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1 Introduction and preliminaries
Let D be a nonempty closed convex subset of a real Banach space X. A single-valued

mapping T : D ® D is called nonexpansive if ||T(x) - T(y)|| ≤ ||x - y|| for all x, y Î D.

Let N(D) and CB(D) denote the family of nonempty subsets and nonempty closed

bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined by

H(A1,A2) = max

{
sup
x∈A1

d(x,A2), sup
y∈A2

d(y,A1)

}
,

for A1, A2 Î CB(D), where d(x, A1) = inf {||x - y||; y Î A1}. The multi-valued map-

ping T : D ® CB(D) is called nonexpansive if H(T(x), T(y)) ≤ ||x - y|| for all x, y Î D.

An element p Î D is called a fixed point of T : D ® N(D) (respectively, T : D ® D) if

p Î F(T) (respectively, T(p) = p). The set of fixed points of T is represented by F(T).

Let X be a real Banach space with dual X*. We denote by J the normalized duality

mapping from X to 2X
∗ defined by

J(x) := {f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖ x‖2 = ‖ f ∗‖2},

where 〈.,.〉 denotes the generalized duality pairing.

The Banach space X is strictly convex if ||(x + y)/2|| < 1 for all x, y Î X with ||x|| =

||y|| = 1 and x ≠ y. The Banach space X is uniformly convex if limn®∞ ||xn - yn|| = 0

for any two sequences {xn}, {yn} ⊆ X with ||xn|| = ||yn|| = 1 for all n Î N and limn®∞

||(xn + yn)/2|| = 1.

Lemma 1.1. [1]Let X be a uniformly convex Banach space and Br = {x Î X : ||x|| ≤

r}, r > 0. Then, there exists a continuous, strictly increasing, and convex function g :
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[0, ∞) ® [0, ∞) with g(0) = 0 such that

‖ αx + βy‖2 ≤ α ‖ x‖2 + β ‖ y‖2 − αβg(‖ x − y ‖),

for all x, y Î Br and all a, b Î [0, 1] with a + b = 1.

The norm of Banach space X is said to be Gâteaux differentiable if for each x, y Î S

(X):= {x Î X : ||x|| = 1} the limit

lim
t→0

‖ x + ty ‖ − ‖ x ‖
t

, (1:1)

exists. In this case, X is called smooth. The norm of Banach space X is said to be

Fréchet differentiable if for each x Î S(X), limit (1.1) is attained uniformly for y Î S(X)

and the norm is uniformly Fréchet differentiable if limit (1.1) is attained uniformly for

x, y Î S(X). In this case, X is said to be uniformly smooth. The following properties of

J are well known [2]:

1. X (X*, resp.) is uniformly convex if and only if X* (X, resp.) is uniformly smooth;

2. If X is smooth, then J is single-valued and norm-to-weak* continuous;

3. If X is reflexive, then J is onto;

4. If X is strictly convex, then J(x) ∩ J(y) = ∅ for all x ≠ y;

5. If X has a Fréchet differentiable norm, then J is norm-to-norm continuous;

6. If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of X.

The normalized duality mapping J of a smooth Banach space X is called weakly

sequentially continuous if xn ⇀ x implies that J(xn)
∗

⇀ J(x) , where ⇀ denotes the

weak convergence and ∗
⇀ denotes the weak* convergence.

Let X be a smooth Banach space. The function j : X × X ® ℝ is defined by

φ(x, y) = ‖ x‖2 − 2〈x, J(y)〉 + ‖ y‖2, ∀x, y ∈ X.

It is obvious from the definition of the function j that

(‖ x ‖ − ‖ y ‖)2 ≤ φ(x, y) ≤ (‖ x ‖ + ‖ y ‖)2, ∀x, y ∈ X. (1:2)

In addition, the function j has the following property:

φ(y, x) = φ(z, x) + φ(y, z) + 2〈z − y, J(x) − J(z)〉, ∀x, y, z ∈ X. (1:3)

Lemma 1.2. [3, Remark 2.1] Let X be a strictly convex and smooth Banach space,

then j(x, y) = 0 if and only if x = y.

Lemma 1.3. [4]Let X be a uniformly convex and smooth Banach space and r > 0. Then

g(‖ y − z ‖) ≤ φ(y, z),

for all y, z Î Br = {x Î X; ||x|| ≤ r}, where g : [0, ∞) ® [0, ∞) is a continuous, strictly

increasing and convex function with g(0) = 0.

Let D be a nonempty closed convex subset of a smooth Banach space X. A point p Î
D is called an asymptotic fixed point of T : D ® D [5], if there exists a sequence {xn}

in D which converges weakly to p and limn®∞ ||xn - T(xn)|| = 0. The set of asymptotic
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fixed points of T is represented by F̂(T) . A mapping T : D ® D is called relatively

nonexpansive [3,6-8], if the following conditions are satisfied:

1. F(T) is nonempty;

2. j(p, T(x)) ≤ j(p, x), ∀x Î D, p Î F(T);

3. F̂(T) = F(T) .

Let D be a nonempty closed convex subset of a reflexive, strictly convex, and smooth

Banach space X. It is known that [4,9] for any x Î X, there exists a unique point x0 Î
D such that

φ(x0, x) = min
y∈D

φ(y, x).

Following Alber [9], we denote such an element x0 by ΠDx. The mapping ΠD is

called the generalized projection from X onto D. If X is a Hilbert space, then j(y, x) =
||y - x||2 and ΠD is the metric projection of X onto D.

Lemma 1.4. [4,9]Let D be a nonempty closed convex subset of a reflexive, strictly con-

vex and smooth Banach space X. Then

φ(x,�Dy) + φ(�Dy, y) ≤ φ(x, y), ∀x ∈ D, y ∈ X.

Lemma 1.5. [4,9]Let D be a nonempty closed convex subset of a reflexive, strictly con-

vex, and smooth Banach space X. Let x Î X and z Î D, then

z = �Dx ⇔ 〈z − y, J(x) − J(z)〉 ≥ 0, ∀y ∈ D.

In 2004, Matsushita and Takahashi [10] introduced the following iterative sequence

for finding a fixed point of relatively nonexpansive mapping T : D ® D. Given x1 Î D,

xn+1 = �DJ
−1(αnJ(xn) + (1 − αn)J(T(xn))), (1:4)

where D is a nonempty closed convex subset of a uniformly convex and uniformly

smooth Banach space X, ΠD is the generalized projection onto D and {an} is a

sequence in [0, 1].

They proved weak and strong convergence theorems in uniformly convex and uni-

formly smooth Banach space X.

Iterative methods for approximating fixed points of multi-valued mappings in Banach

spaces have been studied by some authors, see for instance [11-14].

Let D be a nonempty closed convex subset of a smooth Banach space X. We define

an asymptotic fixed point for a multi-valued mapping as follows.

Definition 1.6. A point p Î D is called an asymptotic fixed point of T : D ® N(D), if

there exists a sequence {xn} in D which converges weakly to p and limn®∞ d(xn, T(xn)) = 0.

Moreover, we define a relatively nonexpansive multi-valued mapping as follows.

Definition 1.7. A multi-valued mapping T : D ® N(D) is called relatively nonexpan-

sive, if the following conditions are satisfied:

1. F(T) is nonempty;

2. j(p, z) ≤ j(p, x), ∀x Î D, z Î T(x), p Î F(T);

3. F̂(T) = F(T) ,
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where F̂(T)is the set of asymptotic fixed points of T.

There exist relatively nonexpansive multi-valued mappings that are not

nonexpansive.

Example 1.8. Let I = [0,1], X = Lp(I), 1 <p < ∞ and D = {f Î X; f(x) ≥ 0, ∀x Î I}. Let

T : D ® CB(D) be defined by

T(f ) =
{ {g ∈ D; f (x) − 3

4 ≤ g(x) ≤ f (x) − 1
4 ,∀x ∈ I}, f (x) > 1,∀x ∈ I;

{0}, otherwise.

It is clear that F(T) = {0}. Let h ∈ F̂(T) . Then, there exists a sequence {fn} in D which

converges weakly to h, and zn = d(fn, T(fn)) ® 0. Let n Î N, we have

zn =

⎧⎨
⎩
1
4
, fn(x) > 1,∀x ∈ I;

‖fn‖p, otherwise.

Since zn ® 0, we have ||fn||p ® 0. Therefore, fn ® 0. Hence, h = 0. There-

fore,F̂(T) = F(T) = {0} . Let f Î D such that f(x) > 1 for all x Î I, and g Î T(f), then

φ(0, g) = ‖ g ‖2p
≤ ‖ f ‖2p
= φ (0, f ).

Next, let f Î D such that there exists x Î I such that f(x) ≤ 1, then

φ(0, 0) = 0
≤ ‖ f ‖2p
= φ(0, f ).

Hence, T is relatively nonexpansive. However, if f(x) = 2 and g(x) = 1 for all x Î I, we

get H(T(f ),T(g)) = 7
4 . Then, H(T(f), T(g)) > ||f - g||p = 1. Hence, T is not

nonexpansive.

In this article, inspired by Matsushita and Takahashi [10], we introduce the following

iterative sequence for finding a fixed point of relatively nonexpansive multi-valued

mapping T : D ® N(D). Given x1 Î D,

xn+1 = �DJ
−1(αnJ(xn) + (1 − αn)J(zn)), (1:5)

where zn Î T(xn) for all n Î N, D is a nonempty closed convex subset of a uniformly

convex and uniformly smooth Banach space X, ΠD is the generalized projection onto D

and {an} is a sequence in [0, 1]. We prove weak and strong convergence theorems in

uniformly convex and uniformly smooth Banach space X.

2 Main results
In this section, at first, concerning the fixed point set of a relatively nonexpansive

multi-valued mapping, we prove the following proposition.

Proposition 2.1. Let X be a strictly convex and smooth Banach space, and D a none-

mpty closed convex subset of X. Suppose T : D ® N(D) is a relatively nonexpansive

multi-valued mapping. Then, F(T) is closed and convex.

Proof. First, we show F(T) is closed. Let {xn} be a sequence in F(T) such that xn ® x*.

Since T is relatively nonexpansive, we have
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φ(xn, z) ≤ φ(xn, x∗),

for all z Î T(x*) and for all n Î N. Therefore,

φ(x∗, z) = limn→∞φ(xn, z)

≤ limn→∞φ(xn, x∗)
= φ(x∗, x∗)
= 0.

(2:1)

By Lemma 1.2, we obtain x* = z. Hence, T(x*) = {x*}. So, we have x* Î F(T). Next,

we show F(T) is convex. Let x, y Î F(T) and t Î (0, 1), put p = tx + (1 - t)y. We show

p Î F(T). Let w Î T(p), we have

φ(p,w) =‖ p‖2 − 2〈p, J(w)〉+ ‖ w‖2
=‖ p‖2 − 2〈tx + (1 − t)y, J(w)〉+ ‖ w‖2
=‖ p‖2 − 2t〈x, J(w)〉 − 2(1 − t)〈y, J(w)〉+ ‖ w‖2
=‖ p‖2 + tφ(x,w) + (1 − t)φ(y,w) − t ‖ x‖2 − (1 − t) ‖ y‖2
≤‖ p‖2 + tφ(x, p) + (1 − t)φ(y, p) − t ‖ x‖2 − (1 − t) ‖ y‖2
=‖ p‖2 − 2〈tx + (1 − t)y, J(p)〉+ ‖ p‖2
=‖ p‖2 − 2〈p, J(p)〉+ ‖ p‖2
= 0.

(2:2)

By Lemma 1.2, we obtain p = w. Hence, T(p) = {p}. So, we have p Î F(T). Therefore,

F(T) is convex. □
Remark 2.2. Let X be a strictly convex and smooth Banach space, and D a nonempty

closed convex subset of X. Suppose T : D ® N(D) is a relatively nonexpansive multi-

valued mapping. If p Î F(T), then T(p) = {p}.

Proposition 2.3. Let X be a uniformly convex and smooth Banach space, and D a none-

mpty closed convex subset of X. Suppose T : D ® N(D) is a relatively nonexpansive multi-

valued mapping. Let {an} be a sequence of real numbers such that 0 ≤ an ≤ 1 for all n Î N.

For a given x1 Î D, let {xn} be the iterative sequence defined by (1.5). Then, {ΠF(T)xn} converges

strongly to a fixed point of T, where ΠF(T) is the generalized projection from D onto F(T).

Proof. By Proposition 2.1, F(T) is closed and convex. So, we can define the general-

ized projection ΠF(T) onto F(T). Let p Î F(T). From Lemma 1.4, we have

φ(p, xn+1) = φ(p,�DJ−1(αnJ(xn) + (1 − αn)J(zn)))

≤ φ(p, J−1(αnJ(xn) + (1 − αn)J(zn)))

=‖ p‖2 − 2〈p,αnJ(xn) + (1 − αn)J(zn)〉
+ ‖ αnJ(xn) + (1 − αn)J(zn)‖2

≤‖ p‖2 − 2αn〈p, J(xn)〉 − 2(1 − αn)〈p, J(zn)〉 + αn ‖ xn‖2
+ (1 − αn) ‖ zn‖2

= αnφ(p, xn) + (1 − αn)φ(p, zn)

≤ αnφ(p, xn) + (1 − αn)φ(p, xn)

= φ(p, xn).

(2:3)

Hence, limn® ∞ j(p, xn) exists. So, {j(p, xn)} is bounded. Then, by (1.2) we have {xn}

is bounded, and hence, {zn} is bounded. Let un = ΠF(T)xn, for all n Î N. Then, we have
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φ(un, xn+1) ≤ φ(un, xn). (2:4)

Therefore

φ(un, xn+m) ≤ φ(un, xn), (2:5)

for all m Î N. From Lemma 1.4, we obtain

φ(un+1, xn+1) = φ(�F(T)xn+1, xn+1)

≤ φ(un, xn+1) − φ(un,�F(T)xn+1).
(2:6)

By (2.4) and (2.6) we have

φ(un+1, xn+1) ≤ φ(un, xn). (2:7)

It follows that {j(un, xn)} converges. From un+m = ΠF(T)xn+m and Lemma 1.4, we have

φ(un, un+m) + φ(un+m, xn+m) ≤ φ(un, xn+m).

Hence, by (2.5) we obtain

φ(un, un+m) ≤ φ(un, xn) − φ(un+m, xn+m), (2:8)

for all m, n Î N. Let r = supnÎN ||un||. From Lemma 1.3, there exists a continuous,

strictly increasing and convex function g : [0, ∞) ® [0, ∞) with g(0) = 0 such that

g(‖ um − un ‖) ≤ φ(um, un)

≤ φ(um, xm) − φ(un, xn),
(2:9)

for all m, n Î N, n >m. Therefore, {un} is a Cauchy sequence. Since X is complete

and F(T) is closed, there exists q Î F(T) such that {un} converges strongly to q. □
If the duality mapping J is weakly sequentially continuous, we have the following

weak convergence theorem.

Theorem 2.4. Let X be a uniformly convex and uniformly smooth Banach space, and

D a nonempty closed convex subset of X. Suppose T : D ® N(D) is a relatively nonex-

pansive multi-valued mapping. Let {an} be a sequence of real numbers such that 0 ≤ an

≤ 1 for all n Î N and lim infn®∞ an(1 - an) > 0. For a given x1 Î D, let {xn} be the

iterative sequence defined by (1.5). If J is weakly sequentially continuous, then {xn} con-

verges weakly to a fixed point of T.

Proof. As in the proof of Proposition 2.3, {xn} and {zn} are bounded. So, there exists r >

0 such that xn, zn Î Br for all n Î N. Since X is a uniformly smooth Banach space, X* is

a uniformly convex Banach space. Let p Î F(T). By Lemma 1.1, there exists a continu-

ous, strictly increasing and convex function g : [0, ∞) ® [0, ∞) with g(0) = 0 such that

φ(p, xn+1) = φ(p,�DJ−1(αnJ(xn) + (1 − αn)J(zn)))

≤ φ(p, J−1(αnJ(xn) + (1 − αn)J(zn)))

=‖ p‖2 − 2〈p,αnJ(xn) + (1 − αn)J(zn)〉
+ ‖ αnJ(xn) + (1 − αn)J(zn)‖2

≤‖ p‖2 − 2αn〈p, J(xn)〉 − 2(1 − αn)〈p, J(zn)〉 + αn ‖ xn‖2
+ (1 − αn) ‖ zn‖2 − αn(1 − αn)g(‖ J(xn) − J(zn) ‖)

= αnφ(p, xn) + (1 − αn)φ(p, zn) − αn(1 − αn)g(‖ J(xn) − J(zn) ‖)
≤ φ(p, xn) − αn(1 − αn)g(‖ J(xn) − J(zn) ‖).

(2:10)
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Hence

αn(1 − αn)g(‖ J(xn) − J(zn) ‖) ≤ φ(p, xn) − φ(p, xn+1).

Since limn®∞ j(p, xn) exists and lim infn®∞ an(1 - an) > 0, we obtain

lim
n→∞ g(‖ J(xn) − J(zn) ‖) = 0.

Therefore,

lim
n→∞ ‖ J(xn) − J(zn) ‖= 0.

Since J-1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖ xn − zn ‖= 0.

Since d(xn, T(xn)) ≤ ||xn - zn||, we obtain

lim
n→∞ d(xn,T(xn)) = 0. (2:11)

Let un = ΠF(T) xn. By Lemma 1.5, we have

〈un − w, J(xn) − J(un)〉 ≥ 0, (2:12)

for each w Î F(T). From Proposition 2.3, there exists p Î F(T) such that {un} con-

verges strongly to p. Let {xnj} be a subsequence of {xn} such that {xnj} converges

weakly to q. Then, by (2.11) we have q Î F(T). It follows from (2.12) that

〈unj − q, J(xnj) − J(unj)〉 ≥ 0. (2:13)

Let j ® ∞ in inequality (2.13), since J is weakly sequentially continuous we have

〈p − q, J(q) − J(p)〉 ≥ 0. (2:14)

Since J is monotone, we have

〈q − p, J(q) − J(p)〉 ≥ 0. (2:15)

It follows from (2.14) and (2.15) that

〈q − p, J(q) − J(p)〉 = 0. (2:16)

Since X is strictly convex, we have p = q. Therefore, {xn} converges weakly to p. The

proof is complete. □
Theorem 2.5. Let X be a uniformly convex and uniformly smooth Banach space, and

D a nonempty closed convex subset of X. Suppose T : D ® N(D) is a relatively nonex-

pansive multi-valued mapping. Let {an} be a sequence of real numbers such that 0 ≤ an

≤ 1 for all n Î N and lim infn®∞ an(1 - an) > 0. For a given x1 Î D, let {xn} be the

iterative sequence defined by (1.5). If the interior of F(T) is nonempty, then {xn} con-

verges strongly to a fixed point of T.

Proof. Since the interior of F(T) is nonempty, there exists p Î F(T) and r > 0 such

that p + rh Î F(T), whenever ||h|| ≤ 1. By (1.3) for any q Î F(T) we have

φ(q, xn) = φ(xn+1, xn) + φ(q, xn+1) + 2〈xn+1 − q, J(xn) − J(xn+1)〉. (2:17)

Homaeipour and Razani Fixed Point Theory and Applications 2011, 2011:73
http://www.fixedpointtheoryandapplications.com/content/2011/1/73

Page 7 of 9



Therefore,

1
2
(φ(q, xn) − φ(q, xn+1)) =

1
2

φ(xn+1, xn) + 〈xn+1 − q, J(xn) − J(xn+1)〉. (2:18)

Since p + rh Î F(T), as in the proof of Proposition 2.3, we have

φ(p + rh, xn+1) ≤ φ(p + rh, xn). (2:19)

It follows from (2.18) and (2.19) that

1
2

φ(xn+1, xn) + 〈xn+1 − (p + rh), J(xn) − J(xn+1)〉 ≥ 0. (2:20)

Then, by (2.18) and (2.20) we have

〈h, J(xn) − J(xn+1)〉 ≤ 1
r (〈xn+1 − p, J(xn) − J(xn+1)〉 + 1

2φ(xn+1, xn))

= 1
2r (φ(p, xn) − φ(p, xn+1)),

(2:21)

whenever ||h|| ≤ 1. Therefore, we obtain

‖ J(xn) − J(xn+1) ‖≤ 1
2r

(φ(p, xn) − φ(p, xn+1)).

It follows that

‖ J(xm) − J(xn) ‖ ≤ �n−1
i=m ‖ J(xi) − J(xi+1) ‖

≤ �n−1
i=m

1
2r (φ(p, xi) − φ(p, xi+1))

= 1
2r (φ(p, xm) − φ(p, xn)),

(2:22)

for all m, n Î N, n >m. As in the proof of Proposition 2.3, {j(p, xn)} converges.
Hence, {J(xn)} is a Cauchy sequence. Since X* is complete, {J(xn)} converges strongly to

a point in X*. Since X* has a Fréchet differentiable norm, then J-1 is norm-to-norm

continuous on X*. Hence, {xn} converges strongly to some point u in D. As in the

proof of Theorem 2.4, limn®∞ d(xn, T(xn)) = 0. Hence, we have u Î F(T), where u =

limn®∞ ΠF(T)xn. □
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