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Abstract

In this paper, we introduce and study some new classes of extended general
nonlinear regularized non-convex variational inequalities and the extended general
nonconvex Wiener-Hopf equations, and by the projection operator technique, we
establish the equivalence between the extended general nonlinear regularized
nonconvex variational inequalities and the fixed point problems as well as the
extended general nonconvex Wiener-Hopf equations. Then by using this equivalent
formulation, we discuss the existence and uniqueness of solution of the problem of
extended general nonlinear regularized nonconvex variational inequalities. We apply
the equivalent alternative formulation and a nearly uniformly Lipschitzian mapping S
for constructing some new p-step projection iterative algorithms with mixed errors
for finding an element of set of the fixed points of nearly uniformly Lipschitzian
mapping S which is unique solution of the problem of extended general nonlinear
regularized nonconvex variational inequalities. We also consider the convergence
analysis of the suggested iterative schemes under some suitable conditions.
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1 Introduction
The theory of variational inequalities, which was initially introduced by Stampacchia

[1] in 1964, is a branch of the mathematical sciences dealing with general equilibrium

problems. It has a wide range of applications in economics, optimizations research,

industry, physics, and engineering sciences. Many research papers have been written

lately, both on the theory and applications of this field. Important connections with

main areas of pure and applied sciences have been made, see for example [2,3] and the

references cited therein. The development of variational inequality theory can be

viewed as the simultaneous pursuit of two different lines of research. On the one hand,

it reveals the fundamental facts on the qualitative aspects of the solution to important

classes of problems; on the other hand, it also enables us to develop highly efficient

and powerful new numerical methods to solve, for example, obstacle, unilateral, free,

moving and the complex equilibrium problems. One of the most interesting and
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important problems in variational inequality theory is the development of an efficient

numerical method. There is a substantial number of numerical methods including pro-

jection method and its variant forms, Wiener-Holf (normal) equations, auxiliary princi-

ple, and descent framework for solving variational inequalities and complementarity

problems. For the applications on physical formulations, numerical methods and other

aspects of variational inequalities, see [1-52] and the references therein.

Projection method and its variant forms represent important tool for finding the

approximate solution of various types of variational and quasi-variational inequalities,

the origin of which can be traced back to Lions and Stampacchia [31]. The projection

type methods were developed in 1970’s and 1980’s. The main idea in this technique is

to establish the equivalence between the variational inequalities and the fixed point

problems using the concept of projection. This alternate formulation enables us to sug-

gest some iterative methods for computing the approximate solution. Shi [50,51] and

Robinson [48] considered the problem of solving a system of equations which are

called the Wiener-Hopf equations or normal maps. Shi [50] and Robinson [48] proved

that the variational inequalities and the Wiener-Hopf equations are equivalent by using

the projection technique. It turned out that this alternative equivalent formulation is

more general and flexible. It has shown in [48-53] that the Wiener-Hopf equations

provide us a simple, elegant and convenient device for developing some efficient

numerical methods for solving variational inequalities and complementarity problems.

It should be pointed that almost all the results regarding the existence and iterative

schemes for solving variational inequalities and related optimizations problems are

being considered in the convexity setting. Consequently, all the techniques are based

on the properties of the projection operator over convex sets, which may not hold in

general, when the sets are nonconvex. It is known that the uniformly prox-regular sets

are nonconvex and include the convex sets as special cases, for more details, see for

example [23,28,29,46]. In recent years, Bounkhel et al. [23], Noor [36,41] and Pang et

al. [45] have considered variational inequalities in the context of uniformly prox-regu-

lar sets.

On the other hand, related to the variational inequalities, we have the problem of

finding the fixed points of the nonexpansive mappings, which is the subject of current

interest in functional analysis. It is natural to consider a unified approach to these two

different problems. Motivated and inspired by the research going in this direction,

Noor and Huang [43] considered the problem of finding the common element of the

set of the solutions of variational inequalities and the set of the fixed points of the

nonexpansive mappings. Noor [38] suggested and analyzed some three-step iterative

algorithms for finding the common elements of the set of the solutions of the Noor

variational inequalities and the set of the fixed points of nonexpansive mappings. He

also discussed the convergence analysis of the suggested iterative algorithms under

some conditions.

Recently, Qin and Noor [47] established the equivalence between general variational

inequalities and general Wiener-Hopf equations. They proposed and analyzed a new

iterative method for solving variational inequalities and related optimization problems.

They also considered the problem of finding a comment element of fixed points of

nonexpansive mappings and the set of solution of the general variational inequalities.
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It is well known that every nonexpansive mapping is a Lipschitzian mapping.

Lipschitzian mappings have been generalized by various authors. Sahu [53] introduced

and investigated nearly uniformly Lipschitzian mappings as generalization of Lipschit-

zian mappings.

Motivated and inspired by the above works, at the present paper, some new classes

of the extended general nonlinear regularized nonconvex variational inequalities and

the extended general nonconvex Wiener-Hopf equations are introduced and studied,

and by the projection technique, the equivalence between the extended general non-

linear regularized nonconvex variational inequalities and the fixed point problems as

well as the extended general nonconvex Wiener-Hopf equations is proved. Then by

using this equivalent formulation, the existence and uniqueness of solution of the pro-

blem of extended general nonlinear regularized nonconvex variational inequalities are

discussed. Applying the equivalent alternative formulation and a nearly uniformly

Lipschitzian mapping S, some new p-step projection iterative algorithms with mixed

errors for finding an element of the set of fixed points of nearly uniformly Lipschitzian

mapping S which is a unique solution of the problem of extended general nonlinear

regularized nonconvex variational inequalities are defined. The convergence analysis of

the suggested iterative schemes under some suitable conditions is discussed. Some

remarks about established statements by Noor [38], Noor et al. [44] and Qin and Noor

[47] are presented. Also, this fact that their statements are special cases of our results

is shown. The results obtained in this paper may be viewed as an refinement and

improvement of the previously known results.

2 Preliminaries and basic results
Throughout this article, we will let H be a real Hilbert space which is equipped with

an inner product 〈.,.〉 and corresponding norm ||cdot|| and K be a nonempty convex

subset of H . We denote by dK(·) or d(., K) the usual distance function to the subset K,

i.e., dK(u) = inf
v∈K

||u − v|| . Let us recall the following well-known definitions and some

auxiliary results of nonlinear convex analysis and nonsmooth analysis [27-29,46].

Definition 2.1. Let u ∈ H is a point not lying in K. A point v Î K is called a closest

point or a projection of u onto K if dK(u) = ||u - v||. The set of all such closest points

is denoted by PK(u), i.e.,

PK(u) := {v ∈ K : dK(u) = ||u − v||}.

Definition 2.2. The proximal normal cone of K at a point u ∈ H with u ∉ K is given

by

NP
K(u) := {ξ ∈ H : u ∈ PK(u + αξ) for some α > 0}.

Clarke et al. [28], in Proposition 1.1.5, give a characterization of NP
K(u) as follows:

Lemma 2.3. Let K be a nonempty closed subset in H . Then ξ ∈ NP
K(u)if and only if

there exists a constant a = a (ξ, u) >0 such that 〈ξ, v - u〉 ≤ a||v - u||2 for all v Î K.

The above inequality is called the proximal normal inequality. The special case in

which K is closed and convex is an important one. In Proposition 1.1.10 of [28], the

authors give the following characterization of the proximal normal cone the closed and

convex subset K ⊂ H :
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Lemma 2.4. Let K be a nonempty closed and convex subset in H . Then ξ ∈ NP
K(u)if

and only if 〈ξ, v - u〉 ≤ 0 for all v Î K.

Definition 2.5. Let X is a real Banach space and f : X ® ℝ be Lipschitzian with con-

stant τ near a given point x Î X, that is, for some ε >0, we have |f(y) - f(z)| ≤ τ||y - z||

for all y, z Î B(x; ε), where B(x; ε) denotes the open ball of radius r >0 and centered at

x. The generalized directional derivative of f at x in the direction v, denoted by f°(x; v),

is defined as follows:

f ◦(x; v) = lim sup
y→x,t↓0

f (y + tv) − f (y)
t

,

where y is a vector in X and t is a positive scalar.

The generalized directional derivative defined earlier can be used to develop a notion

of tangency that does not require K to be smooth or convex.

Definition 2.6. The tangent cone TK(x) to K at a point x in K is defined as follows:

TK(x) := {v ∈ H : d◦
K(x; v) = 0}.

Having defined a tangent cone, the likely candidate for the normal cone is the one

obtained from TK(x) by polarity. Accordingly, we define the normal cone of K at x by

polarity with TK(x) as follows:

NK(x) := {ξ : 〈ξ , v〉 ≤ 0, ∀v ∈ TK(x)}.

Definition 2.7. The Clarke normal cone, denoted by NC
K(x) , is given by

NC
K(x) = co[NP

K(x)] , where co[S] means the closure of the convex hull of S. It is clear

that one always has NP
K(x) ⊆ NC

K(x) . The converse is not true in general. Note that

NC
K(x) is always closed and convex cone, whereas NP

K(x) is always convex, but may

not be closed (see [27,28,46]).

In 1995, Clarke et al. [29] introduced and studied a new class of nonconvex sets

called proximally smooth sets; subsequently, Poliquin et al. in [46] investigated the

aforementioned sets, under the name of uniformly prox-regular sets. These have been

successfully used in many nonconvex applications in areas such as optimizations, eco-

nomic models, dynamical systems, differential inclusions, etc. For such as applications

see [20-22,24]. This class seems particularly well suited to overcome the difficulties

which arise due to the nonconvexity assumptions on K. We take the following charac-

terization proved in [29] as a definition of this class. We point out that the original

definition was given in terms of the differentiability of the distance function (see [29]).

Definition 2.8. For any r Î (0, +∞], a subset Kr of H is called normalized uniformly

prox-regular (or uniformly r-prox-regular [29]) if every nonzero proximal normal to Kr

can be realized by an r-ball.

This means that for all x̄ ∈ Kr and 0 �= ξ ∈ NP
Kr
(x̄) with ||ξ|| = 1,

〈ξ , x − x̄〉 ≤ 1
2r

||x − x̄||2, ∀x ∈ Kr .

Obviously, the class of normalized uniformly prox-regular sets is sufficiently large to

include the class of convex sets, p-convex sets, C1,1 submanifolds (possibly with
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boundary) of H , the images under a C1,1 diffeomorphism of convex sets and many

other nonconvex sets, see [25,29].

Lemma 2.9. [29]A closed set K ⊆ H is convex if and only if it is proximally smooth

of radius r for every r >0.

If r = +∞, then in view of Definition 2.8 and Lemma 2.9, the uniform r-prox-regular-

ity of Kr is equivalent to the convexity of Kr, which makes this class of great impor-

tance. For the case of that r = +∞, we set Kr = K.

The following proposition summarizes some important consequences of the uniform

prox-regularity needed in the sequel. The proof of this results can be found in [29,46].

Proposition 2.10. Let r >0 and Kr be a nonempty closed and uniformly r-prox-regu-

lar subset of H . Set U(r) = {u ∈ H : 0 < dKr (u) < r} . Then the following statements

hold:

(a) For all x Î U(r), one has PKr(x) �= ∅ ;
(b) For all r’ Î (0, r), PKr is Lipschitzian continuous with constant r

r−r′ on

U(r′) = {u ∈ H : 0 < dKr (u) < r′} ;
(c) The proximal normal cone is closed as a set-valued mapping.

As a direct consequent of part (c) of Proposition 2.10, we have NC
Kr
(x) = NP

Kr
(x) .

Therefore, we will define NKr(x) := NC
Kr
(x) = NP

Kr
(x) for such a class of sets.

In order to make clear the concept of r-prox-regular sets, we state the following con-

crete example: The union of two disjoint intervals [a, b] and [c, d] is r-prox-regular

with r = c−b
2 . The finite union of disjoint intervals is also r-prox-regular and r depends

on the distances between the intervals.

Definition 2.11. Let T, g : H → H be two single-valued operators. Then the opera-

tor T is said to be:

(a) monotone if

〈T(x) − T(y), x − y〉 ≥ 0, ∀x, y ∈ H;

(b) r-strongly monotone if there exists a constant r >0 such that

〈T(x) − T(y), x − y〉 ≥ r||x − y||2, ∀x, y ∈ H;

(c) �-strongly monotone with respect to g if there exists a constant � >0 such that

〈T(x) − T(y), g(x) − g(y)〉 ≥ κ||x − y||2, ∀x, y ∈ H;
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(d) (ξ, ς)-relaxed co-coercive if there exist constants ξ, ς >0 such that

〈T(x) − T(y), x − y〉 ≥ − ξ ||T(x) − T(y)||2 + ς ||x − y||2, ∀x, y ∈ H;

(e) g-Lipschitzian continuous if there exists a constant g >0 such that

||T(x) − T(y)|| ≤ γ ||x − y||, ∀x, y ∈ H.

In the next definitions, several generalizations of the nonexpansive mappings which

have been introduced by various authors in recent years are stated.

Definition 2.12. A nonlinear mapping T : H → H is said to be:

(a) nonexpansive if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ H;

(b) L-Lipschitzian if there exists a constant L >0 such that

||Tx − Ty|| ≤ L||x − y||, ∀x, y ∈ H;

(c) generalized Lipschitzian if there exists a constant L >0 such that

||Tx − Ty|| ≤ L(||x − y|| + 1), ∀x, y ∈ H;

(d) generalized (L, M)-Lipschitzian [53] if there exist two constants L, M >0 such

that

||Tx − Ty|| ≤ L(||x − y|| + M), ∀x, y ∈ H;

(e) asymptotically nonexpansive [54] if there exists a sequence {kn} ⊆ [1, ∞) with

lim
n→∞ kn = 1 such that, for each n Î N,

||Tnx − Tny|| ≤ kn||x − y||, ∀x, y ∈ H;

(f) pointwise asymptotically nonexpansive [55] if, for each integer n Î N,

||Tnx − Tny|| ≤ αn(x)||x − y||, ∀x, y ∈ H,

where an ® 1 pointwise on X;
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(g) uniformly L-Lipschitzian if there exists a constant L >0 such that, for each n Î
N,

||Tnx − Tny|| ≤ L||x − y||, ∀x, y ∈ H.

Definition 2.13. [53] A nonlinear mapping T : H → H is said to be:

(a) nearly Lipschitzian with respect to the sequence {an} if for each n Î N, there

exists a constant kn >0 such that

||Tnx − Tny|| ≤ kn(||x − y|| + an), ∀x, y ∈ H, (2:1)

where {an} is a fix sequence in [0, ∞) with an ® 0 as n ® ∞.

The infimum of constants kn in (2.1) is called nearly Lipschitz constant, which is

denoted by h(T n). Notice that

η(Tn) = sup
{ ||Tnx − Tny||

||x − y|| + an
: x, y ∈ H, x �= y

}
.

A nearly Lipschitzian mapping T with the sequence {(an, h(T n))} is said to be:

(b) nearly nonexpansive if h(Tn) = 1 for all n Î N, that is,

||Tnx − Tny|| ≤ ||x − y|| + an, ∀x, y ∈ H;

(c) nearly asymptotically nonexpansive if h(Tn) ≤ 1 for all n Î N and

lim
n→∞ η(Tn) = 1, in other words, kn ≥ 1 for all n Î N with lim

n→∞ kn = 1 ;

(d) nearly uniformly L-Lipschitzian if h(Tn) ≤ L for all n Î N, in other words, kn =

L for all n Î N.

Remark 2.14. It should be pointed that

(1) Every nonexpansive mapping is a asymptotically nonexpansive mapping and

every asymptotically non-expansive mapping is a pointwise asymptotically nonex-

pansive mapping. Also, the class of Lipschitzian mappings properly includes the

class of pointwise asymptotically nonexpansive mappings.

(2) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian map-

ping. Furthermore, every mapping with a bounded range is a generalized Lipschit-

zian mapping. It is easy to see that the class of generalized (L, M)-Lipschitzian

mappings is more general that the class of generalized Lipschitzian mappings.

(3) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes

the class of generalized (L, M)-Lipschitzian mappings and that of uniformly L-

Lipschitzian mappings. Note that every nearly asymptotically nonexpansive map-

ping is nearly uniformly L-Lipschitzian.
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Now, we present some new examples to investigate relations between these

mappings.

Example 2.15. Let H = R and define a mapping T : H → H as follow:

T(x) =
{ 1

γ
x ∈ [0, γ ],

0 x ∈ (−∞, 0) ∪ (γ ,∞),

where g >1 is a constant real number. Evidently, the mapping T is discontinuous at

the points x = 0, g. Since every Lipschitzian mapping is continuous, it follows that T is

not Lipschitzian. For each n Î N, take an = 1
γ n . Then,

|Tx − Ty| ≤ |x − y| + 1
γ

= |x − y| + a1, ∀x, y ∈ R.

Since Tnz = 1
γ for all z Î ℝ and n ≥ 2, it follows that for all x, y Î ℝ and n ≥ 2,

|Tnx − Tny| ≤ |x − y| + 1
γ n

= |x − y| + an.

Hence T is a nearly nonexpansive mapping with respect to the sequence {an} = { 1
γ n } .

The following example shows that the nearly uniformly L-Lipschitzian mappings are

not necessarily continuous.

Example 2.16. Let H = [0, b] , where b Î (0, 1] is an arbitrary constant real number,

and the self-mapping T of H be defined as below:

T(x) =
{

γ x x ∈ [0, b),
0 x = b,

where g Î (0, 1) is also an arbitrary constant real number. It is plain that the map-

ping T is discontinuous in the point b. Hence T is not a Lipschitzian mapping. For

each n Î N, take an = gn-1. Then, for all n Î N and x, y Î [0, b), we have

|Tnx − Tny| = |γ nx − γ ny| = γ n|x − y| ≤ γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

If x Î [0, b) and y = b, then, for each n Î N, we have Tnx = gnx and Tny = 0. Since 0

<|x - y| ≤ b ≤ 1, it follows that, for all n Î N,

|Tnx − Tny| = |γ nx − 0| = γ nx ≤ γ nb ≤ γ n < γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

Hence T is a nearly uniformly g-Lipschitzian mapping with respect to the sequence

{an} = {gn-1}.
Obviously, every nearly nonexpansive mapping is a nearly uniformly Lipschitzian

mapping. In the following example, we show that the class of nearly uniformly

Lipschitzian mappings properly includes the class of nearly nonexpansive mappings.
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Example 2.17. Let H = R and the self-mapping T of H be defined as follow:

T(x) =

⎧⎨
⎩

1
2 x ∈ [0, 1) ∪ {2},
2 x = 1,
0 x ∈ (−∞, 0) ∪ (1, 2) ∪ (2, +∞).

Evidently, the mapping T is discontinuous in the points x = 0, 1, 2. Hence T is not a

Lipschitzian mapping. Take for each n Î N, an = 1
2n . Then T is not a nearly nonexpan-

sive mapping with respect to the sequence { 1
2n }, because taking x = 1 and y = 1

2 , we

have Tx = 2, Ty = 1
2 and

|Tx − Ty| > |x − y| + 1
2
= |x − y| + a1.

However,

|Tx − Ty| ≤ 4
(

|x − y| + 1
2

)
= 4(|x − y| + a1), ∀x, y ∈ R

and for all n ≥ 2,

|Tnx − Tny| ≤ 4
(

|x − y| + 1
2n

)
= 4(|x − y| + an), ∀x, y ∈ R,

since Tnz = 1
2 for all z Î ℝ and n ≥ 2. Hence, for each L ≥ 4, T is a nearly uniformly

L-Lipschitzian mapping with respect to the sequence { 1
2n }.

It is clear that every uniformly L-Lipschitzian mapping is a nearly uniformly L-

Lipschitzian mapping. In the next example, we show that the class nearly uniformly L-

Lipschitzian mappings properly includes the class of uniformly L-Lipschitzian

mappings.

Example 2.18. Let H = R and let the self-mapping T of H be defined the same as

in Example 2.17. Then T is not a uniformly 4-Lipschitzian mapping. In fact, if x = 1

and y ∈ (1, 32) , then we have |Tx - Ty| > 4|x - y| because 0 < |x − y| < 1
2. But, in

view of Example 2.17, T is a nearly uniformly 4-Lipschitzian mapping.

The following example shows that the class of generalized Lipschitzian mappings

properly includes the class of Lipschitzian mappings and that of mappings with

bounded range.

Example 2.19. [26] Let H = R and a mapping T : H → H be defined by

T(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 1 x ∈ (−∞,−1),

x −
√
1 − (x + 1)2 x ∈ [−1, 0),

x +
√
1 − (x − 1)2 x ∈ [0, 1],

x + 1 x ∈ (1,∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and whose

range is not bounded.
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3 Extended general regularized nonconvex variational inequality
In this section, we introduce a new problem of extended general nonlinear regularized

nonconvex variational inequality and some special cases of the problem in Hilbert

spaces and investigate their relations.

Let T, f , g : H → H be three nonlinear single-valued operators such that Kr ⊆ f (H) .

We consider the problem of finding u ∈ H such that g(u) Î Kr and

〈ρT(u) + g(u) − f (u), f (v) − g(u)〉 + 1
2r

||f (v) − g(u)||2 ≥ 0, ∀v ∈ H : f (v) ∈ Kr , (3:1)

where r >0 is a constant. The problem (3.1) is called the extended general nonlinear

regularized nonconvex variational inequality involving three different nonlinear opera-

tors (EGNRNVID).

Proposition 3.1. If Kr is a uniformly prox-regular set, then the problem (3.1) is

equivalent to that of finding u ∈ H such that g(u) Î Kr and

0 ∈ ρT(u) + g(u) − f (u) +NP
Kr
(g(u)), (3:2)

where NP
Kr
(s) denotes the P-normal cone of Kr at s in the sense of nonconvex analysis.

Proof. Let u ∈ H with g(u) Î Kr be a solution of the problem (3.1). If rT(u) + g(u) -

f(u) = 0, because the vector zero always belongs to any normal cone, we have

0 ∈ ρT(u) + g(u) − f (u) +NP
Kr
(g(u)) . If rT(u) + g(u) - f(u) ≠ 0, then for all v ∈ H

with f(v) Î Kr, one has

〈−(ρT(u) + g(u) − f (u)), f (v) − g(u)〉 ≤ 1
2r

||f (v) − g(u)||2.

Now, by using Lemma 2.3 conclude that −(ρT(u) + g(u) − f (u)) ∈ NP
Kr
(g(u))and so

0 ∈ ρT(u) + g(u) − f (u) +NP
Kr
(g(u)).

Conversely, if u ∈ H with g(u) Î Kr is a solution of the problem (3.2), then Defini-

tion 2.8 guarantees that u ∈ H with g(u) Î Kr is a solution of the problem (3.1). This

completes the proof.

The problem (3.2) is called the extended general nonconvex variational inclusion

associated with EGNRNVID problem.

Some special cases of the problem (3.1) are as follows:

(1) If g ≡ I (: the identity operator), then the problem (3.1) collapses to the follow-

ing problem: Find u Î Kr such that

〈ρT(u) + u − f (u), f (v) − u〉 + 1
2r

||f (v) − u||2 ≥ 0, ∀v ∈ H : f (v) ∈ Kr , (3:3)

which is a new problem of general nonlinear regularized nonconvex variational

inequality involving two nonlinear operators (GNRNVID).

(2) If f = g, then the problem (3.1) reduces to the following problem: Find u ∈ H
such that g(u) Î Kr and
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〈ρT(u), g(v) − g(u)〉 + 1
2r

||g(v) − g(u)||2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr , (3:4)

which is also a new problem of general nonlinear regularized nonconvex variational

inequality involving two nonlinear operators (GNRNVID).

(3) If g ≡ I, then the problem (3.4) collapses to the following problem: Find u Î Kr

such that

〈ρT(u), v − u〉 + 1
2r

||v − u||2 ≥ 0, ∀v ∈ Kr , (3:5)

which is a new problem of nonlinear regularized nonconvex variational inequality

(NRNVI).

(4) If r = ∞, i.e., Kr = K, the convex set in H , then the problem (3.1) changes into

that of finding u ∈ H such that g(u) Î K and

〈ρT(u) + g(u) − f (u), f (v) − g(u)〉 ≥ 0, ∀v ∈ H : f (v) ∈ K. (3:6)

The inequality of type (3.6) is introduced and studied by Noor [33,39].

(5) If r = ∞, then the problem (3.3) is equivalent to the problem: Find u Î K such

that

〈ρT(u) + u − f (u), f (v) − u〉 ≥ 0, ∀v ∈ H : f (v) ∈ K. (3:7)

The problem (3.7) is introduced and studied by Noor [34].

(6) If r = ∞, then the problem (3.4) reduces to the following problem: Find u ∈ H
such that g(u) Î K and

〈T(u), g(v) − g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (3:8)

which is known as the general nonlinear variational inequality introduced and stu-

died by Noor [37] in 1988.

(7) If r = ∞, then the problem (3.5) changes into the problem: Find u Î K such

that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K. (3:9)

The inequality of type (3.9) is called variational inequality, which was introduced

and studied by Stampacchia [1] in 1964.

Now, we prove the existence and uniqueness theorem for solution of the problem of

extended general nonlinear regularized nonconvex variational inequality (3.1). For this

end, we need to the following lemma in which by using the projection operator techni-

que, we verify the equivalence between the problem (3.1) and the fixed point problem.

Lemma 3.2. Let T, f, g and r >0 be the same as in the problem (3.1). Then u ∈ H
with g(u) Î Kr is a solution of the problem (3.1) if and only if
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g(u) = PKr(f (u) − ρT(u)), (3:10)

where PKr is the projection of H onto Kr.

Proof. Let u ∈ H with g(u) Î Kr be a solution of the problem (3.1). Then, by using

Proposition 3.1, we have

0 ∈ ρT(u) + g(u) − f (u) +NP
Kr
(g(u))

⇔ f (u) − ρT(u) ∈ g(u) +NP
Kr
(g(u))

⇔ f (u) − ρT(u) ∈ (I +NP
Kr
)(g(u))

⇔ g(u) = PKr (f (u) − ρT(u)),

where I is identity operator and we have used the well-known fact that

PKr = (I +NP
Kr
)−1 .

Theorem 3.3. Let T, f, g and r be the same as in the problem (3.1) such that

(a) T is �-strongly monotone with respect to f and s-Lipschitz continuous;

(b) g is τ-strongly monotone and ι-Lipschitz continuous;

(c) f is ϖ-Lipschitz continuous.

If the constant r >0 satisfies the following condition:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|ρ − κ

σ 2
| <

√
r2κ2− σ 2(r2
 2− (r−r′)2(1−μ)2)

rσ 2 ,

rκ > σ

√
r2
 2 − (r − r′)2(1 − μ)2,

r
 > (r − r′)(1 − μ), μ =
√
1 − (2τ − ι2) < 1,

2τ < 1 + ι2,

(3:11)

where r’ Î (0, r), then the problem (3.1) admits a unique solution.

Proof. Define the mapping φ : H → H by

φ(x) = x − g(x) + PKr(f (x) − ρT(x)), ∀x ∈ H : g(x) ∈ Kr . (3:12)

Now, we establish that j is a contraction mapping. Let x, x̂ ∈ H with g(x), g(x̂) ∈ Kr

be given. It follows from Proposition 2.10 that

||φ(x) − φ(x̂)|| ≤ ||x − x̂ − (g(x) − g(x̂))|| + ||PKr (f (x) − ρT(x)) − PKr (f (x̂) − ρT(x̂))||
≤ ||x − x̂ − (g(x) − g(x̂))|| + r

r − r′
||f (x) − f (x̂) − ρ(T(x) − T(x̂))||. (3.13)

By using τ-strongly monotonicity and ι-Lipschitzian continuity of g, we have

||x − x̂ − (g(x) − g(x̂))||2 = ||x − x̂||2 − 2〈g(x) − g(x̂), x − x̂〉 + ||g(x) − g(x̂)||2
≤ (1 − 2τ + ι2)||x − x̂||2.

(3:14)

Since T is �-strongly monotone with respect to f and s-Lipschitzian continuous, and

f is ϖ-Lipschitzian continuous, we gain

||f (x) − f (x̂) − ρ(T(x) − T(x̂))||2
= ||f (x) − f (x̂)||2 − 2ρ〈T(x) − T(x̂), f (x) − f (x̂)〉 + ρ2||T(x) − T(x̂)||2
≤ (
 2 − 2ρκ + ρ2σ 2)||x − x̂||2.

(3:15)
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Substituting (3.14) and (3.15) for (3.13), we obtain

||φ(x) − φ(x̂)|| ≤ γ ||x − x̂|| (3:16)

where

γ =
√
1 − 2τ + ι2 +

r
r − r′

√

 2 − 2ρκ + ρ2σ 2. (3:17)

In view of the condition (3.11), we note that 0 ≤ g <1 and so from (3.16) conclude

that the mapping j is contraction. According to Banach fixed point theorem, j has a

unique fixed point in H , that is, there exists a unique point u ∈ H with g(u) Î Kr

such that j(u) = u. It follows from (3.12) that g(u) = PKr (f (u) − ρT(u)). Now, Lemma

3.2 guarantees that u ∈ H with g(u) Î Kr is a solution of the problem (3.1). This com-

pletes the proof.

As in the proof of Theorem 3.3, one can prove the existence and uniqueness theo-

rem for solution of the problems (3.3)-(3.5) and we omit their proofs.

Theorem 3.4. Assume that T, f and r are the same as in the problem (3.3) such that

(a) T is �-strongly monotone with respect to f and s-Lipschitz continuous;

(b) f is ϖ-Lipschitz continuous.

If the constant r >0 satisfies the following condition:⎧⎪⎪⎨
⎪⎪⎩

|ρ − κ
σ 2 | <

√
r2κ2− σ 2(r2
 2−(r−r′)2)

rσ 2 ,

rκ > σ

√
r2
 2 − (r − r′)2,

r
 > (r − r′),

(3:18)

where r’ Î (0, r), then the problem (3.3) admits a unique solution.

Theorem 3.5. Let T, g and r be the same as in the problem (3.4) such that

(a) T is �-strongly monotone with respect to f and s-Lipschitz continuous;

(b) g is τ-strongly monotone and ι-Lipschitz continuous.

If the constant r >0 satisfies the following condition:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|ρ − κ
σ 2 | <

√
r2κ2−σ 2(r2ι2−(r−r′)2(1−μ)2)

rσ 2 ,

rκ > σ

√
r2ι2 − (r − r′)2(1 − μ)2,

rι > (r − r′)(1 − μ), μ =
√
1 − (2τ − ι2) < 1,

2τ < 1 + ι2,

(3:19)

where r’ Î (0, r), then the problem (3.4) admits a unique solution.

Theorem 3.6. Suppose that T and r are the same as in the problem (3.5) such that T

is �-strongly monotone and s-Lipschitz continuous. If the constant r >0 satisfies the fol-

lowing condition:

|ρ − κ

σ 2
| <

√
r2κ2 − σ 2r′(r′ − 2r)

rσ 2
, (3:20)
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where r’ Î (0, r), then the problem (3.5) admits a unique solution.

4 Nearly uniformly Lipschitzian mappings and finite step projection iterative
algorithms
In this section, applying a nearly uniformly Lipschitzian mapping S and by using the

fixed point formulation (3.10), we suggest and analyze some new p-step projection

iterative algorithms with mixed errors for finding an element of set of the fixed points

of nearly uniformly Lipschitzian mapping S which is unique solution of the problem of

extended general nonlinear regularized nonconvex variational inequality (3.1).

Let S : Kr ® Kr be a nearly uniformly Lipschitzian mapping. We denote the set of all

the fixed points of S by Fix(S) and the set of all the solutions of the problem (3.1) by

EGNRNVID(Kr, T, f, g). We now characterize the problem. If u Î Fix(S) ∩ EGNRN-

VID(Kr, T, f, g), then it follows from Lemma 3.2 that, for each n ≥ 0,

u = Snu = u − g(u) + PKr(f (u) − ρT(u)) = Sn{u − g(u) + PKr(f (u) − ρT(u))}. (4:1)

The fixed point formulation (4.1) enables us to define the following p-step projection

iterative algorithms with mixed errors for finding a common element of two different

sets of solutions of the fixed points of the nearly uniformly Lipschitzian mappings and

the extended general nonlinear regularized nonconvex variational inequalities (3.1).

Algorithm 4.1. Let T, f, g and r be the same as in the problem (3.1). For arbitrary

chosen initial point x0 Î Kr, compute the iterative sequence {xn}∞n=0 by the iterative

process

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(Sn�(yn,1) + en,1) + βn,1ln,1 + rn,1,

yn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(Sn�(yn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
yn,p−1 = (1 − αn,p − βn,p)xn + αn,p(Sn�(xn) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

.

(4:2)

where⎧⎨
⎩

�(yn,i) = yn,i − g(yn,i) + PKr(f (yn,i) − ρT(yn,i)),
�(xn) = xn − g(xn) + PKr(f (xn) − ρT(xn)),
i = 1, 2, . . . , p − 2,

S : Kr ® Kr is a nearly uniformly Lipschitzian mapping, {αn,i}∞n=0 ,
{βn,i}∞n=0(i = 1, 2, . . . , p) are 2p sequences in interval [0,1] such that∑∞

n=0 βn,i < ∞ ,
∑∞

n=0 βn,i < ∞ , and {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are 3p

sequences in H to take into account a possible inexact computation of the resolvent

operator point satisfying the following conditions: {ln,i}∞n=0(i = 1, 2, . . . , p) are p

bounded sequences in H and
∑∞

n=0 βn,i < ∞ , {rn,i}∞n=0 are 2p sequences in H such

that
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⎧⎪⎪⎨
⎪⎪⎩
en,i = e′n,i + e′′n,i, n ≥ 0, i = 1, 2, . . . , p,
lim
n→∞ ||e′n,i|| = 0, i = 1, 2, . . . , p,
∞∑
n=0

||e′′n,i|| < ∞,
∞∑
n=0

||rn,i|| < ∞, i = 1, 2, . . . , p.
(4:3)

Algorithm 4.2. Assume that T, f and r are the same as in the problem (3.3). For

arbitrary chosen initial point x0 Î Kr, compute the iterative sequence {xn}∞n=0 by the

iterative process
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(SnPKr(f (yn,1) − ρT(yn,1)) + en,1) + βn,1ln,1 + rn,1,

yn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(SnPKr(f (yn,i+1) − ρT(yn,i+1)) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
yn,p−1 = (1 − αn,p − βn,p)xn + αn,p(SnPKr(f (xn) − ρT(xn)) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as

in Algorithm 4.1.

Algorithm 4.3. Let T, g and r be the same as in the problem (3.4). For arbitrary

chosen initial point x0 Î Kr, compute the iterative sequence {xn}∞n=0 as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(Sn�(yn,1) + en,1) + βn,1ln,1 + rn,1,
yn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(Sn�(yn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,
· · ·
yn,p−1 = (1 − αn,p − βn,p)xn + αn,p(Sn�(xn) + en,p) + βn,pln,p + rn,p,
i = 1, 2, . . . , p − 2,

where⎧⎨
⎩

�(yn,i) = yn,i − g(yn,i) + PKr(g(yn,i) − ρT(yn,i)),
�(xn) = xn − g(xn) + PKr(g(xn) − ρT(xn)),
i = 1, 2, . . . , p − 2,

and S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as in

Algorithm 4.1.

Algorithm 4.4. Let T and r be the same as in the problem (3.5). For arbitrary cho-

sen initial point x0 Î Kr, compute the iterative sequence {xn}∞n=0 by using

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(SnPKr(yn,1 − ρT(yn,1)) + en,1) + βn,1ln,1 + rn,1,

yn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(SnPKr(yn,i+1 − ρT(yn,i+1)) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
yn,p−1 = (1 − αn,p − βn,p)xn + αn,p(SnPKr(xn − ρT(xn)) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as

in Algorithm 4.1.

Remark 4.5. It should be pointed out that

(1) If en,i = rn,i = 0, for all n ≥ 0 and i = 1, 2,..., p, then Algorithms 4.1-4.4 change

into the perturbed iterative process with mean errors.

(2) When en,i = ln,i = rn,i = 0, for all n ≥ 0 and i = 1, 2,..., p, then Algorithms 4.1-4.4

reduce to the perturbed iterative process without error.
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Remark 4.6. Algorithms 2.1-2.6 in [38] and Algorithm 2.1 in [44] are special cases of

Algorithms 4.1-4.4. In brief, for a suitable and appropriate choice of the operators T, f,

g, the constant r, and the sequences {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 ,
{rn,i}∞n=0(i = 1, 2, . . . , p) , one can obtain a number of new and previously known itera-

tive schemes for solving the problems (3.1) and (3.3)-(3.5) and related problems. This

clearly shows that Algorithms 4.1-4.4 are quite general and unifying.

Now, we discuss the convergence analysis of the suggested iterative Algorithms 4.1-

4.4 under some suitable conditions. For this end, we need to the following lemma:

Lemma 4.7. Let -an}, -bn} and -cn} be three nonnegative real sequences satisfying the

following condition: there exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0,

where tn Î [0, 1],
∑∞

n=0 tn = ∞, limn®∞ bn = 0,
∑∞

n=0 cn < ∞. Then limn®0 an = 0.

Proof. The proof directly follows from Lemma 2 in Liu [32].

Theorem 4.8. Let T, f, g and r be the same as in Theorem 3.3 such that the condi-

tions (a)-(c) and (3.11) in Theorem 3.3 hold. Assume that S : Kr ® Kr is a nearly uni-

formly L-Lipschitzian mapping with the sequence {bn}∞n=0such that Fix(S) ∩ EGNRNVID

(Kr, T, f, g) ≠ ∅. Further, let Lg <1, where g is the same as in (3.17). If there exists a

constant a >0 such that
∏p

i=1 αn,i > α for each n ≥ 0, then the iterative sequence

{xn}∞n=0 generated by Algorithm 4.1 converges strongly to the only element of Fix(S) ∩
EGNRNVID(Kr,. T, f, g).

Proof. According to Theorem 3.3, the problem (3.1) has a unique solution x∗ ∈ H
with g(x*) Î Kr. Hence, in view of Lemma 3.2, g(x∗) = PKr(f (x

∗) − ρT(x∗)) . Since
EGNRNVID(Kr, T, f, g) is a singleton set, it follows from Fix(S) ∩ EGNRNVID(Kr, T, f,

g) ≠ ∅ that x* Î Fix(S). Accordingly, for each n ≥ 0 and i Î {1, 2,..., p}, we can write

x∗ = (1 − αn,i − βn,i)x∗ + αn,iSn{x∗ − g(x∗) + PKr (f (x
∗) − ρT(x∗))} + βn,ix∗, (4:4)

where the sequences {αn,i}∞n=0 and {βn,i}∞n=0(i = 1, 2, . . . , p) are the same as in Algo-

rithm 4.1. Let Γ = supn≥0{||ln,i - x*||: i = 1, 2,. .., p}. It follows from (4.2), (4.4), Proposi-

tion 2.10 and the assumptions that

||xn+1 − x∗|| ≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1||Sn{yn,1 − g(yn,1) + PKr (f (yn,1) − ρT(yn,1))}
−Sn{x∗ − g(x∗) + PKr(f (x

∗) − ρT(x∗))}|| + βn,1||ln,1 − x∗|| + αn,1||en,1|| + ||rn,1||
≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1L(||yn,1 − x∗ − (g(yn,1) − g(x∗))||

+
r

r − r′
||f (yn,1) − f (x∗) − ρ(T(yn,1) − T(x∗))|| + bn)

+ αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + βn,1�.

(4:5)

Since T is �-strongly monotone with respect to f and s-Lipschitz continuous, g is τ-

strongly monotone and ι-Lipschitz continuous, in similar way to the proofs (3.14) and

(3.15), we can prove that

||yn,1 − x∗ − (g(yn,1) − g(x∗))|| ≤
√
1 − 2τ + ι2||yn,1 − x∗|| (4:6)

and

||f (yn,1) − f (x∗) − ρ(T(yn,1) − T(x∗))|| ≤
√


 2 − 2ρκ + ρ2σ 2||yn,1 − x∗||. (4:7)
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Substituting (4.6) and (4.7) for (4.5), we obtain

||xn+1 − x∗|| ≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1Lγ ||yn,1 − x∗||
+ αn,1Lbn + αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + βn,1�.

(4:8)

Like in the proofs of (4.5)-(4.8), we can establish that, for each i Î {1, 2,..., p - 2},

||yn,i − x∗|| ≤ (1 − αn,i+1 − βn,i+1)||xn − x∗|| + αn,i+1Lγ ||yn,i+1 − x∗||
+ αn,i+1Lbn + αn,i+1||e′n,i+1|| + ||e′′n,i+1|| + ||rn,i+1|| + βn,i+1�

(4:9)

and

||yn,p−1 − x∗|| ≤ (1 − αn,p − βn,p)||xn − x∗|| + αn,pLγ ||xn − x∗||
+ αn,pLbn + αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�.

(4:10)

By using (4.9) and (4.10), we get

||yn,p−2 − x∗|| ≤ (1 − αn,p−1 − βn,p−1)||xn − x∗|| + αn,p−1Lγ ||yn,p−1 − x∗||
+ αn,p−1Lbn + αn,p−1||e′n,p−1|| + ||e′′n,p−1|| + ||rn,p−1|| + βn,p−1�

≤ (1 − αn,p−1 − βn,p−1)||xn − x∗|| + αn,p−1Lγ [(1 − αn,p − βn,p)||xn − x∗||
+ αn,pLγ ||xn − x∗|| + αn,pLbn + αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�]

+ αn,p−1Lbn + αn,p−1||e′n,p−1|| + ||e′′n,p−1|| + ||rn,p−1|| + βn,p−1�

= (1 − αn,p−1 − βn,p−1 + αn,p−1(1 − αn,p − βn,p)Lγ + αn,p−1αn,pL2γ 2)||xn − x∗||
+ (αn,p−1L + αn,p−1αn,pL2γ )bn + αn,p−1||e′n,p−1|| + αn,p−1αn,pLγ ||e′n,p||
+||e′′n,p−1|| + αn,p−1Lγ ||e′′n,p|| + ||rn,p−1|| + αn,p−1Lγ ||rn,p||
+ (βn,p−1 + αn,p−1βn,pLγ )�.

(4:11)

As in the proof of (4.11), applying (4.9) and (4.11), we have

||yn,p−3 − x∗|| ≤ (
1 − αn,p−2 − βn,p−2 + αn,p−2(1 − αn,p−1 − βn,p−1)Lγ

+ αn,p−2αn,p−1(1 − αn,p − βn,p)L2γ 2 + αn,p−2αn,p−1αn,pL
3γ 3) ||xn − x∗||

+ αn,p−2||e′n,p−2|| + αn,p−2αn,p−1Lγ ||e′n,p−1|| + αn,p−2αn,p−1αn,pL2γ 2||e′n,p||
+ (αn,p−2L + αn,p−2αn,p−1L

2γ + αn,p−2αn,p−1αn,pL
3γ 2)bn

+||e′′n,p−2|| + αn,p−2Lγ ||e′′n,p−1|| + αn,p−2αn,p−1L2γ 2||e′′n,p||
+||rn,p−2|| + αn,p−2Lγ ||rn,p−1|| + αn,p−2αn,p−1L

2γ 2||rn,p||
+(βn,p−2 + αn,p−2βn,p−1Lγ + αn,p−2αn,p−1βn,pL2γ 2)�.

(4:12)

Continuing this procedure in (4.10)-(4.12), we gain

||yn,1 − x∗|| ≤ (
1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)Lγ + αn,2αn,3(1 − αn,4 − βn,4)L2γ 2

+ · · · +
p−1∏
i=2

αn,i(1 − αn,p − βn,p)Lp−2γ p−2 +
p∏
i=2

αn,iLp−1γ p−1

)
||xn − x∗||

+

(
αn,2L + αn,2αn,3L2γ + αn,2αn,3αn,4L3γ 2 + · · · +

p∏
i=2

αn,iLp−1γ p−2

)
bn

+ αn,2||e′n,2|| + αn,2αn,3Lγ ||e′n,3|| + · · · +
p∏
i=2

αn,iL
p−2γ p−2||e′n,p||

+||e′′n,2|| + αn,2Lγ ||e′′n,3|| + αn,2αn,3L
2γ 2||e′′n,4|| + · · · +

p−1∏
i=2

αn,iL
p−2γ p−2||e′′n,p||

+||rn,2|| + αn,2Lγ ||rn,3|| + αn,2αn,3L2γ 2||rn,4|| + · · · +
p−1∏
i=2

αn,iLp−2γ p−2||rn,p||

+

(
βn,2 + αn,2βn,3Lγ + αn,2αn,3βn,4L

2γ 2 + · · · +
p−1∏
i=2

αn,iβn,pL
p−2γ p−2

)
�.

(4:13)
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It follows from (4.8) and (4.13) that

||xn+1 − x∗|| ≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1Lγ ||yn,1 − x∗||
+ αn,1Lbn + αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + βn,1�

≤ (
1 − αn,1 − βn,1 + αn,1(1 − αn,2 − βn,2)Lγ + αn,1αn,2(1 − αn,3 − βn,3)L2γ 2

+ · · · +
p−1∏
i=1

αn,i(1 − αn,p − βn,p)Lp−1γ p−1 +
p∏
i=1

αn,iL
pγ p

)
||xn − x∗||

+

(
αn,1L + αn,1αn,2L2γ + αn,1αn,2αn,3L3γ 2 + · · · +

p∏
i=1

αn,iLpγ p−1

)
bn

+ αn,1||e′n,1|| + αn,1αn,2Lγ ||e′n,2|| + · · · +
p∏
i=1

αn,iL
p−1γ p−1||e′n,p||

+ ||e′′n,1|| + αn,1Lγ ||e′′n,2|| + αn,1αn,2L2γ 2||e′′n,3|| + · · · +
p−1∏
i=1

αn,iLp−1γ p−1||e′′n,p||

+ ||rn,1|| + αn,1Lγ ||rn,2|| + αn,1αn,2L
2γ 2||rn,3|| + · · · +

p−1∏
i=1

αn,iL
p−1γ p−1||rn,p||

+

(
βn,1 + αn,1βn,2Lγ + αn,1αn,2βn,3L

2γ 2 + · · · +
p−1∏
i=1

αn,iβn,pL
p−1γ p−1

)
�

≤ [1 − (1 − Lγ )
p∏
i=1

αn,iLp−1γ p−1]||xn − x∗|| +
p∑
i=1

i∏
j=1

αn,jLiγ i−1bn

+
p∑
i=1

i∏
j=1

αn,jLi−1γ i−1||e′n,i|| + ||e′′n,1|| +
p∑
i=2

i−1∏
j=1

αn,jLi−1γ i−1||e′′n,i|| + ||rn,1||

+
p∑
i=2

i−1∏
j=1

αn,jLi−1γ i−1||rn,i|| +
⎛
⎝βn,1 +

p∑
i=2

i−1∏
j=1

αn,jβn,iLi−1γ i−1

⎞
⎠�

= [1 − (1 − Lγ )
p∏
i=1

αn,iL
p−1γ p−1]||xn − x∗||

+ (1 − Lγ )
p∏
i=1

αn,iLp−1γ p−1

∑p
i=1

∏i
j=1 αn,jLiγ i−1bn +

∑p
i=1

∏i
j=1 αn,jLi−1γ i−1||e′n,i||

α(1 − Lγ )Lp−1γ p−1

+
p∑
i=2

i−1∏
j=1

αn,jL
i−1γ i−1||e′′n,i|| +

p∑
i=2

i−1∏
j=1

αn,jL
i−1γ i−1||rn,i||

+ ||e′′n,1|| + ||rn,1|| +
⎛
⎝βn,1 +

p∑
i=2

i−1∏
j=1

αn,jβn,iLi−1γ i−1

⎞
⎠ �.

(4:14)

Since Lg <1 and limn®∞ bn = 0, in view of (4.3), it is clear that all the conditions of

Lemma 4.7 are satisfied and so Lemma 4.7 and (4.14) guarantee that xn ® x*, as n ®

∞. Thus the sequence {xn}∞n=0 generated by Algorithm 4.1 converges strongly to the

only element of Fix(S) ∩ EGNRNVID(Kr, T, f, g). This completes the proof.

As in the proof of Theorem 3.5, one can prove the convergence of iterative

sequences generated by Algorithms 4.2-4.4 and we omit their proofs.

Theorem 4.9. Assume that T, f and r are the same as in Theorem 3.4 such that

the conditions (a), (b) and (3.18) in Theorem 3.4 hold. Let S : Kr ® Kr be a nearly

uniformly L-Lipschitzian mapping with the sequence {bn}∞n=0such that Fix(S) ∩
GNRNVID (Kr, T, f ) ≠ ∅, where GNRNVID (Kr, T, f ) is the set of the solutions of

the problem (3.3). Further, let Lθ <1, where θ = r
r−r′

√

 2 − 2ρκ + ρ2σ 2 . If there

exists a constant a >0 such that
∏p

i=1 αn,i > α for each n ≥ 0, then the iterative

sequence {xn}∞n=0generated by Algorithm 4.2 converges strongly to the only element of

Fix(S) ∩ GNRNVID (Kr, T, f ).
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Theorem 4.10. Suppose that T, g and r are the same as in Theorem 3.5 such that

the conditions (a), (b) and (3.19) in Theorem 3.5 hold. Let S : Kr ® Kr be a nearly uni-

formly L-Lipschitzian mapping with the sequence {bn}∞n=0such that Fix(S) ∩ GNRNVID

(Kr, T, f ) ≠ ∅, where GNRNVID (Kr, T, g) is the set of the solutions of the problem

(3.4). Further, let Lθ̃ < 1, where

θ̃ =
√
1 − 2τ + ι2 +

r
r − r′

√
ι2 − 2ρκ + ρ2σ 2.

If there exists a constant a >0 such that
∏p

i=1 αn,i > α for each n ≥ 0, then the itera-

tive sequence {xn}∞n=0 generated by Algorithm 4.3 converges strongly to the only element

of Fix(S) ∩ GNRNVID (Kr, T, g).

Theorem 4.11. Let T and r be the same as in Theorem 3.6 such that the condition

(3.20) in Theorem 3.6 holds. Assume that S : Kr ® Kr is a nearly uniformly L-Lipschit-

zian mapping with the sequence {bn}∞n=0such that Fix(S) ∩ NRNVI (Kr, T ) ≠ ∅, where

NRNVI (Kr, T ) is the set of the solutions of the problem (3.5). Moreover, let Lh <1,

where η = r
r−r′

√
1 − 2ρκ + ρ2σ 2 . Then the iterative sequence {xn}∞n=0 generated by

Algorithm 4.4 converges strongly to the only element of Fix(S) ∩ NRNVI (Kr, T ).

5 Extended general nonconvex Wiener-Hopf equations
In this section, we introduce a new class of extended general nonconvex Wiener-Hopf

equations and some new special cases from it, and by using the projection method, we

establish that the aforesaid class is equivalent with the class of extended general non-

linear regularized nonconvex variational inequalities (3.1).

Let T, f, g and r be the same as in the problem (3.1) and suppose that the inverse of

the operator g exists. Associated with the problem (3.1), the problem of finding z ∈ H
such that

Tg−1PKr z + ρ−1QKr z = 0, (5:1)

Where QKr = I − f g−1PKr
with I the identity operator and PKr the projection operator

is considered.

The problem (5.1) is called the extended general nonconvex Wiener-Hopf equation

(EGNWHE) associated with the problem of extended general nonlinear regularized

nonconvex variational inequality (3.1). Next, we denote by EGNWHE(Kr, T, f, g) the

set of the solutions of the extended general nonconvex Wiener-Hopf equation (5.1).

Now, we state some special cases of the problem (5.1) as follows:

(1) If g ≡ I, then the problem (5.1) is equivalent to the following problem: Find

z ∈ H such that

TPKr z + ρ−1QKrz = 0, (5:2)

where QKr = I − f PKr and is called the general nonconvex Wiener-Hopf equation

(GNWHE) associated with the problem of general nonlinear regularized nonconvex

variational inequality (3.3). We denote by GNWHE(Kr, T, f ) the set of the solutions of

the general nonconvex Wiener-Hopf equation (5.2).
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(2) If f = g, then the problem (5.1) changes into the following problem: Find z ∈ H
such that

Tg−1PKr z + ρ−1QKr z = 0, (5:3)

where QKr = I − PKr and is called also the general nonconvex Wiener-Hopf equation

(GNWHE) associated with the problem of general nonlinear regularized nonconvex

variational inequality (3.4). We denote by GNWHE (Kr, T, g) the set of the solutions of

the general nonconvex Wiener-Hopf equation (5.2).

(3) If f = g ≡ I, then the problem (5.1) collapses to the following problem: Find

z ∈ H such that

TPKr z + ρ−1QKrz = 0, (5:4)

where QKr is the same as in Eq. (5.3). The equation of the type (5.4) is called the

nonconvex Wiener-Hopf equation (NWHE) associated with the problem of nonlinear

regularized nonconvex variational inequality (3.4).

We denote by NWHE (Kr, T ) the set of the solutions of the nonconvex Wiener-

Hopf equation (5.2).

(4) If r = ∞, that is Kr = K, then the problem (5.1) reduces to the following pro-

blem: Find z ∈ H such that

Tg−1PKz + ρ−1QKz = 0, (5:5)

Where QK = I - fg
-1 PK. The equations of the type (5.5) were introduced and studied

by Noor [39].

(5) If r = ∞, then the problem (5.2) is equivalent to the following problem: Find

z ∈ H such that

TPKz + ρ−1QKz = 0, (5:6)

where QK = I - PK. The problem (5.6) is introduced and studied by Noor [35].

(6) If r = ∞, then the problem (5.3) changes into the following problem: Find

z ∈ H such that

Tg−1PKz + ρ−1QKz = 0, (5:7)

where QK = I - PK. The equations of the type (5.7) were introduced and studied by

Noor [40].

(7) If r = ∞, then the problem (5.4) reduces to the following problem: Find z ∈ H
such that

TPKz + ρ−1QKz = 0, (5:8)

where QK is the same as in (5.7). The equation (5.8) is the original Wiener-Hopf

equation mainly due to Shi [50].
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Remark 5.1. It has been shown that the Wiener-Hopf equations have played an

important and significant role in developing several numerical techniques for solving

variational inequalities and related optimizations problems (see, for example,

[30,31,35,39,50] and references therein).

The following lemma shows that the extended general nonlinear regularized noncon-

vex variational inequality (3.1) and the extended general nonconvex Wiener-Hopf

equation (5.1) are equivalent.

Lemma 5.2. Let T, f, g and r be the same as in the problem (3.1) and suppose that

the inverse of the operator g exists. Then u ∈ H with g(u) Î Kr is a solution of the pro-

blem (3.1) if and only if the extended general nonconvex Wiener-Hopf equation (5.1)

has a solution z ∈ H satisfying the following:

g(u) = PKr z, z = f (u) − ρT(u).

Proof. Let u ∈ H with g(u) Î Kr be a solution of the problem (3.1). Then, from

Lemma 3.2, it follows that

g(u) = PKr (f (u) − ρT(u)). (5:9)

Taking z = f (u) - rT (u) in (5.9), we have g(u) = PKr z , which leads to

u = g−1PKr z. (5:10)

Applying (5.10) and this fact that z = f (u) - rT (u), we have

z = f g−1PKr z − ρTg−1PKr z.

Evidently, the above equality is equivalent to the following:

Tg−1PKr z + ρ−1QKr z = 0, (5:11)

where QKr is the same as in (5.1). Now, (5.11) guarantees that z ∈ H is a solution of

the extended general nonconvex Wiener-Hopf equation (5.1).

Conversely, if z ∈ H is a solution of the problem (5.1) satisfying the following:

g(u) = PKr z, z = f (u) − ρT(u),

then it follows from Lemma 3.2 that u ∈ H with g (u) Î Kr is a solution of the pro-

blem (3.1). This completes the proof.

In similar way to the proof of Lemma 5.2, one can prove the following statements.

Lemma 5.3. Let T, f and r be the same as in the problem (3.3). Then u Î Kr is a

solution of the problem (3.3) if and only if the general nonconvex Wiener-Hopf equation

(5.2) has a solution z ∈ H satisfying

u = PKr z, z = f (u) − ρT(u).

Lemma 5.4. Suppose that T, g and r are the same as in the problem (3.4) and let the

inverse of the operator g exists. Then u ∈ H with g(u) Î Kr is a solution of the problem

(3.4) if and only if the general nonconvex Wiener-Hopf equation (5.3) has a solution

z ∈ H satisfying the following:

g(u) = PKr z, z = g(u) − ρT(u).
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Lemma 5.5. Assume that T and r are the same as in the problem (3.5). Then u Î Kr

is a solution of the problem (3.5) if and only if the nonconvex Wiener-Hopf equation

(5.4) has a solution z ∈ H satisfying the following:

u = PKr z, z = u − ρT(u).

6 Some new perturbed p-step projection iterative methods
In this section, by using the problems (5.1)-(5.4) and four Lemmas 5.2-5.5, we get some

fixed point formulations for constructing a number of the new perturbed p-step projec-

tion iterative algorithms with mixed errors for solving the problems (3.1) and (3.3)-(3.5).

(I) By using (5.1) and Lemma 5.2, we have

Tg−1PKr z + ρ−1QKrz = 0 ⇔ ρTg−1PKr z +QKrz = 0
⇔ ρTg−1PKr z + z − f g−1PKr z = 0
⇔ z = f g−1PKr z − ρTg−1PKr z
⇔ z = f (u) − ρT(u).

This fixed point formulation enables us to define the following p-step projection

iterative algorithm with mixed errors for solving the problem (3.1).

Algorithm 6.1. Let T, f, g and r be the same as in the problem (3.1) such that g be

an onto operator. For arbitrary chosen initial point z0 ∈ H , compute the iterative

sequence {zn}∞n=0 by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(un) = SnPKr zn,

zn+1 = (1 − αn,1 − βn,1)zn + αn,1(f (vn,1) − ρT(vn,1) + en,1) + βn,1ln,1 + rn,1,

vn,i = (1 − αn,i+1 − βn,i+1)zn + αn,i+1(f (vn,i+1) − ρT(vn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)zn + αn,p(f (un) − ρT(un) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

(6:1)

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) , are the same

as in Algorithm 4.1.

(II) From (5.1) and Lemma 5.2, it follows that

Tg−1PKr z + ρ−1QKrz = 0 ⇔ QKrz = QKrz − Tg−1PKr z − ρ−1QKrz
⇔ QKrz = −Tg−1PKr z + (1 − ρ−1)QKrz
⇔ z = f g−1PKr z − Tg−1PKr z + (1 − ρ−1)QKrz
⇔ z = f (u) − T(u) + (1 − ρ−1)QKrz.

By using this fixed point formulation, we can construct the following p-step projec-

tion iterative algorithm with mixed errors for solving the problem (3.1).

Algorithm 6.2. Assume that T, f, g and r are the same as in Algorithm 6.1. For arbi-

trary chosen initial point z0 ∈ H , compute the iterative sequence {zn}∞n=0 as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(un) = SnPKr zn,

zn+1 = (1 − αn,1 − βn,1)zn + αn,1(�(vn,1, zn) + en,1) + βn,1ln,1 + rn,1,

vn,i = (1 − αn,i+1 − βn,i+1)zn + αn,i+1(�(vn,i+1, zn) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)zn + αn,p(�(un, zn) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

Balooee et al. Fixed Point Theory and Applications 2011, 2011:86
http://www.fixedpointtheoryandapplications.com/content/2011/1/86

Page 22 of 34



where⎧⎪⎨
⎪⎩

�(vn,i, zn) = f (vn,i) − T(vn,i) + (1 − ρ−1)QKrzn,

�(un, zn) = f (un) − T(un) + (1 − ρ−1)QKrzn,

i = 1, 2, . . . , p − 2,

and S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as in

Algorithm 4.1.

(III) Like in the proof (I), by using (5.2) and Lemma 5.3, we have

TPKr z + ρ−1QKrz = 0 ⇔ z = f (u) − ρT(u).

This fixed point formulation allows us to construct the following p-step projection

iterative algorithm with mixed errors for solving the problem (3.3).

Algorithm 6.3. Let T, f and r be the same as in the problem (3.3). For arbitrary cho-

sen initial point z0 ∈ H , compute the iterative sequence {zn}∞n=0 by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = SnPKr zn,

zn+1 = (1 − αn,1 − βn,1)zn + αn,1(f (vn,1) − ρT(vn,1) + en,1) + βn,1ln,1 + rn,1,

vn,i = (1 − αn,i+1 − βn,i+1)zn + αn,i+1(f (vn,i+1) − ρT(vn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)zn + αn,p(f (un) − ρT(un) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as

in Algorithm 4.1.

(IV) In similar way, from (5.3) and Lemma 5.4, it follows that

Tg−1PKr z + ρ−1QKr z = 0 ⇔ z = g(u) − ρT(u).

By using the above fixed point formulation, we can define the following p-step pro-

jection iterative algorithm with mixed errors for solving the problem (3.4).

Algorithm 6.4. Let T, g and r be the same as in the problem (3.4) such that g be an

onto operator. For arbitrary chosen initial point z0 ∈ H , compute the iterative

sequence {zn}∞n=0 by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(un) = SnPKr zn,

zn+1 = (1 − αn,1 − βn,1)zn + αn,1(g(vn,1) − ρT(vn,1) + en,1) + βn,1ln,1 + rn,1,

vn,i = (1 − αn,i+1 − βn,i+1)zn + αn,i+1(g(vn,i+1) − ρT(vn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)zn + αn,p(g(un) − ρT(un) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {ln,i}∞n=0 are the same as in Algorithm

4.1.

(V) Similarly, by using (5.4) and Lemma 5.5, we have

TPKr z + ρ−1QKrz = 0 ⇔ z = f (u) − ρT(u).
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This fixed point formulation enables us to construct the following p-step projection

iterative algorithm with mixed errors for solving the problem (3.5).

Algorithm 6.5. Let T and r be the same as in the problem (3.5). For arbitrary cho-

sen initial point z0 ∈ H , compute the iterative sequence {zn}∞n=0 by the iterative

scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = SnPKr zn,

zn+1 = (1 − αn,1 − βn,1)zn + αn,1(vn,1 − ρT(vn,1) + en,1) + βn,1ln,1 + rn,1,

vn,i = (1 − αn,i+1 − βn,i+1)zn + αn,i+1(vn,i+1 − ρT(vn,i+1) + en,i+1) + βn,i+1ln,i+1 + rn,i+1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)zn + αn,p(un − ρT(un) + en,p) + βn,pln,p + rn,p,

i = 1, 2, . . . , p − 2,

where S, {αn,i}∞n=0 , {βn,i}∞n=0 , {en,i}∞n=0, {ln,i}∞n=0 , {rn,i}∞n=0(i = 1, 2, . . . , p) are the same as

in Algorithm 4.1.

Remark 6.6. In similar to Remark 4.5, for a suitable and appropriate choice of the

sequences {en,i}∞n=0, {ln,i}∞n=0 and {rn,i}∞n=0(i = 1, 2, . . . , p) , Algorithms 6.1-6.5 reduce to

algorithms with mean errors and without errors.

Remark 6.7. Algorithm 3.1 in [42] is a special case of Algorithms 6.1 and 6.4. Algo-

rithm 3.2 in [42] is a special case of Algorithm 6.2. Also, Algorithms 3.1-3.3 in [44]

and Algorithms 2.1-2.3 in [47] are special cases of Algorithms 6.1, 6.2 and 6.4.

Now, we discuss the convergence analysis of iterative sequences generated by per-

turbed projection iterative Algorithms 6.1-6.5.

Theorem 6.8. Let T, f, g and r be the same as in the problem (3.1) and suppose that

all the conditions of Theorem 3.3 hold. Assume that S : Kr ® Kr is a nearly uniformly

L-Lipschitzian mapping with the sequence {bn}∞n=0such that, for any u Î EGNRNVID

(Kr, T, f, g), g(u) Î Fix(S). Further, assume that Lg <1, where g is the same as in (3.17).

If there exists a constant a >0 such that
∏p

i=1 αn,i > α for each n ≥ 0, then the iterative

sequence {zn}∞n=0 generated by Algorithm 6.1 converges strongly to the only element of

EGNWHE(Kr, T, f, g).

Proof. Theorem 3.3 guarantees the existence a unique solution u∗ ∈ H with g(u*) Î
Kr for the problem (3.1). Hence, in view of Lemma 5.2, there exists a unique point

z ∈ H satisfying the following:

g(u∗) = PKr z, z = f (u∗) − ρT(u∗). (6:2)

Since g(u*) Î Fix(S), it follows from (6.2) that, for each n ≥ 0,

g(u∗) = SnPKr z, z = f (u∗) − ρT(u∗). (6:3)

Let Γ = supn≥0{||ln,i - z||, ||z - u*||: i = 1, 2,..., p}. By using (6.1), (6.2) and the

assumptions, we have
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||zn+1 − z|| ≤ (1 − αn,1 − βn,1)||zn − z|| + αn,1||f (vn,1) − f (u∗) − ρ(T(vn,1) − T(u∗))||
+βn,1||ln,1 − z|| + αn,1||en,1|| + ||rn,1||

≤ (1 − αn,1 − βn,1)||zn − z|| + αn,1

√

 2 − 2ρκ + ρ2σ 2||vn,1 − u∗||

+βn,1||ln,1 − z|| + αn,1(||e′n,1|| + ||e′′n,1||) + ||rn,1||
≤ (1 − αn,1 − βn,1)||zn − z|| + αn,1

√

 2 − 2ρκ + ρ2σ 2||vn,1 − z||

+ αn,1

√

 2 − 2ρκ + ρ2σ 2||z − u∗|| + αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + βn,1�

≤ (1 − αn,1 − βn,1)||zn − z|| + αn,1

√

 2 − 2ρκ + ρ2σ 2||vn,1 − z||

+ (αn,1

√

 2 − 2ρκ + ρ2σ 2 + βn,1)� + αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1||.

(6:4)

In similar way to the proof (6.4), for each i Î {1, 2,..., p - 2}, we can get

||vn,i − z|| ≤ (1 − αn,i+1 − βn,i+1)||zn − z||
+ αn,i+1

√

 2 − 2ρκ + ρ2σ 2||vn,i+1 − z||

+ (αn,i+1

√

 2 − 2ρκ + ρ2σ 2 + βn,i+1)�

+ αn,i+1||e′n,i+1|| + ||e′′n,i+1|| + ||rn,i+1||

(6:5)

and

||vn,p−1 − z|| ≤ (1 − αn,p − βn,p)||zn − z|| + αn,p

√

 2 − 2ρκ + ρ2σ 2||un − u∗||

+ αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�.
(6:6)

Now, we make an estimation for ||un - u*||. Applying (6.1), (6.3) and Proposition

2.10, we find that

||un − u∗|| ≤ ||un − u∗ − (g(un) − g(u∗))|| + ||SnPKr zn − SnPKr z||

≤
√
1 − 2τ + ι2||un − u∗|| + L

(
r

r − r′
||zn − z|| + bn

)
,

which leads to

||un − u∗|| ≤ rL

(r − r′)(1 − √
1 − 2τ + ι2)

||zn − z|| + Lbn
1 − √

1 − 2τ + ι2
. (6:7)

By using (6.6) and (6.7), we conclude that

||vn,p−1 − z|| ≤ (1 − αn,p − βn,p)||zn − z||

+ αn,pL
r
√


 2 − 2ρκ + ρ2σ 2

(r − r′)(1 − √
1 − 2τ + ι2)

||zn − z||

+ αn,pL

√

 2 − 2ρκ + ρ2σ 2

1 − √
1 − 2τ + ι2

bn

+ αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�

≤ (1 − αn,p − βn,p)||zn − z|| + αn,pLϑ ||zn − z||

+ αn,p
(r − r′)Lϑ

r
bn + αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�,

(6:8)

where ϑ = r
√


 2−2ρκ+ρ2σ 2

(r−r′)(1−√
1−2τ+ι2)

In view of the condition (3.11), we have ϑ <1. From r’ Î

(0, r) and (6.8), we have
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||vn,p−1 − z|| ≤ (1 − αn,p − βn,p)||zn − z|| + αn,pLϑ ||zn − z||
+ αn,pLϑbn + αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�.

(6:9)

Since
√
1 − 2τ + ι2 + r

r−r′
√


 2 − 2ρκ + ρ2σ 2 < 1 and r’ Î (0, r), deduce that

λ =
√


 2 − 2ρκ + ρ2σ 2 < 1. (6:10)

By using (6.10), the inequality (6.5), for each i = 1, 2,..., p - 2, can be written as fol-

lows:

||vn,i − z|| ≤ (1 − αn,i+1 − βn,i+1)||zn − z|| + αn,i+1λ||vn,i+1 − z||
+ αn,i+1||e′n,i+1|| + ||e′′n,i+1|| + ||rn,i+1|| + (αn,i+1λ + βn,i+1)�.

(6:11)

Thus it follows from (6.9) and (6.11) that

||vn,p−2 − z|| ≤ (1 − αn,p−1 − βn,p−1)||zn − z|| + αn,p−1λ{(1 − αn,p − βn,p)||zn − z||
+ αn,pLϑ ||zn − z|| + αn,pLϑbn + αn,p||e′n,p|| + ||e′′n,p|| + ||rn,p|| + βn,p�}
+ αn,p−1||e′n,p−1|| + ||e′′n,p−1|| + ||rn,p−1|| + (αn,p−1λ + βn,p−1)�

=
(
1 − αn,p−1 − βn,p−1 + αn,p−1(1 − αn,p − βn,p)λ + αn,p−1αn,pλLϑ

) ||zn − z||
+ αn,p−1αn,pλLϑbn + αn,p−1αn,pλ||e′n,p|| + αn,p−1||e′n,p−1||
+ αn,p−1λ||e′′n,p|| + ||e′′n,p−1|| + αn,p−1λ||rn,p|| + ||rn,p−1||
+ (αn,p−1βn,pλ + αn,p−1λ + βn,p−1)�.

(6:12)

Similarly, by using (6.11) and (6.12), we obtain

||vn,p−3 − z|| ≤ (
1 − αn,p−2 − βn,p−2 + αn,p−2(1 − αn,p−1 − βn,p−1)λ

+ αn,p−2αn,p−1 (1 − αn,p − βn,p)λ2 + αn,p−2αn,p−1αn,pλ
2Lϑ

) ||zn − z||
+ αn,p−2αn,p−1αn,pλ

2||e′n,p|| + αn,p−2αn,p−1λ||e′n,p−1|| + αn,p−2||e′n,p−2||
+ αn,p−2αn,p−1αn,pλ

2Lϑbn + αn,p−2αn,p−1λ
2||e′′n,p|| + αn,p−2λ||e′′n,p−1|| + ||e′′n,p−2||

+ αn,p−2αn,p−1λ
2||rn,p|| + αn,p−2λ||rn,p−1|| + ||rn,p−2|| + (αn,p−2λ + αn,p−2αn,p−1λ

2)�

+
(
βn,p−2 + αn,p−2βn,p−1λ + αn,p−2αn,p−1βn,pλ

2)�.

Continuing the same procedures, we get

||vn,1 − z|| ≤ (1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)λ + αn,2αn,3(1 − αn,4 − βn,4)λ2

+ · · · +
p−1∏
i=2

αn,i(1 − αn,p − βn,p)λp−2 +
p∏
i=2

αn,iλ
p−2Lϑ)||zn − z||

+ αn,2||e′n,2|| + αn,2αn,3λ||e′n,3|| + αn,2αn,3αn,4λ
2||e′n,4|| + · · · +

p∏
i=2

αn,iλ
p−2||e′n,p||

+
p∏
i=2

αn,iλ
p−2Lϑbn + ||e′′n,2|| + αn,2λ||e′′n,3|| + αn,2αn,3λ

2||e′′n,4|| + · · · +
p−1∏
i=2

αn,iλ
p−2||e′′n,p||

+||rn,2|| + αn,2λ||rn,3|| + αn,2αn,3λ
2||rn,4|| + · · · +

p−1∏
i=2

αn,iλ
p−2||rn,p||

+

(
αn,2λ + αn,2αn,3λ

2 + αn,2αn,3αn,4λ
3 + · · · +

p−1∏
i=2

αn,iλ
p−2

)
�

+

(
βn,2 + αn,2βn,3λ + αn,2αn,3βn,4λ

2 + · · · +
p−1∏
i=2

αn,iβn,pλ
p−2

)
�.

(6:13)
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Thus, applying (6.4) and (6.13), one has

||zn+1 − z|| ≤ (1 − αn,1 − βn,1 + αn,1(1 − αn,2 − βn,2)λ + αn,1αn,2(1 − αn,3 − βn,3)λ2

+ · · · +
p−1∏
i=1

αn,i(1 − αn,p − βn,p)λp−1 +
p∏
i=1

αn,iλ
p−1Lϑ

)
||zn − z||

+ αn,1||e′n,1|| + αn,1αn,2λ||e′n,2|| + αn,1αn,2αn,3λ
2||e′n,3|| + · · · +

p∏
i=1

αn,iλ
p−1||e′n,p||

+
p∏
i=1

αn,iλ
p−1Lϑbn + ||e′′n,1|| + αn,1λ||e′′n,2|| + αn,1αn,2λ

2||e′′n,3|| + · · · +
p−1∏
i=1

αn,iλ
p−1||e′′n,p||

+||rn,1|| + αn,1λ||rn,2|| + αn,1αn,2λ
2||rn,3|| + · · · +

p−1∏
i=1

αn,iλ
p−1||rn,p||

+

(
αn,1λ + αn,1αn,2λ

2 + αn,1αn,2αn,3λ
3 + · · · +

p−1∏
i=1

αn,iλ
p−1

)
�

+

(
βn,1 + αn,1βn,2λ + αn,1αn,2βn,3λ

2 + · · · +
p−1∏
i=1

αn,iβn,pλ
p−1

)
�

≤
(
1 − (1 − Lϑ)

p∏
i=1

αn,iλ
p−1

)
||zn − z|| +

p∑
i=1

i∏
j=1

αn,jλ
i−1||e′n,i||

+
p∏
i=1

αn,iλ
p−1Lϑbn +

p∑
i=2

i−1∏
j=1

αn,jλ
i−1||e′′n,i|| +

p∑
i=2

i−1∏
j=1

αn,jλ
i−1||rn,i||

+||e′′n,1|| + ||rn,1|| +
⎛
⎝ p∑

i=2

i−1∏
j=1

αn,jλ
i−1 +

p∑
i=2

i−1∏
j=1

αn,jβn,iλ
i−1 + βn,1

⎞
⎠�

≤
(
1 − (1 − Lϑ)

p∏
i=1

αn,iλ
p−1

)
||zn − z|| + (1 − Lϑ)

p∏
i=1

αn,iλ
p−1

∑p
i=1

∏i
j=1 αn,jλ

i−1||e′n,i||
αλp−1 + Lϑbn
1 − Lϑ

+
p∑
i=2

i−1∏
j=1

αn,jλ
i−1||e′′n,i|| +

p∑
i=2

i−1∏
j=1

αn,jλ
i−1||rn,i|| + ||e′′n,1|| + ||rn,1||

+

⎛
⎝ p∑

i=2

i−1∏
j=1

αn,jλ
i−1 +

p∑
i=2

i−1∏
j=1

αn,jβn,iλ
i−1 + βn,1

⎞
⎠�.

(6:14)

If L ≥ 1, then Lg <1, where g is the same as in (3.17), implies that

√
1 − 2τ + ι2 +

rL

r − r′
√


 2 − 2ρκ + ρ2σ 2 < 1,

whence deduce that Lϑ <1. For the case that L <1, it is plain that Lϑ <1. In view of

(4.3), we note that all the conditions of Lemma 4.7 hold and so, (6.14) and Lemma 4.7

guarantee that the sequence {zn}∞n=0 generated by Algorithm 6.1 converges strongly to

the solution z ∈ H of the problem (5.1) and there is nothing to prove. This completes

the proof.

As in the proof of Theorem 6.8, we can prove the convergence of iterative sequences

generated by Algorithms 6.2-6.5 and we omit their proofs.

Theorem 6.9. Suppose that T, f, g, r and S are the same as in Theorem 6.8 and let

all the conditions of Theorem 6.8 hold. If there exists a constant a >0 such that∏p
i=1 αn,i > α for each n ≥ 0, then the iterative sequence {zn}∞n=0 generated by Algorithm

6.2 converges strongly to the only element of EGNWHE(Kr, T, f, g).

Theorem 6.10. Let T, f, r and S be the same as in Theorem 4.9 and let all the con-

ditions of Theorem 4.9 hold. If there exists a constant a >0 such that
∏p

i=1 αn,i > α for

each n ≥ 0, then the iterative sequence {zn}∞n=0 generated by Algorithm 6.3 converges

strongly to the only element of GNWHE(Kr, T, f ).
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Theorem 6.11. Let T, g and r be the same as in Theorem 3.5 and suppose that the

conditions (a), (b) and (3.19) in Theorem 3.5 hold. Let S : Kr ® Kr be a nearly uni-

formly L-Lipschitzian mapping with the sequence {bn}∞n=0 such that for any u Î

GNRNVID(Kr, T, g), g(u) Î Fix(S). Further, let Lθ̃ < 1, where θ̃ is the same as in Theo-

rem 4.10. If there exists a constant a >0 such that
∏p

i=1 αn,i > α for each n ≥ 0, then

the iterative sequence {zn}∞n=0 generated by Algorithm 6.4 converges strongly to the only

element of GNWHE(Kr, T, g).

Theorem 6.12. Assume that T, r and S are the same as in Theorem 4.11 and let all

the conditions of Theorem 4.11 hold. If there exists a constant a >0 such that∏p
i=1 αn,i > α for each n ≥ 0, then the iterative sequence {zn}∞n=0 generated by Algorithm

6.5 converges strongly to the only element of NWHE(Kr, T ).

7 Some remarks
In view of Definition 2.11, we note that the condition relaxed cocoercivity of the

operator T is weaker than the condition strongly monotonicity of T. In other words,

the class of relaxed cocoercive operators is more general than the class of strongly

monotone operators. In the present section, we shall show that unlike claims of Noor

[38], Noor et al. [44], Qin and Noor [47], they studied the convergence analysis of the

proposed iterative algorithms under the condition of strongly monotonicity, not the

mild condition relaxed cocoercivity.

Noor [38] proposed the following three-step iterative algorithm and its special forms

for finding a common element of two different sets of solutions of the fixed points of

the nonexpansive mappings and the general variational inequalities (3.9) and studied

convergence analysis of the suggested iterative algorithm under some conditions.

Algorithm 7.1. (Algorithm 2.1 [38]) For any x0 ∈ H , compute the approximate solu-

tion xn by the iterative schemes⎧⎪⎨
⎪⎩
zn = (1 − cn)xn + cnS{xn − g(xn) + PK[g(xn) − ρTxn]},
yn = (1 − bn)xn + bnS{zn − g(zn) + PK[g(zn) − ρTzn]},
xn+1 = (1 − an)xn + anS{yn − g(yn) + PK[g(yn) − ρTyn]},

where an, bn, cn Î [0, 1] for all n ≥ 0 and S is the nonexpansive operator.

Theorem 7.2. (Theorem 3.1 [38]) Let K be a closed convex subset of a real Hilbert

space H . Let T be a relaxed (g, r)-cocoercive and μ -Lipschitzian mapping of K into

H . Let g be a relaxed (g1, r1) -cocoercive and μ1 -Lipschitzian mapping of K into H
and S be a nonexpansive mapping of K into K such that F(S)∩GVI(K, T, g) ≠ ∅. Let

{xn} be a sequence defined by Algorithm 7.1, for any initial point x0 Î K, with the fol-

lowing conditions:

||ρ − r − γμ2

μ2
|| ≤

√
(r − γμ2)2 − μ2k(2 − k)

μ2
, r > γμ2 + μ

√
k(2 − k), k < 1,

where

k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1,
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an, bn, cn Î [0, 1] and
∑∞

n=0 an = ∞ , then xn obtained from Algorithm 7.1 converges

strongly to x* Î F(S) ∩ GVI(K, T, g).

From k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1 , it follows that 2(r1 − γ1μ
2
1) < 1 + μ2

1 . Accord-

ingly, the condition 2(r1 − γ1μ
2
1) < 1 + μ2

1 should be added to the conditions of Theo-

rem 7.2. On the other hand, the conditions r > γμ2 + μ
√
k(2 − k) and k <1 imply

that r > gμ2. Since T is (g, r)-relaxed cocoercive and μ-Lipschitz continuous, the condi-

tion r > gμ2 guarantees that the operator T is (r - gμ2)-strongly monotone. Therefore,

one can rewrite Theorem 7.2 as follows.

Theorem 7.3. Let K be a closed convex subset of a real Hilbert space H and let T be

a ξ-strongly monotone and μ-Lipschitzian mapping of K into H . Let g be a ξ1-strongly

monotone and μ1-Lipschitzian mapping of K into H and S be a nonexpansive mapping

of K into K such that F(S) ∩ GVI(K, T, g) ≠ ∅. If the constant r satisfies the following

condition:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|ρ − ξ2

μ2 | ≤
√

ξ2−μ2k(2−k)
μ2 ,

ξ > μ
√
k(2 − k),

k = 2
√
1 − 2ξ21 + μ2

1 < 1,

2ξ2
1 < 1 + μ2

1,

and the sequence {an} satisfies k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1, , then the iterative

sequence {xn} generated by Algorithm 7.1 converges strongly to the only element of F(S)

∩ GVI(K, T, g).

Remark 7.4. Theorem 3.2 in [38] is stated with the condition relaxed cocoercivity of

the operators T and g. Similarly, by using the conditions of Theorem 3.2 [38], we note

that the operators T and g are in fact strongly monotone. Hence, Theorem 3.2 [38] is

proved with the condition strongly monotonicity of the operators T and g instead of

the mild condition relaxed cocoercivity.

Noor et al. [44] presented the following iterative scheme and its special forms for

finding the common element of the solution sets of the general variational inequalities

(3.9) and the nonexpansive mappings.

Algorithm 7.5. (Algorithm 3.1 [44]) For a given

Tg−1PKr z + ρ−1QKrz = 0 ⇔ ρTg−1PKr z +QKrz = 0
⇔ ρTg−1PKr z + z − f g−1PKr z = 0
⇔ z = f g−1PKr z − ρTg−1PKr z
⇔ z = f (u) − ρT(u).

and some sequence {an}, an Î

[0, 1], compute the approximate solution zn+1 by the iterative schemes{
g(un) = SPKzn,

zn+1 = (1 − an)zn + an{g(un) − ρTun},

where S is a non-expansive operator.

They also studied convergence analysis of the suggested iterative algorithm under

some conditions as follows:

Theorem 7.6. (Theorem 3.1 [44]) Let K be a closed convex subset of a real Hilbert

space H . Let T be a relaxed (g, r)-cocoercive and μ-Lipschitzian mapping. Let g be a
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relaxed (g1, r1)-cocoercive and μ1-Lipschitzian mapping of K into H and S be a nonex-

pansive mapping of H into H such that F(S) ∩ GWHE(H,T, g, S) �= ∅ . Let {zn} be a

sequence defined by Algorithm 7.5, for any initial point z0 Î K, with the following con-

ditions:

||ρ − r − γμ2

μ2
|| ≤

√
(r − γμ2)2 − μ2k(2 − k)

μ2
,

r > γμ2 + μ
√
k(2 − k), k < 1,

where

k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1,

an Î [0,1] and k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1, , then zn obtained from Algorithm 7.5

converges strongly to z∗ ∈ F(S) ∩ GWHE(H,T, g, S) .

As in Theorem 7.2, since k = 2
√
1 + 2γ1μ

2
1 − 2r1 + μ2

1 , it follows that

2(r1 − γ1μ
2
1) < 1 + μ2

1 . Hence the condition 2(r1 − γ1μ
2
1) < 1 + μ2

1 should be added

to Theorem 7.6. Moreover, by using the conditions r > γμ2 + μ
√
k(2 − k) and k <1,

(g, r)-relaxed cocoercivity and μ-Lipschitz continuity of the operator T and (g1, r1)-
relaxed cocoercivity and μ1-Lipschitz continuity of the operator g, we note that the

operators T and g are (r - gμ2)-strongly monotone and (r1 − γ1μ
2
1) -strongly monotone,

respectively. Therefore, Theorem 7.6 collapses to the following theorem.

Theorem 7.7. Let K be a closed convex subset of a real Hilbert space H and let

T : H → H be a ξ-strongly monotone and μ-Lipschitzian mapping. Let g : H → H be

a ξ1-strongly monotone and μ1-Lipschitzian mapping and S : H → H be a nonexpan-

sive mapping such that F(S) ∩ GVI(K, T, g) ≠ ∅. If the constant r satisfies the following

condition:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|ρ − ξ2

μ2 | ≤
√

ξ2−μ2k(2−k)
μ2 ,

ξ > μ
√
k(2 − k),

k = 2
√
1 − 2ξ21 + μ2

1 < 1,

2ξ21 < 1 + μ2
1,

and the sequence {an} satisfies
∑∞

n=0 an = ∞ , then the iterative sequence {zn} gener-

ated by Algorithm 7.5 converges strongly to the only element of

F(S) ∩ GWHE(H,T, g, S) .

Therefore, Noor et al. [44] proved the strongly convergence of the iterative sequence

{zn} generated by Algorithm 7.5, under the condition strongly monotonicity of the

operators T and g, not under the mild condition relaxed cocoercivity.

Qin and Noor [47] proposed the following iterative algorithm and its special forms

for solving the general variational inequalities (3.9).

Algorithm 7.8. (Algorithm 2.1 [47]) For any z0 Î K, compute the sequence {zn} by

the iterative processes

Balooee et al. Fixed Point Theory and Applications 2011, 2011:86
http://www.fixedpointtheoryandapplications.com/content/2011/1/86

Page 30 of 34



{
g(un) = SPKzn,

zn+1 = (1 − αn)zn + αn[g(un) − ρAun], ∀n ≥ 0,

where {an} is a sequence in [0, 1] and S is a nonexpansive mapping.

They studied convergence analysis of the suggested iterative algorithm under some

conditions as follows.

Theorem 7.9. (Theorem 3.1 [47]) Let K be a closed convex subset of a real Hilbert

space H . Let g : H → H be a relaxed (u1, v1)-cocoercive and μ1-Lipschitz continuous

mapping, A : H → H be a relaxed (u2, v2)-cocoercive and μ2-Lipschitz continuous

mapping and S be a nonexpansive mapping from K into itself such that F(S) ≠ ∅. Let

{zn}, {un} and {g(un)} be the sequences generated by Algorithm 7.8 and {an} be a

sequence in [0, 1]. Assume that the following conditions are satisfied:

(C1) 2θ1 + θ2 <1, where θ1 =
√
1 + μ2

1 − 2v1 + 2u1μ2
1 and

θ2 =
√
1 + ρ2μ2

2 − 2ρv2 + 2ρu2μ2
2 ;

(C2)
∑∞

n=0 αn = ∞ .

Then the sequences {zn}, {un} and {g(un)} converge strongly to z∗ ∈ WHE(H,A, S) , u*

Î VI(K, A) and g(u*) Î F(S), respectively.

From the condition (C1), it follows that 2(v1 − u1μ2
1) < 1 + μ2

1 and

2ρ(v2 − u2μ2
2) < 1 + μ2

2. Therefore, these conditions should be added to Theorem 7.9.

On the other hand, the condition (C1) implies that vi > uiμ2
i , for i = 1, 2. Because g is

(u1, v1)-relaxed cocoercive and μ1-Lipschitz continuous, the condition v1 > u1μ2
1 guar-

antees (v1 − u1μ2
1) -strongly monotonicity of the operator g. Similarly, from (u2, v2)-

relaxed cocoercivity and μ2-Lipschitz continuity of the operator A and the condition

v2 > u2μ2
2, it follows that the operator A is (v2 − u2μ2

2) -strongly monotone. Hence

Theorem 7.9 reduces to the following theorem:

Theorem 7.10. Let K be a closed convex subset of a real Hilbert space H and let

g : H → H be a ξ1-strongly monotone and μ1-Lipschitz continuous mapping,

A : H → H be ξ2-strongly monotone and μ2-Lipschitz continuous mapping and let S

be a nonexpansive mapping from K into itself such that F(S) ≠ ∅. Let {zn}, {un} and {g

(un)} be sequences generated by Algorithm 7.8. If the following conditions hold:

(C1) 2θ1 + θ2 <1, where θ1 =
√
1 + μ2

1 − 2ξ1and θ2 =
√
1 + ρ2μ2

2 − 2ρξ2 ;

(C2) 2ξ1 < 1 + μ2
1, 2ρξ2 < 1 + ρμ2

1and
∑∞

n=0 αn = ∞ ,

then the iterative sequences {zn}, {un} and {g(un)} generated by Algorithm 7.5 converge

strongly to z∗ ∈ WHE(H,A, S) , u* Î VI(K, A) and g(u*) Î F(S), respectively.

Remark 7.11. (1) Qin and Noor in Remark 3.2 [47] claimed that Theorem 7.9 is

obtained under the mild condition relaxed cocoercivity of the operators g and A. But,

in view of the above facts, their results are obtained under the condition strongly
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monotonicity of the operators g and A not under the mild condition relaxed cocoerciv-

ity.

(2) The operators A and g in Corollaries 3.3 and 3.4 [47] are relaxed cocoercive.

But we note that the conditions of the aforesaid corollaries guarantee that the

operators A and g in these corollaries are in fact strongly monotone. Accordingly,

Corollaries 3.3 and 3.4 in [47] are stated with the condition strongly monotonicity

of the operators A and g instead of the mild condition relaxed cocoercivity.

Remark 7.12. In view of the above facts, we note that Theorems 4.8 and 4.10 gener-

alize and improve Theorem 3.1 in [38]. Theorems 4.8, 4.10 and 4.11 generalize and

improve Theorem 3.2 in [38]. Theorems 6.8-6.11 improve and generalize Theorem 3.2

in [42], Theorem 3.1 in [44] and [47] and Corollaries 3.3 and 3.4 in [47].

8 Conclusion
In this paper, we have introduced and considered some new classes of extended gen-

eral nonlinear regularized nonconvex variational inequalities and the extended general

nonconvex Wiener-Hopf equations involving three different nonlinear operators. By

the projection operator technique, we have established the equivalence between the

extended general nonlinear regularized nonconvex variational inequalities and the fixed

point problems as well as the extended general nonconvex Wiener-Hopf equations.

Then by this equivalent formulation, we have discussed the existence and uniqueness

theorem for solution of the problem of extended general nonlinear regularized non-

convex variational inequalities. This equivalence and a nearly uniformly Lipschitzian

mapping S are used to suggest and analyze some new perturbed p-step projection

iterative algorithms with mixed errors for finding an element of the set of the fixed

points of the nearly uniformly Lipschitzian mapping S which is unique solution of the

problem of extended general nonlinear regularized nonconvex variational inequalities.

We have presented some remarks about established statements by Noor [38], Noor et

al. [44], Qin and Noor [47] and also have shown that their statements are special cases

of our results. Several special cases are also discussed. It is expected that the results

proved in this paper may simulate further research regarding the numerical methods

and their applications in various fields of pure and applied sciences.

Acknowledgements
The authors are thankful to the referees for their helpful corrections, comments and valuable suggestions in
preparation of the paper. The second author was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant
Number: 2011-0021821).

Author details
1Department of Mathematics, Sari Branch Islamic Azad University, Sari, Iran 2Department of Mathematics Education
and the RINS Gyeongsang National University, Chinju 660-701, Korea 3Department of Mathematics, Dongeui University
Pusan 614-714, Korea

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2011 Accepted: 24 November 2011 Published: 24 November 2011

Balooee et al. Fixed Point Theory and Applications 2011, 2011:86
http://www.fixedpointtheoryandapplications.com/content/2011/1/86

Page 32 of 34



References
1. Stampacchia, G: Formes bilineaires coercitives sur les ensembles convexes. C R Acad Sci Paris 258, 4413–4416 (1964). 1,

3
2. Bensoussan, A, Lions, JL: Application des Inéquations variationelles en control et en Stochastiques. Dunod, Paris (1978).

1
3. Harker, PT, Pang, JS: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of

theory, algorithm and applications. Math Program 48, 161–220 (1990). 1. doi:10.1007/BF01582255
4. Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: A new system of nonlinear fuzzy variational inclusions involving (A,

η)-accretive mappings in uniformly smooth Banach spaces. J Inequal Appl 2009 (2009). Article ID 806727, 33 pages
doi:10.1155/2010/806727

5. Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: Generalized nonlinear random equations with random fuzzy and
relaxed cocoercive mappings in Banach spaces. Advan in Nonlinear Variat Inequal. 13, 37–58 (2010)

6. Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: Iterative algorithms for a new class of extended general nonconvex
set-valued variational inequalities. Nonlinear Anal. 73, 3907–3923 (2010). doi:10.1016/j.na.2010.08.022

7. Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: New perturbed finite step iterative algorithms for a system of
extended generalized nonlinear mixed quasi-variational inclusions. Comput Math Appl. 60, 2953–2970 (2010).
doi:10.1016/j.camwa.2010.09.055

8. Agarwal, RP, Cho, YJ, Petrot, N: Systems of general nonlinear set-valued mixed variational inequalities problems in
Hilbert spaces. Fixed Point Theory Appl 2011 (2011). 2011:31 doi:10.1186/1687-1812-2011-31

9. Cho, YJ, Lan, HY: A new class of generalized nonlinear multi-valued quasi-variational-like-inclusions with H-monotone
mappings. Math Inequal Appl. 10, 389–401 (2007)

10. Cho, YJ, Qin, X, Shang, MJ, Su, YF: Generalized nonlinear variational inclusions involving (A, η)-monotone mappings in
Hilbert spaces. Fixed Point Theory and Appl 2007 (2007). Article ID 29653, 6 pages

11. Cho, YJ, Lan, HY: Generalized nonlinear random (A, η)-accretive equations with random relaxed cocoercive mappings in
Banach spaces. Comput Math Appl. 55, 2173–2182 (2008). doi:10.1016/j.camwa.2007.09.002

12. Cho, YJ, Qin, X: Systems of generalized nonlinear variational inequalities and its projection methods. Nonlinear Anal. 69,
4443–4451 (2008). doi:10.1016/j.na.2007.11.001

13. Cho, YJ, Qin, X: Generalized systems for relaxed cocoercive variational inequalities and projection methods in Hilbert
spaces. Math Inequal Appl. 12, 365–375 (2009)

14. Cho, YJ, Petrot, N: Approximate solvability of a system of nonlinear relaxed cocoercive variational inequalities and
Lipschitz continuous mappings in Hilbert spaces. Advan in Nonlinear Variat Inequal. 13, 91–101 (2010)

15. Cho, YJ, Argyros, IK, Petrot, N: Approximation methods for common solutions of generalized equilibrium, systems of
nonlinear variational inequalities and fixed point problems. Comput Math Appl. 60, 2292–2301 (2010). doi:10.1016/j.
camwa.2010.08.021

16. Lan, HY, Kang, JI, Cho, YJ: Nonlinear (A, η)-monotone operator inclusion systems involving non-monotone set-valued
mappings. Taiwan J Math. 11, 683–701 (2007)

17. Qin, X, Kang, JI, Cho, YJ: On quasi-variational inclusions and asymptotically pseudo-contractions. J Nonlinear Convex
Anal. 11, 441–453 (2010)

18. Yao, Y, Cho, YJ, Liou, Y: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and
fixed point problems. Europ J Operat Res. 212, 242–250 (2011). doi:10.1016/j.ejor.2011.01.042

19. Bnouhachem, A, Noor, MA: Numerical methods for general mixed variational inequalities. Appl Math Comput. 204,
27–36 (2008). doi:10.1016/j.amc.2008.05.134

20. Bounkhel, M: Existence results of nonconvex differential inclusions. Port Math (NS) 59(3):283–309 (2002). 2
21. Bounkhel, M: General existence results for second order nonconvex sweeping process with unbounded perturbations.

Port Math (NS) 60(3):269–304 (2003). 2
22. Bounkhel, M, Azzam, L: Existence results on the second order nonconvex sweeping processes with perturbations. Set-

valued Anal 12(3):291–318 (2004). 2
23. Bounkhel, M, Tadji, L, Hamdi, A: Iterative schemes to solve nonconvex variational problems. J Inequal Pure Appl Math 4,

1–14 (2003). 1
24. Bounkhel, M, Thibault, L: Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex

sweeping process. Preprint, Centro de Modelamiento Matematico (CMM). Universidad de Chile (2000). 2
25. Canino, A: On p-convex sets and geodesics. J Diff Equ 75, 118–157 (1988). 2. doi:10.1016/0022-0396(88)90132-5
26. Chang, SS, Cho, YJ, Zhou, H: Iterative Methods for Nonlinear Operator Equations in Banach Spaces. pp. xiv+459. Nova

Science Publishers Inc., Huntington, NY (2002) ISBN: 1-59033-170-2 2.19
27. Clarke, FH: Optimization and Nonsmooth Analysis. Wiley, New York (1983). 2, 2.7
28. Clarke, FH, Ledyaev, YuS, Stern, RJ, Wolenski, PR: Nonsmooth Analysis and Control Theory. Springer, New York (1998). 1,

2, 2, 2, 2.7
29. Clarke, FH, Stern, RJ, Wolenski, PR: Proximal smoothness and the lower C2 property. J Convex Anal 2(1/2):117–144

(1995). 1, 2, 2, 2.8, 2, 2.9, 2
30. Lions, PL, Mercier, B: Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal 16, 964–979

(1979). 5.1. doi:10.1137/0716071
31. Lions, JL, Stampacchia, G: Variational inequalities. Comm Pure Appl Math 20, 493–512 (1967). 1, 5.1. doi:10.1002/

cpa.3160200302
32. Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J

Math Anal Appl 194, 114–125 (1995). 4. doi:10.1006/jmaa.1995.1289
33. Noor, MA: Auxiliary principle technique for extended general variational inequalities. Banach J Math Anal 2, 33–39

(2008). 3
34. Noor, MA: Differentiable nonconvex functions and general variational inequalities. Appl Math Comput 199, 623–630

(2008). 3. doi:10.1016/j.amc.2007.10.023
35. Noor, MA: Iterative methods for general nonconvex variational inequalities. Albanian J Math 3(1):117–127 (2009). 5, 5.1
36. Noor, MA: Iterative schemes for nonconvex variational inequalites. J Optim Theory Appl 121, 385–395 (2004). 1
37. Noor, MA: General variational inequalities. Appl Math Lett 1(2):119–122 (1988). 3. doi:10.1016/0893-9659(88)90054-7

Balooee et al. Fixed Point Theory and Applications 2011, 2011:86
http://www.fixedpointtheoryandapplications.com/content/2011/1/86

Page 33 of 34



38. Noor, MA: General variational inequalities and nonexpansive mappings. J Math Anal Appl 331, 810–822 (2007). 1, 4.6, 7,
7.1, 7.2, 7.4, 7.12, 8. doi:10.1016/j.jmaa.2006.09.039

39. Noor, MA: Sensitivity analysis of extended general variational inequalities. Appl Math E-Notes 9, 17–26 (2009). 3, 5, 5.1
40. Noor, MA: Some developments in general variational inequalities. Appl Math Comput 152, 199–277 (2004). 5.

doi:10.1016/S0096-3003(03)00558-7
41. Noor, MA: Variational Inequalities and Applications. Lecture Notes, Mathematics Department, COMSATS Institute of

information Technology, Islamabad, Pakistan (2007-2009). 1
42. Noor, MA: Wiener-Hopf equations and variational inequalities. J Optim Theory Appl 79(1):197–206 (1993). 6.7, 7.12.

doi:10.1007/BF00941894
43. Noor, MA, Huang, Z: Three-step iterative methods for nonexpansive mappings and variational inequalities. Appl Math

Comput 187, 680–685 (2007). 1. doi:10.1016/j.amc.2006.08.088
44. Noor, MA, Zainab, S, Yaqoob, H: General Winer-Hope equations and nonexpansive mappings. J Math Inequal

2(2):215–227 (2008). 1, 4.6, 6.7, 7, 7, 7.5, 7.6, 7, 7.12, 8
45. Pang, LP, Shen, J, Song, HS: A modified predictor-corrector algorithm for solving nonconvex generalized variational

inequalities. Comput Math Appl 54, 319–325 (2007). 1. doi:10.1016/j.camwa.2006.07.010
46. Poliquin, RA, Rockafellar, RT, Thibault, L: Local differentiability of distance functions. Trans Am Math Soc 352, 5231–5249

(2000). 1, 2, 2.7, 2, 2. doi:10.1090/S0002-9947-00-02550-2
47. Qin, X, Noor, MA: General Wiener-Hopf equation technique for nonexpansive mappings and general variational

inequalities in Hilbert spaces. Appl Math Comput 201, 716–722 (2008). 1, 6.7, 7, 7, 7.8, 7.9, 7.11, 7.12, 8. doi:10.1016/j.
amc.2008.01.007

48. Robinson, SM: Normal maps induced by linear transformations. Math Oper Res 17, 691–714 (1992). 1. doi:10.1287/
moor.17.3.691

49. Robinson, SM: Sensitivity analysis of variational inequalities by normal-map techniques. In: Giannessi F, Maugeri A (eds.)
Variational Inequalities and Network Equilibrium Problems. pp. 257–276. Plenum Press, New York (1995)

50. Shi, P: Equivalence of variational inequalities with Wiener-Hopf equations. Proc Am Math Soc 111, 339–346 (1991). 1, 5,
5.1. doi:10.1090/S0002-9939-1991-1037224-3

51. Shi, P: An iterative method for obstacles problems via Green’s functions. Nonlinear anal 15, 339–344 (1990). 1.
doi:10.1016/0362-546X(90)90142-4

52. Sellami, H, Robinson, SM: Implementation of a continuation method for normal maps. Math Program. 76, 563–578
(1997)

53. Sahu, DR: Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces. Comment Math Univ Carolin
46(4):653–666 (2005). 1, 2.12, 2.13

54. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc Am Math Soc 35, 171–174
(1972). 2.12. doi:10.1090/S0002-9939-1972-0298500-3

55. Kirk, WA, Xu, HK: Asymptotic pointwise contractions. Nonlinear Anal 69, 4706–4712 (2008). 2.12. doi:10.1016/j.
na.2007.11.023

doi:10.1186/1687-1812-2011-86
Cite this article as: Balooee et al.: The Wiener-Hopf Equation Technique for Solving General Nonlinear
Regularized Nonconvex Variational Inequalities. Fixed Point Theory and Applications 2011 2011:86.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Balooee et al. Fixed Point Theory and Applications 2011, 2011:86
http://www.fixedpointtheoryandapplications.com/content/2011/1/86

Page 34 of 34

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Preliminaries and basic results
	3 Extended general regularized nonconvex variational inequality
	4 Nearly uniformly Lipschitzian mappings and finite step projection iterative algorithms
	5 Extended general nonconvex Wiener-Hopf equations
	6 Some new perturbed p-step projection iterative methods
	7 Some remarks
	8 Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

