fixed point theorems for set-valued contractions
in complete metric spaces. Our results generalize or improve many recent fixed point
theorems in the literature.
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1 Introduction and preliminaries
Let (X, d) be a metric space, D a subset of X and f: D — X be a map. We say fis con-
tractive if there exists o € [0, 1) such that for all x, y € D,

d(fx fy) < e - d(x,y).

The well-known Banach’s fixed point theorem asserts that if D = X, f'is contractive
and (X, d) is complete, then f has a unique fixed point in X. It is well known that the
Banach contraction principle [1] is a very useful and classical tool in nonlinear analysis.
Also, this principle has many generalizations. For instance, a mapping f: X — X is
called a quasi-contraction if there exists k < 1 such that

d(fx, fy) < k- max{d(x, ), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}

for any x, y € X. In 1974, C’iric’ [2] introduced these maps and proved an existence
and uniqueness fixed point theorem.

Throughout we denote the family of all nonempty closed and bounded subsets of X
by CB(X). The existence of fixed points for various multi-valued contractive mappings
had been studied by many authors under different conditions. In 1969, Nadler [3]
extended the famous Banach Contraction Principle from single-valued mapping to
multi-valued mapping and proved the below fixed point theorem for multi-valued
contraction.

Theorem 1 [3]Let (X, d) be a complete metric space and T : X — CB(X). Assume
that there exists c € [0, 1) such that

H(Tx, Ty) <cd(x,y) forallx,yeX,

where Hdenotes the Hausdorff metric on CB(X) induced by d, that is, H(A, B) = max
{supxe uD(x, B), sup,e gD(y, A)}, for all A, B e CB(X) and D(x, B) = inf gd(x, z). Then,
T has a fixed point in X.
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In 1989, Mizoguchi-Takahashi [4] proved the following fixed point theorem.
Theorem 2 [4]Let (X, d) be a complete metric space and T : X — CB(X). Assume
that

H(Tx, Ty) < £(d(x,y)) - d(x,y)

for all x, y € X, where & : [0, ) — [0, 1) satisfies limsup,_,.£(s) < lfor all t € [0,
o). Then, T has a fixed point in X.

In the recent, Amini-Harandi [5] gave the following fixed point theorem for set-
valued quasi-contraction maps in metric spaces.

Theorem 3 [5]Let (X, d) be a complete metric space. Let T : X — CB(X) be a k-set-

valued quasi-contraction with k < ;, that is,
H(Tx, Ty) < k- max{(x, y), D(x, Tx), D(y, Ty), D(x, Ty)), D(y, Tx)}

forany x, y € X. Then, T has a fixed point in X.

2 Fixed point theorem (I)
In this section, we assume that the function y : R*> — R* satisfies the following
conditions:

(C1) w is a strictly increasing, continuous function in each coordinate, and

(C2) forall te RY, w(t, t, t, 0, 2t) <t, w(t, ¢, ¢, 2t, 0) <t, w(0, 0, ¢, ¢, 0) <t and w(t, 0, 0,
£ t) <t.

Definition 1 Let (X, d) be a metric space. The set-valued map T : X — X is said to
be a set-valued y-contraction, if

H(Tx, Ty) < ¥ (d(x,y), D(x, Tx), D(y, Ty), D(x, Ty)), D(y, Tx))

forall x,y e X.

We now state the main fixed point theorem for a set-valued y-contraction in metric
spaces, as follows:

Theorem 4 Let (X, d) be a complete metric space. Let T : X — CB(X) be a set-valued
w-contraction. Then, T has a fixed point in X.

Proof. Note that for each A, Be CB(X), a € A and y > 0 with H(A, B) < y, there
exists b € B such that d(a, b) <y. Since T : X — CB(X) is a set-valued y-contraction,
we have

H(Tx, Ty) < ¥ (d(x,y), D(x, Tx), D(y, Ty), D(x, Ty)), D(y, Tx))

for all x, y € X. Suppose that xy € X and that x; € X. Then, by induction and by the
above observation, we can find a sequence {x,} in X such that x,,, € Tx, and for each
ne N,
A(xne1, Xn) < Y (d(%n, Xn-1), D(xn, Txn), D(xn-1, Txtn—1), D(%n, Txn—1), D(xtn—1, Tx4))
< I//(d(xnr Xn—1 )/ d(xnr Xn+1 )r d(xn—lr xn)/ d(-xn/ xn)r d(xn—lr Xn+1 ))
=< Ill(d(xn/ xn—l): d(xnr xn+1)r d(xn—l:xn)/ Or d(xn—lrxn) + d(xnr xn+1))/
and hence, we can deduce that for each n € N,

d(xn+1 , xn) =< d(xn/ Xn—1 )

Let we denote c,, = d(x,,.1, x,,). Then, ¢, is a non-increasing sequence and bounded
below. Thus, it must converges to some ¢ > 0. If ¢ > 0, then by the above inequalities,
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we have
C=Cp1 = 1/f(‘:nr Cns Cns 0, 2611)«
Passing to the limit, as # — oo, we have
c<c<vy(ccc0,2) <c
which is a contradiction. Hence, ¢ = 0.

We next claim that the following result holds:
for each y > 0, there is 1¢(y) € N such that for all m >n >ny(y),

A(xm, xn) < y. (%)

We shall prove (*) by contradiction. Suppose that (*)is false. Then, there exists some
y > 0 such that for all k € N, there exist my, n, € N with my >n; > k satistying:

(1) my is even and ny is odd;
(2) d(xmk’xnk) =Y
(3) my is the smallest even number such that the conditions (1), (2) hold.

Since ¢, ™ 0, by (2), we have limy_, cod(Xpm,, Xn,) = ¥ and

Y =< d(xmk/ xn;,) =< H(Txmkfl/ Txnkfl)
< Y (d(®m—1, Xn,—1), d(Xm—1, Xm, ) A(Xn,—1, Xy ), A —1, Xy ), A(Xn,—1, Xm, )

< Y (Cmp—1 + A(Xmys Xn,) + Cr—1/ Cmp—1/ Cri—1+ Cm—1 + A(Xmy,r Xy )r (X Xy, ) + Crp—1))-
Letting kK — co. Then, we get
Yy = I/f()/rol 0,v, V) <YV

a contradiction. It follows from (*) that the sequence {x,} must be a Cauchy
sequence.
Similarly, we also conclude that for each n € N,

A(%n, xns1) < Y (d(%n—1,%n), D(xn—1, Txn—1), D(xn, Txn), D(Xn—1, Txn), D(xn, Txn—1))
= I//(d(xn—lz xn)r d(xn—lr xn)r d(xn/ xn+1)/ d(xn—l ’ xn+1)/ d(xnz xn))
= l//(d(xn—lz xn): d(xn/ Xn+1 )/ d(xn—ll xn)z d(xn—lz xn) + d(xn/ Xn+l )/ O)/

and hence, we have that for each n e N,
d(xnr Xn+1 ) = d(xn—lz xn)-

Let we denote b, = d(x,,, x,,,,1). Then, b, is a non-increasing sequence and bounded
below. Thus, it must converges to some b = 0. If b > 0, then by the above inequalities,

we have
b < bu.1 < Y (by, bn, by, 2by, 0).
Passing to the limit, as # — oo, we have
b<b<v(bbb2b0)<b,

which is a contradiction. Hence, b = 0. By the above argument, we also conclude that

{x,} is a Cauchy sequence.
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Since X is complete, there exists 4 € X such that lim,,_,..x,, = y. Therefore,
D(MI TM) = llm D(‘xn+ll T#’)
n—oo
< lim H(Tx, Ti)
n— 00
S TllLIIgO I//(d(xnr /1/)/ D(xn/ Txn)/ D(I'LI T/'L)/ D(xnr TM)! D(/'L! Txn))
=< YIILIEO 1/f(d(xn/ M)/ d(xnr Xn+1 )r D(pL, T,LL), D(xn/ T,LL), d(u, Xn+1 ))

< (0,0,D(u, Ti), D(p, Tie), 0)
< D(u, Tp),

and hence, D(u, Tu) = 0, that is, u € Ty, since Ty is closed.

3 Fixed point theorem (lI)
In 1972, Chatterjea [6] introduced the following definition.

Definition 2 Let (X, d) be a metric space. A mapping f: X — X is said to be a C-con-
traction if there exists « € (0, ;)such that for all x, y € X, the following inequality
holds:

d(fx, fy) < o - (d(x fy) + d(y. fx)).

Choudhury [7] introduced a generalization of C-contraction, as follows:
Definition 3 Let (X, d) be a metric space. A mapping f: X — X is said to be a
weakly C-contraction if for all x, y € X,

d(fx. fy) = ;(d(x,fy) +d(y, fx) — ¢(d(x, fy). d(y. fx))),

where @ : R*> — R* is a continuous function such that y(x, y) = 0 if and only ifx = y = 0.

In [6,7], the authors proved some fixed point results for the C-contractions. In this
section, we present some fixed point results for the weakly y-C-contraction in com-
plete metric spaces.

Definition 4 Let (X, d) be a metric space. The set-valued map T : X — X is said to
be a set-valued weakly y-C-contraction, if for all x, y e X

H(Tx, Ty) = ¥ ([D(x, Ty) + D(y, Tx) — ¢(D(x, Ty), D(y, Tx))]),

where

(1) y : R* — R is a strictly increasing, continuous function with ¥ (t) < }tfor all ¢ >
0 and w(0) = 0;

(2) ¢ : R** > R* is a strictly decreasing, continuous function in each coordinate, such
that @(x, y) = 0 if and only if x =y = 0 and @(x, y) <x + y for all x, y e R".

Theorem 5 Let (X, d) be a complete metric space. Let T : X — CB(X) be a set-valued
weakly C-contraction. Then, T has a fixed point in X.

Proof. Note that for each A, Be CB(X), a € A and y > 0 with H(A, B) < y, there
exists b € B such that d(a, b) <. Since T': X — CB(X) be a set-valued weakly y-C-con-
traction, we have that

H(Tx, Ty) < ¢ ([D(x, Ty) + D(y, Tx) — ¢(D(x, Ty), D(y, Tx))])

for all x, y € X. Suppose that xy € X and that x; € X. Then, by induction and by the
above observation, we can find a sequence {x,} in X such that x,,, € Tx, and for each
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ne N,

A(xne1,%n) < H(Txn, Txn—1)
< Y (IDCon, Txu1) + D(n1, Txn) = $(D(n, Ta—1), D(xa—1, Txa))])
< Y ([d(xn, xn) + d(xXn—1, %ns1) — G(d(Xn, Xn), d(Xn—1, Xn+1))])
=¥ ([0 +d(xn—1,%ns1) — (0, d(xn—1,%n+1))])
< Y ([d(Xn—1,%n) + d(xn, Xns1)])

1
= 5 [d(xn—1,%n) + d(Xn, Xns1)],

and hence, we deduce that for each n € N,
d(xn+1 ’ xn) =< d(xnr Xn—1 )

Thus, {d(x,.1, x,)} is non-increasing sequence and bounded below and hence it is
convergent. Let lim,, ,.d(x,.1, x,) = & Letting n — o in (**), we have

& = lim d(xys1,%,) < lim ¥ ([d(xn—1, Xne1)])
1
< lim 2[d(xn—1rxn+l)]
1
< lim 2[d(xn71rxn) +d(xnrxn+1)]
< 1 =
) [S + ‘i:] - gl
that is,

lim d(xn,l,xml) = 22;'.
n—00

By the continuity of w and @, letting n — o in (**), we have
1
§=v(25-9¢(0,2)) <& - 9 -¢(0,25) <¢&.

Hence, we have (0, 2¢) = 0, that is, & = 0. Thus, lim,, ,..d(x,,,1, x,,) = 0.
We next claim that the following result holds:
for each y > 0, there is 1ny(y) € N such that for all m >n >ny(y),

A(xm, xn) < y. (k% %)

We shall prove (***) by contradiction. Suppose that (***) is false. Then, there exists
some ¥ > 0 such that for all k€ N, there exist my, n, € N with my >n; 2 k satistying:

(1) my is even and ny is odd;
(2) d(xmklx‘ﬂk) 2 V;
(3) my is the smallest even number such that the conditions (1), (2) hold.

Since d(x,,,1, x,) ~ 0, by (2), we have limy_, ood(Xpm,, X, ) = ¥ and

Y < d(xm, Xn) < H(Txm—1, Txn,—1)
< Y ([D(xmy—1, Ton,—1) + D(xn—1, Totmy—1) — & (D (my—1, Txn—1), D(Xn—1, Tty —1)) 1)
= 1//([d(xm;ﬁlf x"k) + d(xmﬁl' xmk) - ¢(d(xmh*1’ xnk)' d(x"lﬁll Txmk))])-

Since

d(xmk—l’ xnk) + d(x”k—l’ xmk) = d(xmh—l’ xmk) + d(xmk’ x”h) + d(xnk’ xmk) + d(xﬂk—lf x"k)'
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letting k — oo, then we get
y=vQy-9ov.v))=v

and hence, ¢(3, 7)) = 0. By the definition of ¢, we get ¥ = 0, a contradiction. This
proves that the sequence {x,} must be a Cauchy sequence.
Since X is complete, there exists z € X such that lim,, ,..x,, = z. Therefore,

D(z,Tz) = nlgIQlQ D(xp41, T2)

< lim H(Txy, Tz)

n—oo

< nlLHgO Y ([D(xn, Tz) + D(z, Txy) — ¢(D(xn, T2), D(2, Txn))])
< rllgr()lo Y ([D(xn, T2) + d(z, Xps1) — (D (xn, T2), d(2, Xn41))])

1
< D(zT:
=, (z, Tz)
and hence, D(z, Tz) = 0, that is, z € Tz, since Tz is closed.

4 Fixed point theorem (lll)
In this section, we recall the notion of the Meir-Keeler type function (see [8]). A func-
tion ¢ : R* — R" is said to be a Meir-Keeler type function, if for each 1 > 0, there
exists 0 > 0 such that for £ € R™ with 1 < ¢t <1 + J, we have ¢(¢) <n. We now intro-
duce the new notions of the weaker Meir-Keeler type function ¢ : R* — R" in a metric
space and the ¢-function using the weaker Meir-Keeler type function, as follow:

Definition 5 Let (X, d) be a metric space. We call ¢ : R* — R" a weaker Meir-Keeler
type function, if for each 1 > 0, there exists 6 > 0 such that for x, y € X with n < d(x, y)
<0 + 1, there exists ng € N such that " (d(x,y)) < yy.

Definition 6 Let (X, d) be a metric space. A weaker Meir-Keeler type function ¢ ; R*
— R" is called a ¢-function, if the following conditions hold:

(01) $(0) = 0, 0 <(t) <t for all ¢ > 0;

(92) ¢ is a strictly increasing function;

(¢3) for each t € R, {¢"(t)},en is decreasing

(p4) for each t, € R*\ ({0}, if lim,,_,..t,, = ¥ > 0, then lim,,_,..4(¢,) <)%

(¢s) for each t, € R, iflim,_,.t, = 0, then lim,_,..¢(¢t,) = 0.

Definition 7 Let (X, d) be a metric space. The set-valued map T : X — X is said to
be a set-valued weaker Meir-Keeler type ¢-contraction, if

H(s 1) < ¢ 4D 1)+ D, T )

forall x,y e X.

We now state the main fixed point theorem for a set-valued weaker Meir-Keeler type
w-contraction in metric spaces, as follows:

Theorem 6 Let (X, d) be a complete metric space. Let T : CB(X) be a set-valued
weaker Meir-Keeler type y-contraction. Then, T has a fixed point in X.

Proof. Note that for each A, Be CB(X), a € A and y > 0 with H(A, B) < y, there
exists b € B such that d(a, b) <v. Since T : X — CB(X) be a set-valued y-contraction,
we have that

H(x 1) < o (D6 1) + D0 1)1
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for all x, y € X. Suppose that xy € X and that x; € X. Then, by induction and by the
above observation, we can find a sequence {x,} in X such that x,,; € Tx, and for each
ne N,

1

d(xn+11xn) < (2

[D(xn, Txp—1) + D(xp—1, Tx,,)])
=9 (; [d(xnr xn) + d(xnlrxml)])
=9 (; [d(xnflrxn) + d(xnr xn+l)]) ,

and by the conditions (¢;) and (¢,), we can deduce that for each n € N,
d(xps1,%n) < @(d(xn, Xn—1)) < d(%Xn, Xn—1)

and
d(xne1,xn) < @(d(xn, Xp-1)) < -+ < ¢"(d(x1,%0)).

By the condition (¢3), {¢"(d(x0, x1))},.en is decreasing, it must converges to some 1 >
0. We claim that 17 = 0. On the contrary, assume that 7 > 0. Then, by the definition of
the weaker Meir-Keeler type function, there exists J > 0 such that for xy, x; € X with
N < d(xg, x,) <0 + 7, there exists 1, € N such that 9™ (d(xg,x1)) < 1. Since lim,,_,..¢"
(d(xo, x1)) = M, there exists my € N such that 11 < ¢"(d(xo, x1)) <6 + 7, for all m > m,,.
Thus, we conclude that ¢™*" (d(xp,x1)) < n. Hence, we get a contradiction. Hence,
lim,,_,..¢"(d(xo, x1)) = 0, and hence, lim,,_,..d(x,, x,,1) = 0.

Next, we let ¢, = d(x,,, x,,,1), and we claim that the following result holds:

for each ¢ > 0, there is ny(¢) € N such that for all m , n > ny(e),

A(Xm, Xme1) < & (k% k)
We shall prove (****) by contradiction. Suppose that (****) is false. Then, there exists

some ¢ > 0 such that for all p € N, there are m,, n, € N with m, >n, > p satisfying:

(i) m, is even and #, is odd,
(ii) d(xm,, xn,) > €, and

(iii) 1, is the smallest even number such that the conditions (i), (ii) hold.

Since ¢,, ™ 0, by (ii), we have limy, od(xm,, Xn,) = €, and

& < d(xm,, xn,)

< H(Txm,~1, Txn,-1)

1

=¢ (2 [D(xm,—1, Txn,—1) + D(xn,—1, Txmpl)])
1

=9 (2 [d(xmp—llxnp) + d(xnp—lzxmp)])

1
< <2 [d(xm,—1, Xm,) + 2d(xn,, Xm,) + d(xnp_l,xnp)]> .
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Letting p — <. By the condition (¢,), we have

, 1
e < limg (2 [d(xm, 1, %m, ) + 2d(xn,, Xm, ) +d(x,,p_1,xnp)]> <&

a contradiction. Hence, {x,} is a Cauchy sequence. Since (X, d) is a complete metric

space, there exists 4 € X such that limn—eox,,,; = p. Therefore,

D(M/ T:u“) = nlglgo D(xn+lr Tlu)
lim H(Txp, Tie)
n—oo

IA

IA

lim ¢ ( 1D, Ty0)) + (s, Txn))

IA

tim o (5 1DG5 )+ dl 300

A

1
D(p, T),
_2(M ©)

and hence, D(y, Ty) = 0, that is, y € Ty, since Ty is closed.
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