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Abstract

The purpose of this paper is to prove some existence theorems for fixed point
problem by using a generalization of metric distance, namely u-distance.
Consequently, some special cases are discussed and an interesting example is also
provided. Presented results are generalizations of the important results due to Ume
(Fixed Point Theory Appl 2010(397150), 21 pp, 2010) and Suzuki and Takahashi (Topol
Methods Nonlinear Anal 8, 371-382, 1996).
2010 Mathematics Subject Classification: 47H09, 47H10.

Keywords: complete metric space, generalized multi-valued contractive, u-distance,
fixed point.

1. Introduction and preliminaries
Let (X, d) be a metric space. A mapping T: X ® X is said to be contraction if there

exists r Î [0, 1) such that

d(T(x), T(y)) ≤ rd(x, y), ∀x, y ∈ X. (1:1)

In 1922, Banach [1] proved that if (X, d) is a complete metric space and the mapping

T satisfies (1.1), then T has a unique fixed point, that is T(u) = u for some u Î X. Such

a result is well known and called the Banach contraction mapping principle. Following

the Banach contraction principle, Nadler Jr. [2] established the fixed point result for

multi-valued contraction maps, which in turn is a generalization of the Banach con-

traction principle. Since then, there are several extensions and generalizations of these

two important principles, see [3,4] and [5-11] for examples.

In 1996, Kada et al. [4] introduced the concept of w-distance on a metric space (X,

d). By using such a w-distance concept, they improved some important theorems such

as Caristi’s fixed point theorem, Ekeland’s variational principle and the nonconvex

minimization theorem. Recently, Suzuki [7] introduced the concept of generalization

metric distance, which is called τ-distance. By using concepts of τ-distance, he proved

some results on fixed point problems and also showed that the class of w-distance is

properly contained in the class of τ-distance. Most recently, Ume [11] introduced

another concept of distance as the following.
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Definition 1.1. [11]. Let (X, d) be a metric space. Then, a function p: X × X ® [0,

∞) is called u-distance on X if there exists a function θ: X × X × [0, ∞) × [0, ∞) ® [0,

∞) such that

(u1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z Î X;

(u2) θ(x, y, 0, 0) = 0 and θ(x, y, s, t) ≥ min{s, t} for all x, y Î X and s, t Î [0, ∞),

and for any x Î X and for every ε > 0, there exists δ > 0 such that |s - s0| <δ, |t -

t0| < δ, s, s0, t, t0 Î [0, ∞) and y Î X imply

| θ(x, y, s, t) − θ(x, y, s0, t0) | < ε; (1:2)

(u3)

lim
n→∞ xn = x,

lim
n→∞ sup{θ(wn, zn, p(wn, xm), p(zn, xm)) : m ≥ n} = 0

(1:3)

imply

p(y, x) ≤ lim inf
n→∞ p(y, xn) for all y ∈ X; (1:4)

(u4)

lim
n→∞ sup{p(xn, wm) : m ≥ n} = 0,

lim
n→∞ sup{p(yn, zm) : m ≥ n} = 0,

lim
n→∞ θ(xn, wn, sn, tn) = 0,

lim
n→∞ θ(yn, zn, sn, tn) = 0

(1:5)

imply

lim
n→∞ θ(wn, zn, sn, tn) = 0 (1:6)

or

lim
n→∞ sup{p(wm, xn) : m ≥ n} = 0,

lim
n→∞ sup{p(zm, yn) : m ≥ n} = 0,

lim
n→∞ θ(xn, wn, sn, tn) = 0,

lim
n→∞ θ(yn, zn, sn, tn) = 0

(1:7)
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imply

lim
n→∞ θ(wn, zn, sn, tn) = 0; (1:8)

(u5)

lim
n→∞ θ(wn, zn, p(wn, xn), p(zn, xn)) = 0,

lim
n→∞ θ(wn, zn, p(wn, yn), p(zn, yn)) = 0

(1:9)

imply

lim
n→∞ d(xn, yn) = 0 (1:10)

or

lim
n→∞ θ(an, bn, p(xn, an), p(xn, bn)) = 0,

lim
n→∞ θ(an, bn, p(yn, an), p(yn, bn)) = 0

(1:11)

imply

lim
n→∞ d(xn, yn) = 0. (1:12)

We give the following remark and example, which can be found in [11].

Remark 1.2. Suppose that θ: X × X × [0, ∞) × [0, ∞) ® [0, ∞) is a mapping satisfy-

ing (u2) ~ (u5). Then, there exists a mapping h: X × X × [0, ∞) × [0, ∞) ® [0, ∞) such

that h is nondecreasing in its third and fourth variable, respectively, satisfying (u2)h ~

(u5)h, where (u2)h ~ (u5)h stand for substituting h for θ in (u2) ~ (u5), respectively.

Example 1.3. Let p be a τ-distance on metric space (X, d), then p is also a u-distance

on X. On the other hand, let (X, || · ||) be a normed space then a function p: X × X ®
[0, ∞) defined by p(x, y) = ||x|| for every x, y Î X is a u-distance on X but not a τ-dis-

tance. These imply that the class of τ-distance is properly contained in the class of u-

distance.

In this paper, we will prove some fixed point theorems in metric spaces by using

such a u-distance concept. Consequently, as shown by Example 1.3, our results gener-

alize many of the existing results presented in metric spaces. Indeed, it provides more

choices of tool implements to check whether a fixed point of considered mapping

exists.

Our main results are concerned with the following class of mappings.

Definition 1.4. Let (X, d) be a metric space and 2X be a set of all nonempty subset

of X. A multi-valued mapping T: X ® 2X is called p-contractive if there exist a u-
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distance p on X and r Î [0, 1) such that for any x1, x2 Î X and y1 Î T(x1) there is y2 Î
T(x2) such that

p(y1, y2) ≤ rp(x1, x2). (1:13)

Remark 1.5. Definition 1.4 was introduced and its fixed point theorems were proved

in [9], but by using the concept of w-distance. Note that in the case p = d, the map-

ping T is called a contraction.

We now recall some basic concepts and well-known results.

Definition 1.6. [11]. Let (X, d) be a metric space and p be a u-distance on X. Then,

a sequence {xn} of X is called p-Cauchy sequence if there exists a sequence {zn} of X

such that

lim
n→∞ sup{θ(zn, zn, p(zn, xm), p(zn, xm)) : m ≥ n} = 0, (1:14)

or

lim
n→∞ sup{θ(zn, zn, p(xm, zn), p(xm, zn)) : m ≥ n} = 0. (1:15)

where θ: X × X × [0, ∞) × [0, ∞) ® [0, ∞) is a function satisfying (u2) ~ (u5) for a u-

distance p.

Lemma 1.7. [11]. Let (X, d) be a metric space and let p be a u-distance on X. Sup-

pose that a sequence {xn} of X satisfies

lim
n→∞ sup{p(xn, xm) : m ≥ n} = 0. (1:16)

or

lim
n→∞ sup{p(xm, xn) : m ≥ n} = 0. (1:17)

Then, {xn} is a p-Cauchy sequence.

Lemma 1.8. [11]. Let (X, d) be a metric space and let p be a u-distance on X. If {xn}

is a p-Cauchy sequence, then {xn} is a Cauchy sequence.

Lemma 1.9. [11]. Let (X, d) be a metric space and let p be a u-distance on X. Let x,

y Î X. If there exists z Î X such that p(z, x) = 0 and p(z, y) = 0, then x = y.

Definition 1.10. Let (X, d) be a metric space and T: X ® 2X be a mapping. For any

fixed x0 Î X, a sequence {xn} = {x0, x1, x2, ...} ⊂ X such that xn+1 Î T (xn) is called an

orbit of x0 with respect to mapping T. We will denote by O(T, x0) the set of all orbital

sequences of x0 with respect to mapping T.

2. Main results
From now on, in view of Remark 1.2, if θ: X × X × [0, ∞) × [0, ∞) ® [0, ∞) is a map-

ping satisfying (u2) ~ (u5) for the considered u-distance, we will always understand

that θ is a nondecreasing function in its third and fourth variables.

Inspired by an idea presented by Suzuki [8], we have an important tool for proving

our main result.

Lemma 2.1. Let (X, d) be a metric space and let p be a u-distance on X. If {xn} is a

p-Cauchy sequence and {yn} is a sequence satisfying

lim
n→∞ sup{p(xn, ym) : m ≥ n} = 0, (2:1)
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then {yn} is also a p-Cauchy sequence and lim
n→∞ d(xn, yn) = 0 .

Proof. Let θ: X × X × [0, ∞) × [0, ∞) ® [0, ∞) satisfying (u2) ~ (u5) for a u-distance

p. Since {xn} is a p-Cauchy sequence, there exists a sequence {zn} of X such that

lim
n→∞ sup{θ(zn, zn, p(zn, xm), p(zn, xm) : m ≥ n} = 0. (2:2)

Now, let {yn} be a sequence satisfying lim
n→∞ sup{p(xn, ym) : m ≥ n} = 0. Let us put

αn = sup{p(zn, xm) : m ≥ n},

and

βn = sup{p(xi, yj) : j > i ≥ n}.

We note that {bn} is a nonincreasing sequence and converge to 0. Thus, from (u2)

we can define a strictly increasing function f from N into itself such that

θ(zn, zn, αn + βf (n), αn + βf (n)) ≤ θ(zn, zn, αn, αn) +
1
n
, (2:3)

for all n Î N. Using such a function f, we now define a function g: N ® N by

g(n) =

{
1, if n < f (1),

k, if f (k) ≤ n < f (k + 1) for some k ∈ �.

Then, we can see that

• g(n) ≤ f (g(n)) ≤ n for all n Î N with g(n) ≥ 2.

• θ(zg(n), zg(n), αg(n) + βn, αg(n) + βn) ≤ θ(zg(n), zg(n), αg(n), αg(n)) + 1
g(n) .

• lim
n→∞ g(n) = ∞ .

Now we consider

lim sup
n→∞

sup{θ(zg(n), zg(n), p(zg(n), ym), p(zg(n), ym)) : m ≥ n}

≤ lim sup
n→∞

sup{θ(zg(n), zg(n), p(zg(n), xn) + p(xn, ym), p(zg(n), xn) + p(xn, ym)) : m ≥ n}

≤ lim sup
n→∞

θ(zg(n), zg(n), αg(n) + βn, αg(n) + βn)

≤ lim
n→∞

[
θ(zg(n), zg(n), αg(n), αg(n)) +

1
g(n)

]
= 0.

This means {yn} is a p-Cauchy sequence. Furthermore, since

lim sup
n→∞

θ(zg(n), zg(n), p(zg(n), xn), p(zg(n), xn)) ≤ lim
n→∞ θ(zg(n), zg(n), αg(n), αg(n)) = 0,

we have lim
n→∞ d(xn, yn) = 0 , by (u5). This completes the proof. □

Now we present our main results, which are related to p-contractive mapping.

Lemma 2.2. Let (X, d) be a metric space and let T: X ® 2X be a p-contractive map-

ping. Then, for each u0 Î X, there exists an orbit {un} ∈ O(T, u0)such that
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lim
n→∞ sup{p(un, um) : m ≥ n} = 0. (2:4)

Consequently, {un} is a p-Cauchy sequence.

Proof. Let u0 Î X be arbitrary and u1 Î T(u0) be chosen. Then, by T as a p-contrac-

tive mapping, there exists u2 Î T(u1) such that

p(u1, u2) ≤ rp(u0, u1).

For this u2 Î T(u1), again by T as a p-contractive, we can find u3 Î T(u2) such that

p(u2, u3) ≤ rp(u1, u2).

Continuing this process, we obtain a sequence {un} in X such that un+1 Î T(un) and

p(un, un+1) ≤ rp(un−1, un), for all n ∈ �.

Notice that we have

p(un, un+1) ≤ rp(un−1, un) ≤ r2p(un−2, un−1) ≤ · · · ≤ rnp(u0, u1),

for each n Î N. This gives,

p(un, um) ≤ p(un, un+1) + p(un+1, un+2) + · · · + p(um−1, um)

≤ rnp(u0, u1) + rn+1p(u0, u1) + · · · + rm−1p(u0, u1)

≤ rn

1 − r
p(u0, u1),

(2:5)

where n, m Î N with m ≥ n. Consequently,

0 ≤ lim
n→∞ sup{p(un, um) : m ≥ n} ≤ lim

n→∞
rn

1 − r
p(u0, u1) = 0. (2:6)

This proves the first part of this lemma. Furthermore, the second part is followed

from (2.6) and Lemma 1.7. □
Lemma 2.3. Let (X, d) be a complete metric space and T: X ® 2X be a p-contractive

mapping. Then, there exist a sequence {wn} and v0 in × such that {wn} ⊂ T(v0) and

{wn} converges to v0.

Proof. Let θ: X × X × [0, ∞) × [0, ∞) ® [0, ∞) be a mapping satisfying (u2) ~ (u5) for

this u-distance p.

Let u0 Î X be chosen. By Lemma 2.2, we know that there exists {un} ∈ O(T, u0)

such that {un} is a p-Cauchy sequence. Moreover, it satisfies

p(un, um) ≤ rn

1 − r
p(u0, u1), (2:7)

where n, m Î N with m ≥ n. Since {un} is a p-Cauchy sequence in a metric complete

space (X, d), it is a convergent sequence, say limn®∞ un = v0, for some v0 Î X. Conse-

quently, by (u3) and (2.7), we have

p(un, v0) ≤ lim inf
m→∞ p(un, um) ≤ rn

1 − r
p(u0, u1). (2:8)

For this v0 Î X, by using the p-contractiveness of mapping T, we can find a sequence

{wn} in T(v0) such that
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p(un,wn) ≤ rp(un−1, v0).

It follows that

p(un, wn) ≤ rp(un−1, v0) ≤ rn

1 − r
p(u0, u1), (2:9)

for any n Î N.

Now we show that {wn} converges to v0. In fact, since θ is a nondecreasing function

in its third and fourth variables, then (2.8) and (2.9) imply

lim
n→∞ θ(un, un, p(un, v0), p(un, v0)) = 0,

and

lim
n→∞ θ(un, un, p(un,wn), p(un,wn)) = 0.

Hence, by (u5), we conclude that limn®∞ d(v0, wn) = 0. This means that {wn} con-

verges to v0, and the proof is completed. □
For a metric space (X, d), we will denote by Cl(X) the set of all closed subsets of X.

In view of proving Lemma 2.3, we can obtain a fixed point theorem in the general

metric space setting.

Theorem 2.4. Let (X, d) be a metric space and T: X ® 2X be a p-contractive map-

ping. If there exist u0, v0 Î X and {un} ∈ O(T, u0)such that

(i) lim
n→∞ p(un, v0) = 0 ;

(ii) T(v0) ∈ Cl(X) .

Then, F(T) ≠ Ø. Furthermore, v0 Î F (T).

Next, we provide some fixed point theorems for p-contractive mapping in a complete

metric space. □
Theorem 2.5. Let (X, d) be a complete metric space and T: X ® Cl(X) be a p-con-

tractive mapping. Then, there exists v0 Î X such that v0 Î T (v0) and p(v0, v0) = 0.

Proof. Let u0 Î X be chosen. From Lemma 2.2 and Theorem 2.4, we know that there

exist a p-Cauchy sequence {un} ∈ O(T, u0) and v0 Î F(T) such that {un} converges to

v0,

lim
n→∞ sup{p(un, um) : m ≥ n} = 0, (2:10)

and

p(un, v0) ≤ rn

1 − r
p(u0, u1). (2:11)

We now show that p(v0, v0) = 0. Observe that, since T is a p-contractive mapping

and v0 Î T (v0), we can find v1 Î T (v0) such that

p(v0, v1) ≤ rp(v0, v0).

In fact, by using this process, we can obtain a sequence {vn} in X such that vn+1 Î T

(vn) and
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p(v0, vn+1) ≤ rp(v0, vn), for all n ∈ �.

It follows that

p(v0, vn) ≤ rp(v0, vn−1) ≤ · · · ≤ rnp(v0, v0). (2:12)

By using (2.11) and (2.12), we have

lim
n→∞ p(un, vn) ≤ lim

n→∞ [p(un, v0) + p(v0, vn)]

= 0.

Consequently, by using this one together with (2.10), we get

lim sup
n→∞

sup{p(un, vm) : m ≥ n} ≤ lim
n→∞ [sup{p(un, um) : m ≥ n}+sup{p(um, vm) : m ≥ n}] = 0. (2:13)

Thus, since {un} is a p-Cauchy sequence, we know from (2.13) and Lemma 2.1 that

{vn} is a p-Cauchy sequence and lim
n→∞ d(un, vn) = 0. Thus, since (X, d) is a complete

metric space, there exists x0 Î X such that lim
n→∞ vn = x0. Consequently, by using (u3),

we obtain

p(v0, x0) ≤ lim inf
n→∞ p(v0, vn) ≤ 0.

This implies

p(v0, x0) = 0. (2:14)

On the other hand, since lim
n→∞ un = v0 , lim

n→∞ vn = x0 and lim
n→∞ d(un, vn) = 0, we know

that x0 = v0. Hence, from (2.14), we conclude that p(v0, v0) = 0. This completes the

proof. □
Remark 2.6. Theorem 2.5 extends a result presented by Suzuki and Takahashi [9],

from the concept of w-distance to the concept of u-distance.

By using Theorem 2.5, we can obtain the following result.

Corollary 2.7. Let (X, d) be a complete metric space, and let T: X ® X be a p-con-

tractive mapping. Then, T has a unique fixed point v0 Î X. Further, such v0 satisfies p

(v0, v0) = 0.

Proof. It follows from Theorem 2.5 that there exists v0 Î X such that T(v0) = v0 and

p(v0, v0) = 0. Now if y0 = T(y0), we see that

p(v0, y0) = p(T(v0), T(y0)) ≤ rp(v0, y0),

where r Î [0, 1) satisfies the condition of p-contractive mapping T. Consequently,

since r Î [0, 1), we have p(v0, y0) = 0. Hence, by p(v0, v0) = 0 and Lemma 1.9, we con-

clude that v0 = y0. This completes the proof. □
Obviously, our Corollary 2.7 is a generalization of Banach contraction principle. Now

we provide an interesting example.

Example 2.8. Let a Î (1, ∞) be a fixed real number. Let c and d be two positive real

numbers such that c ∈ (
1, 2a+1a

)
and d ∈ (ac − a, ac − a

2) , respectively. Let X = [0, a]

and d: X × X ® [0, ∞) be a usual metric. Let us consider a mapping T: X ® X, which

is defined by
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Tx =
{ x

2 if x ∈ [0, dc ),
cx − d if x ∈ [ dc , a].

Observe that for each x, y ∈ [ dc , a] , we have

d(Tx, Ty) = c | x − y | > | x − y | = d(x, y),

since c >1. This fact implies that the Banach contraction principle cannot be used for

guaranteeing the existence of fixed point of our considered mapping T.

On the other hand, define now a function p: X × X ® [0, ∞) by

p(x, y) =| x |, for all x, y ∈ X.

It follows that p is a u-distance, see [11].

Let us choose r = ac−d
a . Notice that, by the choice of d, we have r ∈ ( 12 , 1) . We will

show that T satisfies all hypotheses of our Corollary 2.7, with respect to this real num-

ber r and u-distance p. To do this, we consider the following cases:

Case 1: If x ∈ [0, d
c ) . We have

p(Tx, Ty) = | Tx | = x

2
< rx = rp(x, y).

Case 2: If x ∈ [ dc , a] . We have

p(Tx, Ty) = | cx − d | ≤
(
ac − d

a

)
x = rp(x, y).

By using above facts, we can show that all assumptions of Corollary 2.7 are satisfied.

In fact, we can check that F(T) = {0}.

Remark 2.9. Example 2.8 shows that Corollary 2.7 is a genuine generalization of the

Banach contraction principle.
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