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Abstract

The purpose of this article is to propose and investigate an algorithm for solving the
multiple-set split feasibility problems for total asymptotically strict pseu-docontractions
mappings in infinite-dimensional Hilbert spaces. The results presented in this article
improve and extend some recent results of A. Moudafi, H. K. Xu, Y. Censor, A. Segal,
T. Elfving, N. Kopf, T. Bortfeld, X. A. Motova, Q. Yang, A. Gibali, S. Reich and others.
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1. Introduction and preliminaries
Throughout this article, we always assume that H;, H, are real Hilbert spaces, “—”, “~”
are denoted by strong and weak convergence, respectively, and F(7) is the fixed point
set of a mapping T.

Let G be a nonempty closed convex subset of H; and 7: G — G a mapping.

T is said to be a contraction if there exists a constant o € (0,1) such that

|7 =T s fx—y

, Vx,yeG. (1.1)

Banach contraction principle guarantees that every contractive mapping defined on
complete metric spaces has a unique fixed point.
T is said to be a weak contraction if

| =T < =yl = v (=]

), Vx,yeG. (1.2)

where y : [0, o) — [0, =) is a continuous and nondecreasing function such that y is
positive on (0, ), y(0) = 0, and lim,_,., y(f) = . We remark that the class of weak
contractions was introduced by Alber and Guerre-Delabriere [1]. In 2001, Rhoades [2]
showed that every weak contraction defined on complete metric spaces has a unique
fixed point.

T is said to be nonexpansive if

e N

, VYx,yeG. (1.3)
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T is said to be asymptotically nonexpansive if there exists a sequence {k,} € [1, )
with &k, — 1 as n — oo such that

[T"x = T"| <wkn|x—y|, ¥Yn=1, xyeG. (1.4)

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [3] as a generalization of the class of nonexpansive mappings. They proved that if
G is a nonempty closed convex bounded subset of a real uniformly convex Banach
space and T is an asymptotically nonexpansive mapping on G, then T has a fixed
point.

T is said to be total asymptotically nonexpansive if

[T"x = T"| < ||x—y| +wnd (|[x—y]) +& V¥n=>=1, xyeG. (1.5)

where ¢ : [0, =) — [0, o) is a continuous and strictly increasing function with ¢(0) =
0, and {y,} and {&,} are nonnegative real sequences such that 4, — 0 and £, — 0 as
n — oo. The class of mapping was introduced by Alber et al. [4]. From the definition,
we see that the class of total asymptotically nonexpansive mappings includes the class
of asymptotically nonexpansive mappings as special cases, see [5,6] for more details.

T is said to be strictly pseudocontractive if there exists a constant x € [0, 1) such
that

T = 17| < [x—y|* + |0 =T)x— A= Dy,

vx,y € G. (1.6)

The class of strict pseudocontractions was introduced by Browder and Petryshyn [7]
in a real Hilbert space. In 2007, Marino and Xu [8] obtained a weak convergence
theorem for the class of strictly pseudocontractive mappings, see [8] for more details.

T is said to be an asymptotically strict pseudocontraction if there exist a constant s
€ [0, 1) and a sequence {k,} < [1, ) with k,, — 1 as n — oo such that

[T =Ty ]* < sl =y e (1= T = (1= 1)y

A - ¥ XY € G. (17)

The class of asymptotically strict pseudocontractions was introduced by Qihou [9] in
1996. Kim and Xu [10] proved that the class of asymptotically strict pseudocontrac-
tions is demiclosed at the origin and also obtained a weak convergence theorem for
the class of mappings; see [10] for more details.

In this article, we introduce the following mapping.

Definition 1.1 Let H be a real Hilbert space, and G be a nonempty closed convex
subset of H. A mapping T: G — G is said to be (k, {¢,}, {&,.}, @)-total asymptotically
strict pseudocontractive, if there exists a constant x € [0, 1) and sequences {y,,} < [0, ),
{&.) € [0, ) with 4, > 0 and &, — 0 as n — oo, and a continuous and strictly increasing
function ¢ : [0, e2) — [0, o) with ¢@(0) = 0 such that

[T"x — T")/H2 <|x- y||2+l< x=y—(T"x— 1) ||2+u,,,¢ (lx=vl)+& VYaz=1, xyeG (L.8)

Now, we give an example of total asymptotically strict pseudocontractive mapping.
Let C be a unit ball in a real Hilbert space [ and let T : C — C be a mapping
defined by

2
T: (x1,%2,....) = (0,x7,d0%2, a3x3,...),
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1
where {a;} is a sequence in (0, 1) such that [T, a; = )

It is proven in Goebal and Kirk [3] that

0)|x—T| <2|x—y|, ¥xyeG
(i) [T — T < 2T, a [x—y|, VxyeC Vn=2.

1 1
n
Denote by 2 = 2, k2 = 21_[j=2aj’ n > 2, then

2
. . n
Jim o= Jim (2T ) =1

Letting up = (ky — 1), VYn>1, ¢(t)=t>, Vt>0, « =0 and {&,} be a nonnega-
tive real sequence with &, — 0, then Vx,y € C, n > 1, we have

[T =1 < o=+ st (o= ) ol o=y = (1= ) |+ o

Remark 1.2 If p(1) = A% and &, = 0, then total asymptotically strict pseudocontrac-
tive mapping is asymptotically strict pseudocontraction mapping.

It is easy to see the following proposition holds.

Proposition 1.3 Let T: G — G be a (k, {#,}, {&,}, @)-total asymptotically strict
pseudocontractive mapping. If F(T) # ¢, then for each ¢ € F(T) and for each x € G,
the following inequalities hold and are equivalent:

n 1 -1, . &
fr—a Tw—q) =" x—al’+ " [T =g+ Do (lx—ql)+ J"; (19)
e A I ('S | (110
' - 2 2 2’
(X—T"x, q_Tnx>§ K;'1||Tnx_x”2+/‘;n¢(||x_q||)+§2". (1.11)

The split feasibility problem (SFP) in finite-dimensional spaces was first introduced
by Censor and Elfving [11] for modeling inverse problems which arise from phase
retrievals and in medical image reconstruction [12]. Recently, it has been found that
the SFP can also be used in various disciplines such as image restoration, computer
tomograph, and radiation therapy treatment planning [13-15].

The SFP in an infinite-dimensional Hilbert space can be found in [12,14,16-18].

The purpose of this article is to introduce and study the following multiple-set SFP
(MSSEFP) for total asymptotically strict pseudocontraction in the framework of infinite-
dimensional Hilbert spaces:

find x* € C suchthat Ax* € Q, (1.12)
where A : H; — H, is a bounded linear operator, S; : H; — H; and T; : Hy —> H,,

i=1,2,.., N are mappings, C: ﬂf\il F(S;) and Q : ﬂﬁl F(T;) In the sequel, we use I'
to denote the set of solutions of (MSSFP)—(1.12), i.e.,

={xeC, AxeQ}. (1.13)
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To prove our main results, we first recall some definitions, notations, and
conclusions.

Let E be a Banach space. A mapping T : E — E is said to be demi-closed at origin, if
for any sequence {x,} € E with x,, = x* and ||( - T)x,|| — 0, then x* = Tx*.

A Banach space E is said to have the Opial property, if for any sequence {x,} with

x, — x*, then

liminf|x, —x*| < liminf|x, —y|, ¥yeE with y#x*

n—o0o n—o00o

Remark 1.4 It is well known that each Hilbert space possesses the Opial property.
Definition 1.5 Let H bea real Hilbert space.

(1) A mapping T : H — H is said to be uniformly L-Lipschitzian, if there exists a
constant L > 0, such that

17— y] < L|x—y

, Vx,yeH andn>1.

(2) A mapping T : H — H is said to be semi-compact, if for any bounded sequence
{x,; © H with lim,,_,.. ||x, - Tx,|| = 0, then there exists a subsequence {xni} C {x,}

such that Xn; converges strongly to some point x* € H.

Lemma 1.6 [10] Let H be a real Hilbert space. If {x,} is a sequence in H weakly con-
vergent to z, then

lim sup Hxn — y”2 = limsup [|x, — z[|? + Hz — sz Vy € H.
n—oo n—0o0

Proposition 1.7 Assume that G is a closed convex subset of a real Hilbert space H
and let 7: G > G be a (k, {u,}, &), @)-total asymptotically strict pseudocon-traction
mapping and uniformly L-Lipschitzian. Then the demiclosedness principle holds for I -
T in the sense that if {x,} is a sequence in G such that x, — x*, and lim sup,,_,.. lim
SUDy—seo ||% - T™x,|| = O then (I - T)x* = 0. In particular, x,, ~ x*, and (I - T)x,, — 0
= (I - T)x* =0, ie, T is demiclosed at origin.

Proof Since {x,} is bounded, we can define a function f on H by

f(x) = limsup ||lx, —x|I?, VxeH.

n—o0

By Lemma 1.6, the weak convergence x,, - x* implies that
f) = f@) + [ =7

In particular, for each m > 1,

2, Vx € H.

") = (o) + [ T = 2. (1.14)
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On the other hand, since T is a (k, {¢#,,}, {,})-total asymptotically strict pseudo-
contraction mapping, by (1.8), we get

f(T™"x*) = limsup ||x, — T"x* ||2

n—oo

= lim sup ||x,, —T"x, + T"x,, — T"x* H2
n—oo

= lim sup (Hxn —T"x, HZ +2 (xn — T"x,, T"x, — me*) + || T"x, — T"x* ||2)
n—oo

< lim sup ||x,, — T"‘an (||x,, — T"‘an +2L ||x,, —x* ||)
n—oo

+lim sup (Hxn —x* ||2 + Ry — T"xp — (x* — T'"x")”2 + um® (o — x*]) + Em)
n—oo

Taking lim sup,, ,.. on both sides and observing the facts that lim,, ,. #,, = 0,

lim,, .. &,, = 0 and lim sup,,_,.. lim sup,_,. ||x, - T"x,|| = 0, we derive that
limsup f (T"x*) < limsup |x, — x* ||2 +klimsup ||x* — T"x* ||2 (1.15)
m— 00 n—oo m— 00

Since lim sup,,_.. AT"x*) = flx*)+lim sup,,_,.. ||T"x* - x*||% and flx*) = lim sup,_,..
||%, - x*||% it follows from (1.15) that lim sup,,_,.. ||x* - T"x*||*> = 0. That is, T"x* —
x* hence Tx* = x*.

Lemma 1.8 [19] Let {a,}, {b,} and {J,} be sequences of nonnegative real numbers
satisfying

ane1 < (1+8,)an+b,, VYn>1.

o0
If Zf’:l 8, < oo and ZH b, < oc, then the limit lim,,_,., a,, exists.

2. Multiple-set split feasibility problem
For solving the multiple-set split feasibility problem (1.12), let us assume that the fol-
lowing conditions are satisfied:

1. H; and H, are two real Hilbert spaces, A : H; — H, is a bounded linear
operator;
2. Let G, G be a nonempty closed convex subset of H; and H, respectively, S; : G
— G, i=1,2,..N, is a uniformly L;-Lipschitzian and (8;, {¢;,}, {&i.}, @:)-total
asymptotically strictly pseudocontractive mapping and T; : G- G i=12..,N
is a uniformly [-Lipschitzian and (ki { /:Li,n} p {éi,n} , (l;i)—total asymptotically strictly
pseudocontractive mapping which satisfy the following conditions:

. N N

(i C: ﬂi:l F(S) #¥, Q:= ﬂi:l F(T;) #0

(ii) /3 = MaXj<j<N /3,' <1, K = MaX1<j<N Ki < 1,';

(i) L := maxj<j<y Li < 00, L:=maxj<i<y Li < oc;

(iv) pn = maxi <i<n {Min, Rin}, & = Maxi<i=n {Ei,n, éi,n} and

00 )
E LM < 00, E &y < oo.
i=1 i=1

(v) ¢ = max;<j<n {¢i, [&}
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We are now in a position to give the following result:

Theorem 2.1 Let Hl/ H2/ G/ é/ A/ {Si}/ {Ti}/ C, Ql ﬂl K, L, i, {Mn}r {zfn} and ¢
be the same as above. In addition, there exist positive constants M and M* such that ¢
(L) < M*A* for all A > M. Let {x,} be the sequence generated by:

x1 € G chosen arbitrarily
X1 = (1 — ap)uy + (anz(un), (2.1)
Uy =% + yA* (T —D)Ax,, VYn=>1,

where S5 =S noany Tn = Ti(moany VM= 1, {an}is a sequence in [0, 1] and y

> 0 is a constant satisfying the following conditions:

1 —
(vi)a,€(8, 1—=8), Yn>1landy € (O, ||A||§>’ where 6 € (0,1 - ) is a

positive constant.

(I) If T # @ (where T is the set of solutions to (MSSFP)—(1.12)), then {x,} con-
verges weakly to a point x* € T

(II) In addition, if there exists a positive integer j such that S; is semi-compact,
then {x,} and {u,} both converge strongly to x* € T.

The proof of conclusion (I)

(1) First we prove that for each p L T, the following limits exist

lim ||xn — p|| and lim ||u,, — p|| . (2.2)

n—o0 n—oo

In fact, since @ is an increasing function, it results that ¢(A) < (M), if L < M and
o) < M*)\2, if L > M. In either case, we can obtain that

#(A) < (M) + M*A%, Vi >0. (2.3)

Since pe I', thenp e C:= ﬂf\zjl F(S;)and Ap € Q := ﬂf\zjl F(T;). From (2.1) and (1.10)
we have

et = p[* = [t — p — ctn (s — S™uy) |2

= ||un - p||2 — 2uy, (un — P, Uy — Szun)+(x5 ||un - SzunH2
< Jun —p|* = o1 = B) tn — St

+otuind (|[tn — p||) + ctnkn + o ||tin — Shun ||2(by (1.10))

< it = I = e (1 = B =t it — S ey
varmitn ($(M) + M (Jun = p[)7) + e
= (1 + anenM?) Jun = p|* = otn (1 = B — o) ||t — S|
stnptn (M) + o
On the other hand, since
Jun = ol = = p+ y 47 (13 = 1) Ay 05

= | =] * + v AT (17 = 1) Axy|* + 2y (%0 — p, A* (T = 1) Ax,),

Page 6 of 11
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and
A7 (T = 1) Axa|* = (A7 (T3 = 1) Axa, A" (T — 1) Ax,)
= (AA* (T} — 1) Axy, (T — 1) Axy) (2.6)
< IIAI? | THAxy — Axy |

7

It follows from (1.11) we have
(xn —p, A* (T} — 1) Axy) = (Axy — Ap, (T} — 1) Axy)
= ((Axy — Ap) + (T} = 1) Axy — (T}, — 1) Axy, (T} — 1) Axy)
= (T!Ax, — Ap, TIAx, — Ax,) — || (T2 = 1) Axa | .

1
< ;KH(TZ—I)Aan2+'LLGqﬁ(HAxn—APH)+in—H(T,'I’—I)Axnuz, (27)
-1
< I =D as 7 (s o0 4z, )+ .

&n

k—1 iz iz
= =D an ]+ as - apl + o+

Substituting (2.6) and (2.7) into (2.5) and simplifying it, we have
[ =pI” = = oI+ Y2 NAI | ThAws — Axa|* + v G = 1) (T3 = 1) A
oy M [ Ay = Ap[|” + 7 n (M) + y
= Jon = oI = (1= =y IAIP) [ ThAx, — A
7 nM* [ Axy — Ap||” + y 1 (M) + v &

< (1+ yuaM AL [0 = p|> = ¥ (1 = & = y IAIP) || TP Ax, — Ax,||”
+yY und(M) + &,

(2.8)

Substituting (2.8) into (2.4) and after simplifying we have
[onet = p[* < (1 + enpta®) {(1 + v M IAIR) [0 — p])?
—y (1= = Y IAIR) [ThAx — A% [* + yiad (M) + .}
—on (1= —ap) “un — Shtn ||2 + o fin®(M) + otnén (2.9)
<@ +80) |3 —p” =¥ (1 — & = yIAI?) | ThAx, — Ay

—atn (1 — B — o) ||un — SZu,,”2 +by,

8n = antnM* + Y unM* AN + y Al 2ot (M*)?
b, = ((1 + OlannM*) Y+ Oln) Un@ (M) + ((1 + anunM*) Y + an) &n

By condition (vi) we have
”xml - P||2 < (1+38y) ”xn —P||2 + by

By condition (iv), Y 72, 8, < oo and Y ,°; b, < oo. Hence, from Lemma 1.8 we know

that the following limit exists

nh%ng(3 Hxn - p|| . (2.10)

Page 7 of 11
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Consequently, from (2.9) and (2.10) we have that

y (1 =k — yIAIP) (T8 = 1) Axy |* + n (1 = B — @) [[ttn — ST ||

< [xn —p||2 — |xnat —p||2 + 8 | % —p||2 +b, > 0 (asn — 00).

This together with the condition (vi) implies that

lim [Juy — Sjun | = 0; (2.11)
and
lim (T} — 1) Axa | = 0. (2.12)

It follows from (2.5), (2.10) and (2.12) that the limit ||z, - p|| exists.
The conclusion (1) is proved.
(2) Next we prove that

lim ||xp1 — %/l = 0and lim [Ju,, — uyll = 0. (2.13)
n—oo n—oo

In fact, it follows from (2.1) that

%1 — xall = || (1 — otn) th + 2t Sp(1n) — x|
= (1 — o) (w0 + yA* (T} — I) Axp) + 0t St () — |
= |1 = o) yA* (T — 1) Axy + oty (S(un) — %) |
= | (1 — o) yA* (T} — 1) Axy + ot (Sh (tn) — tin) + ot (. — ) |
= |1 = o) yA* (T} — 1) Axy + ot (Sp(un) — ) + any A* (T — 1) Axy |
= AT (T3 — 1) Ax + o (S5 (un) — un) |-

In view of (2.11) and (2.12) we have that

lim [lxp.1 — xnll = 0. (2.14)
n—oo

Similarly, it follows from (2.1), (2.12), and (2.14) that
n+1

ltnar = tnll = [ ner + YA (T = 1) Axpar — (v + yA* (T8 = 1) Axy) |

n+1

+y ||A* (T7 — 1) Axy, || — 0(asn— 00).

< xner = xall + ¥ A" (Tt — 1) A | (2.15)

The conclusion (2.13) is proved.
(3) Next we prove that for each j = 1, 2,.., N - 1,

||uiN+j — SjuiN+j|| — 0 and ||AxiN+]’ - TijiN+j ” -0 (as i— OO), (2.16)

In fact, from (2.11) we have

. iN+j
MiNej = || UiN+G = S5 UiN+g

— 0 (asi— 00). (2.17)

Page 8 of 11
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Since S; is uniformly L;-Lipschitzian continuous, it follows from (2.13) and (2.17)
that

iN+j
UiNeg = S UiN+g

iN+j
+ HS UiN+j — SjliN+j

s = Sjins] = | j

iN+j—1
< niNsj + L Hsj UiN+j — UiN+j

iN+j—1 iN+j—1
< ninsj + L { Hsf UiN+j — S; UiN+j—1 H
iN+—1
+L; ‘ S; UiN4j—1 — UiN+j }

< NiN+j + sz ||uiN+j — UiN+j—1 ”
SiN+j—1

+L; ‘ ; UiN4j—1 = UiN4j—1 + UiN+j—1 — UiN+j

< inej + Li (1 + Lj) |uinsj — thinsj1 | + Liningj—1 — 0 (asi — oo)
Similarly, for each j = 1, 2,.., N - 1, from (2.13) we have

— 0 (asi— o00). (2.18)

] iN4j
GiN4j = HAxiN+j —T; "Axingg

Since T; is uniformly L;-Lipschitzian continuous, by the same way as above, from
(2.13) and (2.18), we can also prove that

||AxiN+j — TijiN+j|| — 0 (LlS i— OO) (2.19)

(4) Finally we prove that x,, -~ x* and u,, — x* which is a solution of (MSSFP)-
(1.12).

Since {u,} is bounded. There exists a subsequence {uni} C {uy} such that u,, — x*
(some point in H;). Hence, for any positive integer j = 1, 2,..., N, there exists a subse-
quence {n;(j)} € {n;} with n,(j)(modN) = j such that uyj) — x*. Again from (2.16) we
have

ny = Sjumep | = 0 (as mi(j) — o0) (2.20)
Since S; is demiclosed at zero (see Proposition 1.7), it gets that x* € F(S;). By the

arbitrariness of j = 1, 2,.., N, we have x* € C := ﬂ][\il E(S)).
Moreover, from (2.1) and (2.12) we have

Xn, = Uy, — y A" (Ty — I) Axy, — x".

Since A is a linear bounded operator, it gets Ax,, — Ax™ For any positive integer k =
1, 2,..., N, there exists a subsequence {n;(k)} € {n;} with n,(k)(modN) = k such that
Axpy() — AX*. In view of (2.16) we have

| A%, () — TeAxn iy | = 0 (as ni(k) — ).

Since Ty is demiclosed at zero, we have Ax* € F(T}). By the arbitrariness of k = 1,
2,.., N, it yields Ax* € Q := ﬂi\i 1 F(Ty,). This together with x* € C shows that x* € T}, i.
e., x* is a solution to the (MSSFP)—(1.12).

Now we prove that x,, — x* and u, — x*.



Yang et al. Fixed Point Theory and Applications 2011, 2011:77 Page 10 of 11
http://www fixedpointtheoryandapplications.com/content/2011/1/77

In fact, if there exists another subsequence { uni} C {un} such that u,,j) — y* € I with
y* # x*. Consequently, by virtue of (2.2) and the Opial property of Hilbert space, we
have

liminf |u,, — x*|| < liminf|u, —y*| = lim |u, —y*|
nj— 00 nj— 00 n—00

= liminf |u,, — y*| < lim [u, —x*|
ni— 00 nj—00

=liminf |u, —x*| = lim |u, —x*|.
n—oo ni— oo

This is a contradiction. Therefore, u, - x*. By using (2.1) and (2.12), we have
Xp = Uy — AA* (T} — 1) Axy — x*.

The proof of conclusion (II).

Without loss of generality, we can assume that S; is semi-compact. It follows from
(2.20) that

|1y — Sittnyy|| — 0 (as ni(1) — o0) (2.21)

Therefore, there exists a subsequence of {uni(l)} (for the sake of convenience we still
denote it by {uni(l)} such that uy1) — u* € Hi (some point in H;). Since 1) — x*
This implies that x* = u*, and so un(1) — x* € I'. By virtue of (2.2) we know that

limnﬁw ||un - x*

| =0 and lim, .. [|%, - #*|| = O, i.e., {&,} and {x,} both converge
strongly to x* € I

This completes the proof of Theorem 2.1.

Remark 2.2 Since the class of total asymptotically strict pseudocontractive mappings
includes the class of asymptotically strict pseudocontractions mappings and the class
of strict pseudocontractions mappings as special cases, Theorem 2.1 improves and
extend the corresponding results of Censor et al. [14,15], Yang [17], Moudafi [20], Xu
[21], Censor and Segal [22], Censor et al. [23] and others.
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