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Abstract

The aim of this article is to generalize a result which is obtained by Mizoguchi and
Takahashi [J. Math. Anal. Appl. 141, 177-188 (1989)] to the case of cone metric
spaces.
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1 Introduction
Banach contraction principle is widely recognized as the source of metric fixed point

theory. Also, this principle plays an important role in several branches of mathematics.

For instance, it has been used to study the existence of solutions for nonlinear equa-

tions, systems of linear equations and linear integral equations and to prove the con-

vergence of algorithms in computational mathematics.

Because of its importance for mathematical theory, Banach contraction principle has

been extended in many direction (see [1-8]). Especially, the generalizations to multiva-

lued case are immense too (see [6,9,10]).

Mizoguchi and Takahashi proved the following theorem in [9].

Theorem 1.1. Let (X,d) be a complete metric space and let T: X ® 2X be a multiva-

lued map such that Tx is a closed bounded subset of X for all x Î X. If there exists a

function �: (0, ∞) ® [0,1) such that

lim sup
r→t+

ϕ(r) < 1for all t ∈ [0,∞)

and if

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y)

for all x,y Î X(x ≠ y), then T has a fixed point in X.

Recently, in [10], the authors introduced a cone metric space which is a generaliza-

tion of a metric space. They generalized Banach contraction principle for cone metric

spaces. Since then, in [11-23], the authors obtained fixed point theorems in cone

metric spaces. And the authors [24,25] obtained fixed point results in cone Banach

spaces.

The authors [26-28] proved fixed point theorems for multivalued maps in cone

metric spaces.
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In this article, we extend the Hausdorff distance to cone metric spaces, and general-

ize Theorem 1.1 to the case of cone metric spaces.

Consistent with Huang and Zhang [17], the following definitions will be needed in

the sequel.

Let E be a real Banach space. A subset P of E is a cone if the following conditions are

satisfied:

(1) P is nonempty closed and P ≠ {θ},

(2) ax + by Î P, whenever x, y Î P and a, b Î ℝ(a, b ≥ 0),

(3) P ∩ (-P) = {θ}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and

only if y - x Î P. We write x < y to indicate that x ≤ y but x ≠ y.

For x,y Î P, x ≪ y stand for y - x Î int(P), where int(P) is the interior of P. A cone

P is called normal if there exists a number K > 1 such that for all x,y Î E, ||x|| ≤ K ||

y|| whenever θ ≤ x ≤ y.

A cone P is called regular if every increasing sequence which is bounded from above

is convergent. That is, if {un} is a sequence such that for some z Î E

u1 ≤ u2 ≤ · · · ≤ z,

then there exists u Î E such that

lim
x→∞ ‖un − u‖ = 0.

Equivalently, a cone P is regular if and only if every decreasing sequence which is

bounded from below is convergent.

It has been mentioned [17] that every regular cone is normal (see also [22]).

From now on, we assume that E is a Banach space, P is a cone in E with int(P) �= ∅
and ≤ is a partial ordering with respect to P.

Let X be a nonempty set. A mapping d: X × X ® E is called cone metric [17] on X if

the following conditions are satisfied:

(1) θ ≤ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y Î X,

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z Î X.

A sequence {xn} in a cone metric space (X, d) converges [17] to a point x Î X

(denoted by limn ®∞ xn = x or xn ® x) if for any c Î int(P), there exists N such that

for all n > N, d(xn, x) ≪ c. A sequence {xn} in a cone metric space (X, d) is Cauchy

[17] if for any c Î int(P), there exists N such that for all n,m > N, d(xn, xm) ≪ c. A

cone metric space (X,d) is called complete [17] if every Cauchy sequence is convergent.

Lemma 1.1. [17]Let (X, d) be a cone metric space and P be a normal cone, and let

{xn} be a sequence in X and x,y Î X. Then, we have that

(1) limn ®∞ xn = x if and only if limn ®∞ d(xn, x) = θ,

(2) {xn} is Cauchy if and only if limn , m ®∞ d(xn, xm) = θ,

(3) if limn ®∞ xn = x and limn ®∞ xn = y, then x = y.

We denote by N(X)(resp. B(X), CB(X)) the set of nonempty(resp. bounded, sequen-

tially closed and bounded) subset of a metric space or a cone metric space.

Let (X, d) be a cone metric space.

From now on, we denote s(p) = {q Î E: p ≤ q} for p Î E, and s(a, B) = ∪b Î B s(d(a,

b)) for a Î X and B Î N(X).
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For A,B Î B(X), we denote

s(A,B) =
(∩a∈As(a,B)

)⋂ (∩b∈Bs(b,A)
)
.

Lemma 1.2. Let (X, d) be a cone metric space, and let P be a cone in Banach space

E.

(1) Let p,q Î E. If p ≤ q, then s(q) ⊂ s(p).

(2) Let x Î X and A Î N(X). If θ Î s(x, A), then x Î A.

(3) Let q Î P and let A, B Î B(X) and a Î A. If q Î s(A, B), then q Î s(a, B).

Remark 1.1. Let (X,d) be a cone metric space. If E = ℝ and P = [0,∞), then (X,d) is a

metric space. Moreover, for A, B Î CB(X), H(A, B) = inf s(A, B) is the Hausforff dis-

tance induced by d.

Remark 1.2. Let (X, d) be a cone metric space. Then, s({a}, {b}) = s(d(a, b)) for a,b Î
X.

Lemma 1.3. If un Î E with un ® θ, then for each c Î int(P) there exists N such that

un ≪ c for all n > N.

Proof. Let c Î int(P). There exists � > 0 such that

‖c − a‖ < ε implies a ∈ int(P).

Since ||un|| ® 0, there exists N such that ||un|| < � for all n > N. Thus, we have ||c -

(c - un)|| < � and so c - un Î int(P) for all n > N. Therefore, un ≪ c for all n > N.

2 Fixed point theorems
Theorem 2.1. Let (X, d) be a complete cone metric space with normal cone P and let T:

X ® CB(X) be a multivalued map. If there exists a function �: P ® [0,1) such that

lim sup
n→∞

ϕ(rn) < 1 (2:1:1)

for any decreasing sequence {rn} in P,

and if

ϕ(d(x, y))d(x, y) ∈ s(Tx,Ty) (2:1:2)

for all x,y Î X(x ≠ y), then T has a fixed point in X.

Proof. Let x0 Î X and x1 Î Tx0. From (2.1.2), we have

ϕ(d(x0, x1))d(x0, x1) ∈ s(Tx0,Tx1).

Thus, we have by Lemma 1.2 (3), �(d(x0, x1))d(x0, x1) Î s(x1, Tx1).

By definition, we can take x2 Î Tx1 such that �(d(x0, x1))d(x0, x1) Î s (d (x1, x2)). So,

d(x1, x2) ≤ �(d(x0, x1))d(x0, x1).

Again, we have by (2.1.2), �(d(x1, x2))d(x1, x2) Î s(Tx1, Tx2). Thus, we have �(d(x1,

x2))d(x1, x2) Î s(x2, Tx2).

Thus, we can choose x3 Î Tx2 such that �(d(x1, x2))d(x1, x2) Î s(d(x2, x3)) and so d

(x2, x3) ≤ �(d(x1, x2))d(x1, x2).

Inductively, we can construct a sequence {xn} in X such that for n = 1, 2, ...,

d(xn, xn+1) ≤ ϕ(d(xn−1, xn))d(xn−1, xn), xn+1 ∈ Txn. (2:1:3)

If xn = xn+ 1 for some n Î N, then T has a fixed point.
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We may assume that xn ≠ xn+ 1 for all n Î N. From (2.1.3), {d(xn, xn +1)} is a

decreasing sequence in P. From (2.1.1), there exists r Î (0,1) such that

lim sup
n→∞

ϕ
(
d(xn, xn+1)

)
= r.

Thus, for any l Î (r, 1), there exists n0 Î N such that for all n ≥ n0, �(d(xn- 1, xn)) <l.

Without loss of generality, we may assume n0 = 1. Then, we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn))d(xn−1, xn) < ld(xn−1, xn) < lnd(x0, x1).

For m > n, we have

d(xn, xm) ≤ ln

1 − l
d(x0, x1).

By Lemma 1.3, {xn} is a Cauchy sequence in X. It follows from the completeness of X

that there exists u Î X such that limn ®∞ xn = u.

We now show that u Î Tu.

From (2.1.2), we have �(d(xn, u))d(xn, u) Î s(Txn, Tu) for n Î N. By Lemma 1.2 (3),

we obtain

ϕ(d(xn, u))d(xn, u) ∈ s(xn+1,Tu).

Thus, there exists vn Î Tu such that

ϕ(d(xn, u))d(xn, u) ∈ s(d(xn+1, vn)).

Hence, d(xn+ 1, vn) ≤ d(xn, u). Thus, we have

d(u, vn) ≤ d(u, xn+1) + d(xn+1, vn) ≤ d(u, xn+1) + d(xn, u).

By letting n ® ∞ in above inequality and by Lemma 1.1, we have limn ®∞ d(u, vn) =

0. Again, by Lemma 1.1, limn ®∞ vn = u. Since Tu is closed, u Î Tu.

Remark 2.1. (1) By Remark 1.1, Theorem 2.1 generalize Theorem 1.1 [Theorem 5, 13].

(2) The authors [26,28]obtained fixed point theorems for multivalued maps T defined

on cone metric spaces (X, d) under assumption that the function I(x) = infx Î Tx ||d(x,

y)|| is lower semicontinuous, and the author [27]obtained a fixed point theorem for

multivalued maps T under assumptions that the function I(x), x Î X is lower semicon-

tinuous and a dynamic process is given.

(3) In [26-28], the authors do not use the concept of the Hausdorff metric on cone

metric spaces, and their results cannot be applied directly to obtain the following corol-

laries 2.2-2.5.

Collorary 2.2. Let (X, d) be a complete cone metric space with normal cone P and let

T: X ® CB(X) be a multivalued map. If there exists a monotone increasing function �:

P ® [0,1) such that

ϕ(d(x, y))d(x, y) ∈ s(Tx,Ty)

for all x,y Î X(x ≠ y), then T has a fixed point in X.

The following result is Nadler multivalued contraction fixed point theorem in cone

metric space.
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Collorary 2.3. Let (X, d) be a complete cone metric space with normal cone P and let

T: X ® CB(X) be a multivalued map. If there exists a constant k Î [0, 1) such that

kd(x, y) ∈ s(Tx,Ty)

for all x,y Î X, then T has a fixed point in X.

By Remark 1.1, we have the following corollaries.

Collorary 2.4. [29]Let (X, d) be a complete metric space and let T: X ® CB(X) be a

multivalued map. If there exists a monotone increasing function �: (0, ∞) ® [0, 1) such

that

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y)

for all x,y Î X(x ≠ y), then T has a fixed point in X.

Collorary 2.5. [6]Let (X,d) be a complete metric space and let T: X ® CB(X) be a

multivalued map. If there exists a constant k Î [0, 1) such that

H(Tx,Ty) ≤ kd(x, y)

for all x,y Î X, then T has a fixed point in X.

The following example illustrates our main theorem.

Example 2.1. Let X = L1[0, 1], E = C[0,1] and P = {f Î E: f ≥ 0}. Then, P is a normal

cone with normal constant K = 1. Define d: X × X ® E by

d(f , g)(t) =
∫ t

0

∣∣f (x) − g(x)
∣∣ dx , where 0 ≤ t ≤ 1. Then, d is a cone metric on X. Con-

sider a mapping T: X ® CB(X) defined by

(Tf )(x) =
∫ x

0
y(f (y)− 1)dy.

Let ϕ(t) = 1
2 for all t Î P. Obviously, condition (2.1.1) is satisfied.

We show that condition (2.1.2) is satisfied.

Consider the following inequality.

d(Tf ,Tg)(t)

=
∫ t

0
|

∫ x

0
y(f (y) − 1)dy −

∫ x

0
y(g(y) − 1)dy|dx

=
∫ t

0
|

∫ x

0
y(f (y) − g(y))dy|dx

≤
∫ t

0

∫ x

0
y|f (y) − g(y)|dydx

=
∫ t

0

∫ t

y
y|f (y) − g(y)|dxdy

=
∫ t

0
(t − y)y|f (y)− g(y)|dy

≤
∫ t

0

t2

4
|f (y) − g(y)|dy

≤ 1
4

∫ t

0
|f (y) − g(y)|dy

=
1
4
d(f , g)(t).

Thus, we have 1
4d(f , g) ∈ s(d(Tf ,Tg)) = s(Tf ,Tg) . Hence, ϕ(d(f , g))d(f , g) = 1

2d(f , g) ∈ s(Tf ,Tg) .
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Therefore, all conditions of Theorem 2.1 are satisfied and T has a fixed point

f ∗ (x) = −e
x2

2 + 1 .
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