RESEARCH Open Access

Some new fixed point theorems for set-valued contractions in complete metric spaces

Chi-Ming Chen

Correspondence: ming@mail.nhcue. edu.tw Department of Applied Mathematics, National Hsinchu University of Education, Taiwan

Abstract

In this article, we obtain some new fixed point theorems for set-valued contractions in complete metric spaces. Our results generalize or improve many recent fixed point theorems in the literature.

MSC: 47H10, 54C60, 54H25, 55M20.

Keywords: fixed point theorem, set-valued contraction

1 Introduction and preliminaries

Let (X, d) be a metric space, D a subset of X and $f: D \to X$ be a map. We say f is contractive if there exists $\alpha \in [0, 1)$ such that for all $x, y \in D$,

$$d(fx, fy) \leq \alpha \cdot d(x, y).$$

The well-known Banach's fixed point theorem asserts that if D=X, f is contractive and (X,d) is complete, then f has a unique fixed point in X. It is well known that the Banach contraction principle [1] is a very useful and classical tool in nonlinear analysis. Also, this principle has many generalizations. For instance, a mapping $f:X\to X$ is called a quasi-contraction if there exists k<1 such that

$$d(fx, fy) \le k \cdot \max\{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)\}$$

for any $x, y \in X$. In 1974, C'iric' [2] introduced these maps and proved an existence and uniqueness fixed point theorem.

Throughout we denote the family of all nonempty closed and bounded subsets of X by CB(X). The existence of fixed points for various multi-valued contractive mappings had been studied by many authors under different conditions. In 1969, Nadler [3] extended the famous Banach Contraction Principle from single-valued mapping to multi-valued mapping and proved the below fixed point theorem for multi-valued contraction.

Theorem 1 [3]Let (X, d) be a complete metric space and $T: X \to CB(X)$. Assume that there exists $c \in [0, 1)$ such that

$$\mathcal{H}(Tx, Ty) \le cd(x, y)$$
 for all $x, y \in X$,

where \mathcal{H} denotes the Hausdorff metric on CB(X) induced by d, that is, $H(A, B) = \max \{\sup_{x \in A} D(x, B), \sup_{y \in B} D(y, A)\}$, for all $A, B \in CB(X)$ and $D(x, B) = \inf_{z \in B} d(x, z)$. Then, T has a fixed point in X.

In 1989, Mizoguchi-Takahashi [4] proved the following fixed point theorem.

Theorem 2 [4]Let (X, d) be a complete metric space and $T: X \to CB(X)$. Assume that

$$\mathcal{H}(Tx, Ty) \leq \xi(d(x, y)) \cdot d(x, y)$$

for all $x, y \in X$, where $\xi : [0, \infty) \to [0, 1)$ satisfies $\limsup_{s \to t^+} \xi(s) < 1$ for all $t \in [0, \infty)$. Then, T has a fixed point in X.

In the recent, Amini-Harandi [5] gave the following fixed point theorem for setvalued quasi-contraction maps in metric spaces.

Theorem 3 [5]Let (X, d) be a complete metric space. Let $T: X \to CB(X)$ be a k-set-valued quasi-contraction with $k < \frac{1}{2}$, that is,

$$\mathcal{H}(Tx, Ty) \le k \cdot \max\{(x, y), D(x, Tx), D(y, Ty), D(x, Ty)\}, D(y, Tx)\}$$

for any $x, y \in X$. Then, T has a fixed point in X.

2 Fixed point theorem (I)

In this section, we assume that the function $\psi : \mathbb{R}^{+5} \to \mathbb{R}^+$ satisfies the following conditions:

- (C1) ψ is a strictly increasing, continuous function in each coordinate, and
- (C2) for all $t \in \mathbb{R}^+$, $\psi(t, t, t, 0, 2t) < t$, $\psi(t, t, t, 2t, 0) < t$, $\psi(0, 0, t, t, 0) < t$ and $\psi(t, 0, 0, t, t) < t$.

Definition 1 Let (X, d) be a metric space. The set-valued map $T: X \to X$ is said to be a set-valued ψ -contraction, if

$$\mathcal{H}(Tx, Ty) \le \psi(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty)), D(y, Tx))$$

for all $x, y \in X$.

We now state the main fixed point theorem for a set-valued ψ -contraction in metric spaces, as follows:

Theorem 4 Let (X, d) be a complete metric space. Let $T: X \to CB(X)$ be a set-valued ψ -contraction. Then, T has a fixed point in X.

Proof. Note that for each $A, B \in CB(X)$, $a \in A$ and $\gamma > 0$ with $\mathcal{H}(A, B) < \gamma$, there exists $b \in B$ such that $d(a, b) < \gamma$. Since $T : X \to CB(X)$ is a set-valued ψ -contraction, we have

$$\mathcal{H}(Tx, Ty) \leq \psi(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty)), D(y, Tx))$$

for all $x, y \in X$. Suppose that $x_0 \in X$ and that $x_1 \in X$. Then, by induction and by the above observation, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$ and for each $n \in \mathbb{N}$,

$$d(x_{n+1}, x_n) \leq \psi(d(x_n, x_{n-1}), D(x_n, Tx_n), D(x_{n-1}, Tx_{n-1}), D(x_n, Tx_{n-1}), D(x_{n-1}, Tx_n))$$

$$\leq \psi(d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_n, x_n), d(x_{n-1}, x_{n+1}))$$

$$\leq \psi(d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n), 0, d(x_{n-1}, x_n) + d(x_n, x_{n+1})),$$

and hence, we can deduce that for each $n \in \mathbb{N}$,

$$d(x_{n+1}, x_n) \leq d(x_n, x_{n-1}).$$

Let we denote $c_m = d(x_{m+1}, x_m)$. Then, c_m is a non-increasing sequence and bounded below. Thus, it must converges to some $c \ge 0$. If c > 0, then by the above inequalities,

we have

$$c \leq c_{n+1} \leq \psi(c_n, c_n, c_n, 0, 2c_n).$$

Passing to the limit, as $n \to \infty$, we have

$$c \le c \le \psi(c, c, c, 0, 2c) < c$$

which is a contradiction. Hence, c = 0.

We next claim that the following result holds:

for each $\gamma > 0$, there is $n_0(\gamma) \in \mathbb{N}$ such that for all $m > n > n_0(\gamma)$,

$$d(x_m, x_n) < \gamma$$
. (*)

We shall prove (*) by contradiction. Suppose that (*)is false. Then, there exists some $\gamma > 0$ such that for all $k \in \mathbb{N}$, there exist m_k , $n_k \in \mathbb{N}$ with $m_k > n_k \ge k$ satisfying:

- (1) m_k is even and n_k is odd;
- (2) $d(x_{m_k}, x_{n_k}) \geq \gamma$;
- (3) m_k is the smallest even number such that the conditions (1), (2) hold.

Since $c_m \searrow 0$, by (2), we have $\lim_{k\to\infty} d(x_{m_k}, x_{n_k}) = \gamma$ and

$$\gamma \leq d(x_{m_k}, x_{n_k}) \leq \mathcal{H}(Tx_{m_k-1}, Tx_{n_k-1})
\leq \psi(d(x_{m_k-1}, x_{n_k-1}), d(x_{m_k-1}, x_{m_k}), d(x_{n_k-1}, x_{n_k}), d(x_{m_k-1}, x_{n_k}), d(x_{n_k-1}, x_{m_k}))
\leq \psi(c_{m_k-1} + d(x_{m_k}, x_{n_k}) + c_{n_k-1}, c_{m_k-1}, c_{n_k-1}, c_{m_k-1} + d(x_{m_k}, x_{n_k}), d(x_{m_k}, x_{n_k}) + c_{n_k-1})).$$

Letting $k \to \infty$. Then, we get

$$\gamma \leq \psi(\gamma, 0, 0, \gamma, \gamma) < \gamma$$

a contradiction. It follows from (*) that the sequence $\{x_n\}$ must be a Cauchy sequence.

Similarly, we also conclude that for each $n \in \mathbb{N}$,

$$d(x_n, x_{n+1}) \leq \psi(d(x_{n-1}, x_n), D(x_{n-1}, Tx_{n-1}), D(x_n, Tx_n), D(x_{n-1}, Tx_n), D(x_n, Tx_{n-1}))$$

$$\leq \psi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1}), d(x_n, x_n))$$

$$\leq \psi(d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0),$$

and hence, we have that for each $n \in \mathbb{N}$,

$$d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n).$$

Let we denote $b_m = d(x_m, x_{m+1})$. Then, b_m is a non-increasing sequence and bounded below. Thus, it must converges to some $b \ge 0$. If b > 0, then by the above inequalities, we have

$$b \leq b_{n+1} \leq \psi(b_n, b_n, b_n, 2b_n, 0).$$

Passing to the limit, as $n \to \infty$, we have

$$b \le b \le \psi(b, b, b, 2b, 0) < b$$

which is a contradiction. Hence, b = 0. By the above argument, we also conclude that $\{x_n\}$ is a Cauchy sequence.

Since *X* is complete, there exists $\mu \in X$ such that $\lim_{n\to\infty} x_n = \mu$. Therefore,

$$D(\mu, T\mu) = \lim_{n \to \infty} D(x_{n+1}, T\mu)$$

$$\leq \lim_{n \to \infty} \mathcal{H}(Tx_n, T\mu)$$

$$\leq \lim_{n \to \infty} \psi(d(x_n, \mu), D(x_n, Tx_n), D(\mu, T\mu), D(x_n, T\mu), D(\mu, Tx_n))$$

$$\leq \lim_{n \to \infty} \psi(d(x_n, \mu), d(x_n, x_{n+1}), D(\mu, T\mu), D(x_n, T\mu), d(\mu, x_{n+1}))$$

$$\leq \psi(0, 0, D(\mu, T\mu), D(\mu, T\mu), 0)$$

$$< D(\mu, T\mu),$$

and hence, $D(\mu, T\mu) = 0$, that is, $\mu \in T\mu$, since $T\mu$ is closed.

3 Fixed point theorem (II)

In 1972, Chatterjea [6] introduced the following definition.

Definition 2 Let (X, d) be a metric space. A mapping $f: X \to X$ is said to be a C-contraction if there exists $\alpha \in (0, \frac{1}{2})$ such that for all $x, y \in X$, the following inequality holds:

$$d(fx, fy) \le \alpha \cdot (d(x, fy) + d(y, fx)).$$

Choudhury [7] introduced a generalization of C-contraction, as follows:

Definition 3 Let (X, d) be a metric space. A mapping $f: X \to X$ is said to be a weakly C-contraction if for all $x, y \in X$,

$$d(fx, fy) \le \frac{1}{2}(d(x, fy) + d(y, fx) - \phi(d(x, fy), d(y, fx))),$$

where $\varphi : \mathbb{R}^{+2} \to \mathbb{R}^+$ is a continuous function such that $\psi(x, y) = 0$ if and only if x = y = 0. In [6,7], the authors proved some fixed point results for the \mathcal{C} -contractions. In this section, we present some fixed point results for the weakly ψ - \mathcal{C} -contraction in complete metric spaces.

Definition 4 Let (X, d) be a metric space. The set-valued map $T: X \to X$ is said to be a set-valued weakly ψ -C-contraction, if for all $x, y \in X$

$$\mathcal{H}(Tx, Ty) \le \psi([D(x, Ty) + D(y, Tx) - \phi(D(x, Ty), D(y, Tx))]),$$

where

(1) $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ is a strictly increasing, continuous function with $\psi(t) \leq \frac{1}{2}$ tfor all t > 0 and $\psi(0) = 0$;

(2) $\varphi : \mathbb{R}^{+2} \to \mathbb{R}^{+}$ is a strictly decreasing, continuous function in each coordinate, such that $\varphi(x, y) = 0$ if and only if x = y = 0 and $\varphi(x, y) \le x + y$ for all $x, y \in \mathbb{R}^{+}$.

Theorem 5 Let (X, d) be a complete metric space. Let $T: X \to CB(X)$ be a set-valued weakly C-contraction. Then, T has a fixed point in X.

Proof. Note that for each A, $B \in CB(X)$, $a \in A$ and $\gamma > 0$ with $\mathcal{H}(A,B) < \gamma$, there exists $b \in B$ such that $d(a,b) < \gamma$. Since $T: X \to CB(X)$ be a set-valued weakly ψ -C-contraction, we have that

$$\mathcal{H}(Tx, Ty) \le \psi([D(x, Ty) + D(y, Tx) - \phi(D(x, Ty), D(y, Tx))])$$

for all $x, y \in X$. Suppose that $x_0 \in X$ and that $x_1 \in X$. Then, by induction and by the above observation, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$ and for each

 $n \in \mathbb{N}$.

$$d(x_{n+1}, x_n) \leq \mathcal{H}(Tx_n, Tx_{n-1})$$

$$\leq \psi([D(x_n, Tx_{n-1}) + D(x_{n-1}, Tx_n) - \phi(D(x_n, Tx_{n-1}), D(x_{n-1}, Tx_n))])$$

$$\leq \psi([d(x_n, x_n) + d(x_{n-1}, x_{n+1}) - \phi(d(x_n, x_n), d(x_{n-1}, x_{n+1}))])$$

$$= \psi([0 + d(x_{n-1}, x_{n+1}) - \phi(0, d(x_{n-1}, x_{n+1}))])$$

$$\leq \psi([d(x_{n-1}, x_n) + d(x_n, x_{n+1})])$$

$$\leq \frac{1}{2}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})],$$

and hence, we deduce that for each $n \in \mathbb{N}$,

$$d(x_{n+1}, x_n) \leq d(x_n, x_{n-1}).$$

Thus, $\{d(x_{n+1}, x_n)\}$ is non-increasing sequence and bounded below and hence it is convergent. Let $\lim_{n\to\infty} d(x_{n+1}, x_n) = \xi$. Letting $n\to\infty$ in (**), we have

$$\xi = \lim_{n \to \infty} d(x_{n+1}, x_n) \le \lim_{n \to \infty} \psi([d(x_{n-1}, x_{n+1})])$$

$$\le \lim_{n \to \infty} \frac{1}{2} [d(x_{n-1}, x_{n+1})]$$

$$\le \lim_{n \to \infty} \frac{1}{2} [d(x_{n-1}, x_n) + d(x_n, x_{n+1})]$$

$$\le \frac{1}{2} [\xi + \xi] = \xi,$$

that is,

$$\lim_{n\to\infty} d(x_{n-1}, x_{n+1}) = 2\xi.$$

By the continuity of ψ and φ , letting $n \to \infty$ in (**), we have

$$\xi \leq \psi(2\xi - \phi(0, 2\xi)) \leq \xi - \frac{1}{2} \cdot \phi(0, 2\xi) \leq \xi.$$

Hence, we have $\varphi(0, 2\xi) = 0$, that is, $\xi = 0$. Thus, $\lim_{n\to\infty} d(x_{n+1}, x_n) = 0$.

We next claim that the following result holds:

for each $\gamma > 0$, there is $n_0(\gamma) \in \mathbb{N}$ such that for all $m > n > n_0(\gamma)$,

$$d(x_m, x_n) < \gamma$$
. (***)

We shall prove (***) by contradiction. Suppose that (***) is false. Then, there exists some $\gamma > 0$ such that for all $k \in \mathbb{N}$, there exist m_k , $n_k \in \mathbb{N}$ with $m_k > n_k \ge k$ satisfying:

- (1) m_k is even and n_k is odd;
- $(2) d(x_{m_k}, x_{n_k}) \geq \gamma;$
- (3) m_k is the smallest even number such that the conditions (1), (2) hold.

Since $d(x_{n+1}, x_n) \leq 0$, by (2), we have $\lim_{k\to\infty} d(x_{m_k}, x_{n_k}) = \gamma$ and

$$\gamma \leq d(x_{m_k}, x_{n_k}) \leq \mathcal{H}(Tx_{m_k-1}, Tx_{n_k-1})
\leq \psi([D(x_{m_k-1}, Tx_{n_k-1}) + D(x_{n_k-1}, Tx_{m_k-1}) - \phi(D(x_{m_k-1}, Tx_{n_k-1}), D(x_{n_k-1}, Tx_{m_k-1}))])
\leq \psi([d(x_{m_k-1}, x_{n_k}) + d(x_{n_k-1}, x_{m_k}) - \phi(d(x_{m_k-1}, x_{n_k}), d(x_{n_k-1}, Tx_{m_k}))]).$$

Since

$$d(x_{m_k-1},x_{n_k})+d(x_{n_k-1},x_{m_k})\leq d(x_{m_k-1},x_{m_k})+d(x_{m_k},x_{n_k})+d(x_{n_k},x_{m_k})+d(x_{n_k-1},x_{n_k})$$

letting $k \to \infty$, then we get

$$\gamma \leq \psi(2\gamma - \phi(\gamma, \gamma)) \leq \gamma$$

and hence, $\varphi(\gamma, \gamma) = 0$. By the definition of φ , we get $\gamma = 0$, a contradiction. This proves that the sequence $\{x_n\}$ must be a Cauchy sequence.

Since *X* is complete, there exists $z \in X$ such that $\lim_{n\to\infty} x_n = z$. Therefore,

$$D(z, Tz) = \lim_{n \to \infty} D(x_{n+1}, Tz)$$

$$\leq \lim_{n \to \infty} \mathcal{H}(Tx_n, Tz)$$

$$\leq \lim_{n \to \infty} \psi([D(x_n, Tz) + D(z, Tx_n) - \phi(D(x_n, Tz), D(z, Tx_n))])$$

$$\leq \lim_{n \to \infty} \psi([D(x_n, Tz) + d(z, x_{n+1}) - \phi(D(x_n, Tz), d(z, x_{n+1}))])$$

$$\leq \frac{1}{2}D(z, Tz)$$

and hence, D(z, Tz) = 0, that is, $z \in Tz$, since Tz is closed.

4 Fixed point theorem (III)

In this section, we recall the notion of the Meir-Keeler type function (see [8]). A function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a Meir-Keeler type function, if for each $\eta > 0$, there exists $\delta > 0$ such that for $t \in \mathbb{R}^+$ with $\eta \le t < \eta + \delta$, we have $\phi(t) < \eta$. We now introduce the new notions of the weaker Meir-Keeler type function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ in a metric space and the ϕ -function using the weaker Meir-Keeler type function, as follow:

Definition 5 Let (X, d) be a metric space. We call $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ a weaker Meir-Keeler type function, if for each $\eta > 0$, there exists $\delta > 0$ such that for $x, y \in X$ with $\eta \leq d(x, y)$ $<\delta + \eta$, there exists $n_0 \in \mathbb{N}$ such that $\phi^{n_0}(d(x, y)) < \gamma_{\eta}$.

Definition 6 Let (X, d) be a metric space. A weaker Meir-Keeler type function ϕ ; \mathbb{R}^+ $\to \mathbb{R}^+$ is called a ϕ -function, if the following conditions hold:

- $(\phi_1) \ \phi(0) = 0$, $0 < \phi(t) < t \text{ for all } t > 0$;
- (ϕ_2) ϕ is a strictly increasing function;
- (ϕ_3) for each $t \in \mathbb{R}^+$, $\{\phi^n(t)\}_{n \in \mathbb{N}}$ is decreasing:
- (ϕ_4) for each $t_n \in \mathbb{R}^+ \setminus \{0\}$, if $\lim_{n \to \infty} t_n = \gamma > 0$, then $\lim_{n \to \infty} \phi(t_n) < \gamma$
- (ϕ_5) for each $t_n \in \mathbb{R}^+$, if $\lim_{n\to\infty} t_n = 0$, then $\lim_{n\to\infty} \phi(t_n) = 0$.

Definition 7 Let (X, d) be a metric space. The set-valued map $T: X \to X$ is said to be a set-valued weaker Meir-Keeler type ϕ -contraction, if

$$\mathcal{H}(Tx, Ty) \leq \varphi\left(\frac{1}{2}[D(x, Ty) + D(y, Tx)]\right)$$

for all $x, y \in X$.

We now state the main fixed point theorem for a set-valued weaker Meir-Keeler type ψ -contraction in metric spaces, as follows:

Theorem 6 Let (X, d) be a complete metric space. Let T : CB(X) be a set-valued weaker Meir-Keeler type ψ -contraction. Then, T has a fixed point in X.

Proof. Note that for each $A, B \in CB(X)$, $a \in A$ and $\gamma > 0$ with $\mathcal{H}(A, B) < \gamma$, there exists $b \in B$ such that $d(a, b) < \gamma$. Since $T: X \to CB(X)$ be a set-valued ψ -contraction, we have that

$$\mathcal{H}(Tx, Ty) \leq \varphi\left(\frac{1}{2}[D(x, Ty) + D(y, Tx)]\right)$$

for all $x, y \in X$. Suppose that $x_0 \in X$ and that $x_1 \in X$. Then, by induction and by the above observation, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$ and for each $n \in \mathbb{N}$,

$$d(x_{n+1}, x_n) \leq \varphi \left(\frac{1}{2} [D(x_n, Tx_{n-1}) + D(x_{n-1}, Tx_n)] \right)$$

$$\leq \varphi \left(\frac{1}{2} [d(x_n, x_n) + d(x_{n-1}, x_{n+1})] \right)$$

$$\leq \varphi \left(\frac{1}{2} [d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \right),$$

and by the conditions (ϕ_1) and (ϕ_2) , we can deduce that for each $n \in \mathbb{N}$,

$$d(x_{n+1}, x_n) \le \varphi(d(x_n, x_{n-1})) < d(x_n, x_{n-1})$$

and

$$d(x_{n+1}, x_n) \le \varphi(d(x_n, x_{n-1})) \le \cdots \le \varphi^n(d(x_1, x_0)).$$

By the condition (ϕ_3) , $\{\phi^n(d(x_0, x_1))\}_{n\in\mathbb{N}}$ is decreasing, it must converges to some $\eta \geq 0$. We claim that $\eta = 0$. On the contrary, assume that $\eta > 0$. Then, by the definition of the weaker Meir-Keeler type function, there exists $\delta > 0$ such that for $x_0, x_1 \in X$ with $\eta \leq d(x_0, x_1) < \delta + \eta$, there exists $n_0 \in \mathbb{N}$ such that $\varphi^{n_0}(d(x_0, x_1)) < \eta$. Since $\lim_{n \to \infty} \varphi^n(d(x_0, x_1)) = \eta$, there exists $m_0 \in \mathbb{N}$ such that $\eta \leq \varphi^m(d(x_0, x_1)) < \delta + \eta$, for all $m \geq m_0$. Thus, we conclude that $\varphi^{m_0+n_0}(d(x_0, x_1)) < \eta$. Hence, we get a contradiction. Hence, $\lim_{n \to \infty} \varphi^n(d(x_0, x_1)) = 0$, and hence, $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$.

Next, we let $c_m = d(x_m, x_{m+1})$, and we claim that the following result holds: for each $\varepsilon > 0$, there is $n_0(\varepsilon) \in \mathbb{N}$ such that for all m, $n \ge n_0(\varepsilon)$,

$$d(x_m, x_{m+1}) < \varepsilon. \quad (****)$$

We shall prove (****) by contradiction. Suppose that (****) is false. Then, there exists some $\varepsilon > 0$ such that for all $p \in N$, there are m_p , $n_p \in \mathbb{N}$ with $m_p > n_p \ge p$ satisfying:

- (i) m_p is even and n_p is odd,
- (ii) $d(x_{m_p}, x_{n_p}) \geq \varepsilon$, and
- (iii) m_n is the smallest even number such that the conditions (i), (ii) hold.

Since $c_m \setminus 0$, by (ii), we have $\lim_{p\to\infty} d(x_{m_p}, x_{n_p}) = \varepsilon$, and

$$\varepsilon \leq d(x_{m_{p}}, x_{n_{p}})$$

$$\leq \mathcal{H}(Tx_{m_{p}-1}, Tx_{n_{p}-1})$$

$$\leq \varphi\left(\frac{1}{2}[D(x_{m_{p}-1}, Tx_{n_{p}-1}) + D(x_{n_{p}-1}, Tx_{m_{p}-1})]\right)$$

$$\leq \varphi\left(\frac{1}{2}[d(x_{m_{p}-1}, x_{n_{p}}) + d(x_{n_{p}-1}, x_{m_{p}})]\right)$$

$$\leq \varphi\left(\frac{1}{2}[d(x_{m_{p}-1}, x_{m_{p}}) + 2d(x_{n_{p}}, x_{m_{p}}) + d(x_{n_{p}-1}, x_{n_{p}})]\right).$$

Letting $p \to \infty$. By the condition (ϕ_4) , we have

$$\varepsilon \leq \lim_{p \to \infty} \varphi \left(\frac{1}{2} [d(x_{m_p-1}, x_{m_p}) + 2d(x_{n_p}, x_{m_p}) + d(x_{n_p-1}, x_{n_p})] \right) < \varepsilon,$$

a contradiction. Hence, $\{x_n\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, there exists $\mu \in X$ such that $\lim n \to \infty x_{n+1} = \mu$. Therefore,

$$D(\mu, T\mu) = \lim_{n \to \infty} D(x_{n+1}, T\mu)$$

$$\leq \lim_{n \to \infty} \mathcal{H}(Tx_n, T\mu)$$

$$\leq \lim_{n \to \infty} \varphi\left(\frac{1}{2}[D(x_n, T\mu)) + D(\mu, Tx_n)\right)$$

$$\leq \lim_{n \to \infty} \varphi\left(\frac{1}{2}[D(x_n, T\mu)) + d(\mu, x_{n+1})\right)$$

$$\leq \frac{1}{2}D(\mu, T\mu),$$

and hence, $D(\mu, T\mu) = 0$, that is, $\mu \in T\mu$, since $T\mu$ is closed.

Acknowledgements

This research was supported by the National Science Council of the Republic of China.

Competing interests

The author declares he has no competing interests

Received: 27 July 2011 Accepted: 31 October 2011 Published: 31 October 2011

References

- Banach, S: Sur les operations dans les ensembles abstraits et leur application aux equations integerales. Fund Math. 3, 133–181 (1922)
- 2. C'iric', LB: A generalization of Banach's contraction principle. Proc Am Math Soc. 45(2), 45–181 (1974)
- Nadler, SB Jr: Multi-valued contraction mappings. Pacific J Math. 30, 475–488 (1969)
- Mizoguchi, N, Takahashi, W: Fixed point theorems for multi-valued mappings on complete metric spaces. J Math Anal Appl. 141, 177–188 (1989). doi:10.1016/0022-247X(89)90214-X
- 5. Amini-Harandi, A: Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl Math Lett. **24**(2),
- 6. Chatterjea, SK: Fixed point theorems. C.R Acad Bulgare Sci. 25, 727–730 (1972)
- Choudhury, BS: Unique fixed point theorem for weakly C-contractive mappings. Kathmandu Uni J Sci Eng Technol. 5(2), 5–13 (2009)
- Meir, A, Keeler, E: A theorem on contraction mappings. J Math Anal Appl. 28, 326–329 (1969). doi:10.1016/0022-247X (69)90031-6

doi:10.1186/1687-1812-2011-72

Cite this article as: Chen: Some new fixed point theorems for set-valued contractions in complete metric spaces. Fixed Point Theory and Applications 2011 2011:72.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com