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Abstract

In uniform spaces, using J -families of generalized pseudodistances, we construct
four kinds of contractions of Kannan type and, by techniques based on these
generalized pseudodistances, we prove fixed point theorems for such contractions.
The results are new in uniform and locally convex spaces and even in metric spaces.
Examples are given.
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1 Introduction
Given a space X, Fix(T) denotes the set of fixed points of T : X ® X, i.e. Fix(T) = {w Î
X : w = T(w)}. For v0 any point of X, by (vm : m Î {0} ∪ N) we mean the sequence of

iteration of T : X ® X starting at v0, i.e. ∀m∈{0}∪�{vm = T[m](v0)} .
Recall that maps satisfying the conditions (B) and (K) that are presented in Theo-

rems 1.1 and 1.2 below are called in literature Banach contractions and Kannan con-

tractions, respectively, and first arose in works [1,2] and [3,4], respectively.

Theorem 1.1 [1,2]Let (X, d) be a complete metric space. If T : X ® X satisfies

(B) ∃λ∈[0,1)∀x,y∈X{d(T(x),T(y)) ≤ λd(x, y)},

then: (a) T has a unique fixed point w in X; and (b) ∀u0∈X{limm→∞um = w} .
Theorem 1.2 [3]Let (X, d) be a complete metric space. If T : X ® X satisfies (K) ∃hÎ

[0,1/2)∀x, yÎX {d(T(x), T(y)) ≤ h [d(T(x), x) + d(T(y), y)]},

then: (a) T has a unique fixed point w in X; and (b) ∀u0∈X{limm→∞um = w} .
Theorem 1.3 [4]Let (X, d) be a metric space. Assume that: (i) T : X ® X satisfies (K);

(ii) there exists w Î X such that T is continuous at a point w; and (iii) there exists a

point v0Î X such that the sequence (vm : m Î {0} ∪ N) has a subsequence (vmk : k Î
{0} ∪ N) satisfying limk→∞vmk = w.Then, w is a unique fixed point of T in X.

A great number of applications and extensions of these results have appeared in the

literature and plays an important role in nonlinear analysis. The different line of

research focuses on the study of the following interesting aspects of fixed point theory

in metric spaces and has intensified in the past few decades: (a) the existence and

uniqueness of fixed points of various generalizations of Banach and Kannan contrac-

tions; (b) the similarity between Banach and Kannan contractions; and (c) the interplay
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between metric completeness and the existence of fixed points of Banach and Kannan

contractions. These aspects have been successfully studied in various papers; see, for

example, [5-21] and references therein.

It is interesting that Theorem 1.2 is independent of Theorem 1.1 that every Banach

contraction and every Kannan contraction on a complete metric space has a unique

fixed point and that in Theorem 1.3 the completeness of the metric space is omitted.

Clearly, Banach contractions are always continuous but Kannan contractions are not

necessarily continuous. Next, it is worth noticing that Theorem 1.2 is not an extension

of Theorem 1.1. In [5], it is constructed an example of noncomplete metric space X

such that each Banach contraction T : X ® X has a fixed point which implies that

Theorem 1.1 does not characterize metric completeness. In [6], it is proved that a

metric space X is complete if and only if every Kannan contraction T : X ® X has a

fixed point which implies that Theorem 1.2 characterizes the metric completeness.

Similarity between Banach and Kannan contractions may be seen in [7,8]. In complete

metric spaces (X, d), w-distances [9] and τ-distances [10] have found substantial appli-

cations in fixed point theory and among others generalizations of Banach and Kannan

contractions are introduced, many interesting extensions of Theorems 1.1 and 1.2 to

w-distances and τ-distances are obtained, and techniques based on these distances are

presented (see, for example, [7-17]); τ-distances generalize w-distances and metrics d.

The above are some of the reasons why in metric spaces the study of Kannan con-

tractions and generalizations of Kannan contractions plays a particularly important

part in fixed point theory.

In this article, in uniform spaces, using J -families of generalized pseudodistances,

we construct four kinds of contractions of Kannan type (see conditions (C1)-(C4)) and,

by techniques based on these generalized pseudodistances, we prove fixed point theo-

rems for such contractions (see Theorems 2.1-2.8). The definitions and the results are

new in uniform and locally convex spaces and even in metric spaces. Examples (see

Section 12) and some conclusions (see Section 13) are given.

2 Statement of main results
Let X be a Hausdorff uniform space with uniformity defined by a saturated family

D = {dα : X2 → [0,∞),α ∈ A} of pseudometrics da, α ∈ A , uniformly continuous on

X2. The notion of J -family of generalized pseudodistances on X is as follows:

Definition 2.1 Let X be a uniform space. The family J = {Jα , α ∈ A} of maps Ja :

X2 ® [0, ∞), α ∈ A , is said to be a J -family of generalized pseudodistances on X

(J -family, for short) if the following two conditions hold:

(J 1)∀α∈A∀x,y,z∈X {Jα (x, z) ≤ Jα(x, y) + Jα (y, z)} ; and
(J 2)For any sequences (xm : m Î N) and (ym : m Î N) in X such that

∀α∈A{ lim
n→∞ sup

m>n
Jα(xn, xm) = 0} (2:1)

and

∀α∈A{ lim
m→∞ Jα(xm, ym) = 0}, (2:2)

Włodarczyk and Plebaniak Fixed Point Theory and Applications 2011, 2011:90
http://www.fixedpointtheoryandapplications.com/content/2011/1/90

Page 2 of 24



the following holds:

∀α∈A{ lim
m→∞ dα(xm, ym) = 0}. (2:3)

Remark 2.1 Let X be a uniform space.

(a) Let J = {Jα : X2 → [0,∞),α ∈ A)be a J -family. if ∀α∈A∀x∈x{Jα(x, x) = 0} , then,
for each α ∈ A , Ja is quasi-pseudometric. Examples of J -families such that the maps

Ja, α ∈ A are not quasi-pseudometrics are given in Section 12.

(b) The family J = D is a J -family on X.

It is the purpose of the present paper to prove the following results.

Theorem 2.1 Let X be a Hausdorff uniform space and assume that the map T : X ®

X and the J -family J = {Jα : X2 → [0,∞),α ∈ A}on X satisfy (C1)

∀α∈A∃ηα∈[0,1/2)∀x,y∈X{Jα(T(x),T(y)) ≤ ηα[Jα(T(x), x) + Jα(T(y), y)]}and, additionally,
(D1) ∃v0,ω∈X∀α∈A{limm→∞Jα(vm,w) = 0}.
Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞um = w} ; and (c)

∀α∈A{Jα(w,w) = 0} .
Theorem 2.2 Let X be a Hausdorff uniform space and assume that the map T : X ®

X and the J -family J = {Jα : X2 → [0,∞),α ∈ A}on X satisfy at least one of the fol-

lowing three conditions:

(C2) ∀α∈A∃ηα∈[0,1/2)∀x,y∈X{Jα(T(x),T(y)) ≤ ηα[Jα(T(x), x) + Jα(T(y)), y]},
(C3) ∀α∈A∃ηα∈[0,1/2)∀x,y∈X{Jα(T(x),T(y)) ≤ ηα[Jα(x,T(x)) + Jα(y,T(y))]} ,
(c4) ∀α∈A∃ηα∈[0,1/2)∀x,y∈X{Jα(T(x),T(y)) ≤ ηα[Jα(x,T(x)) + Jα(T(y), y)]} ,
and, additionally,

(D2) ∃v0,ω∈X∀α∈A{limm→∞Jα(vm,w) = limm→∞Jα(w, vm) = 0} .
Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞um = w}; and (c)

∀α∈A{Jα(w,w) = 0}.
It is worth noticing that conditions (C1)-(C4) are different and conditions (D1) and

(D2) are different since the J -family is not symmetric.

Clearly, (D1) include (D2). The following theorem shows that with some additional

conditions the converse holds.

Theorem 2.3 Let X be a Hausdorff uniform space and assume that the map T : X ®

X and the J -familyJ = {Jα : X2 → [0,∞),α ∈ A}on X satisfy at least one of the con-

ditions (C2)-(C4) and, additionally, condition (D1) and at least one of the following

conditions (D3)-(D6):

(D3) ∀v0,w∈X{limm→∞vm = w ⇒ ∃q∈N{T[q](w) = w}},
(D4) ∀v0,w∈X{limm→∞vm = w ⇒ ∃q∈N{T[q] is continuous at a point w}},
(D5) ∀v0,w∈X{limm→∞vm = w ⇒ ∃q∈N{limm→∞T[q](vm) = T[q](w)}},
(D6) ∀v0,w∈X{limm→∞vm = w ⇒ ∃q∈N∀α∈A{limm→∞Jα(T[q](vm),T[q](w)) = 0}}.
Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞um = w}; and (c)

∀α∈A{Jα(w,w) = 0} .
The following theorem shows that if we assume that the uniform space is sequen-

tially complete, then the conditions (D1) and (D2) can be omitted.

Theorem 2.4 Let X be a Hausdorff sequentially complete uniform space and assume

that the map T : X ® X and the J -family J = {Jα : X2 → [0,∞),α ∈ A}on X satisfy
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at least one of the conditions (C1)-(C4) and, additionally, at least one of the conditions

(D3)-(D6). Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞um = w}; and
(c) ∀α∈A{Jα(w,w) = 0} .
We now introduce the concept of J -admissible maps and in the following result

these maps will be used to extend Theorem 2.4 to the uniform spaces which are not

sequentially complete and without any conditions (D1)-(D6).

Definition 2.2 Let X be a Hausdorff uniform space and let

J = {Jα : X2 → [0,∞),α ∈ A) be a J -family on X. We say that T : X ® X is

J -admissible if for each u0 Î X satisfying ∀α∈A{limn→∞supm>nJα(u
n, um) = 0} there

exists w Î X such that ∀α∈A{limm→∞Jα(um,w) = limm→∞Jα(w, um) = 0} .
Theorem 2.5 Let X be a Hausdorff uniform space and

J = {Jα : X2 → [0,∞),α ∈ A}be the J -family on X. Let the map T : X ® X be

J -admissible and assume that T and J satisfy at least one of the conditions (C1)-(C4).

Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞um = w}; and (c)

∀α∈A{Jα(w,w) = 0}.
Also, the following uniqueness results hold.

Theorem 2.6 Let X be a Hausdorff uniform space and assume that the map T : X ®
X and the J - familyJ = {Jα : X2 → [0,∞),α ∈ A}on X satisfy at least one of the con-

ditions (C1)-(C4) and, additionally, the following conditions (D7) and (D8):

(D7) There exist q Î N and wÎ X such that T[q] is continuous at a point w;

(D8) There exists a point v0 Î X such that the sequence (vm : m Î {0} ∪ N) has a

subsequence (vmk : k Î {0} ∪ N) satisfyinglimk→∞vmk = w.

Then: (a) T has a unique fixed point w in X; (b) limk→∞vm = w ; and (c)

∀α∈A{Jα(w,w) = 0}.
Theorem 2.7 Let X be a Hausdorff sequentially complete uniform space and let the

map T : X ® X satisfy the condition

(C5) ∀α∈A∃ηα∈[0,1/2)∀x,y∈X{dα(T(x),T(y)) ≤ ηα[dα(T(x), x) + dα(y,T(y))]}.
Then: (a) T has a unique fixed point w in X; and (b) ∀u0∈X{limm→∞um = w}.
Theorem 2.8 Let X be a Hausdorff uniform space and assume that the map T : X ®

X satisfies (C5), (D7) and (D8). Then: (a) T has a unique fixed point w in X; and (b)

∀u0∈X{limm→∞um = w}.
The rest of this article is organized as follows. In Section 3, we prove some auxiliary

propositions. In Sections 4-11, we prove Theorems 2.1-2.8, respectively. Section 12

provides examples and comparisons. Section 13 includes some conclusions.

3 Auxiliary propositions
In this section, we present some propositions that will be used in Sections 4-11.

Proposition 3.1 Let X be a Hausdorff uniform space and let

J = {Jα : X2 → [0,∞),α ∈ A}be a J -family. If x ≠ y, x, y Î X, then

∃α∈A{Jα(x, y) 
= 0 ∨ Jα(y, x) 
= 0} .
Remark 3.1 If x, y Î X and ∀α∈A{Jα(x, y) = 0 ∧ Jα(y, x) = 0} , then x = y.

Proof of Proposition 3.1. Suppose that x ≠ y and ∀α∈A{Jα(x, y) = 0 ∧ Jα(y, x) = 0} .
Then, ∀α∈A{Jα(x, x) = 0} , since, by ( J 1 ), we get

∀α∈A{dα(x, y) = 0} . Defining xm = x and ym = y for m Î N, we conclude that (2.1) and
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(2.2) hold. Consequently, by (J 2 ), we get (2.3) which implies ∀α∈A{dα(x, y) = 0} .
However, X is a Hausdorff and hence, since x ≠ y, we have. ∃α∈A{dα(x, y) 
= 0} .
Contradiction. □
Proposition 3.2 Let X be a uniform space and let J = {Jα : X2 → [0,∞),α ∈ A}be a

J -family. Let � = {φα ,α ∈ A}be the family of maps ja: X® [0, ∞), α ∈ A .

(a) The families W(i) = {W(i)

α : X2 → [0,∞), α ∈ A} , i = 1, 2, where, for each

W(1)
α (x, y) = max {φα(x), Jα(x, y)} , W(1)

α (x, y) = max {φα(x), Jα(x, y)}and
W

(2)

α (x, y) = max {φα(y), Jα(x, y)} , x, y Î X, are J -families on X.

(b) The families V (i) = {V (i)

α : X2 → [0,∞), α ∈ A} , i = 1, 2, where for each

V(2)
α (x, y) = φα(y) + Jα(x, y)V

(1)
α (x, y) = φα(x) + Jα(x, y)and V(2)

α (x, y) = φα(y) + Jα(x, y) ,

x, y Î X, are J -families on X.

Remark 3.2 ∀i∈ {1,2}∀α∈A∀x,y∈X{Jα(x, y) ≤ W(i)
α (x, y) ∧ Jα(x, y) ≤ V(i)

α (x, y)}.
Proof of Proposition 3.2. (a) For each α ∈ A and for each x, y, z Î X, using (J 1)

for family J , we get

W(2)
α (x, y) = max {φα(z), Jα(x, z)} ≤ max {φα(y)+φα(z), Jα(x, y)+Jα(y, z)} ≤ W(2)

α (x, y)+W(2)
α (y, z)}and

W(2)
α (x, y) = max {φα(z), Jα(x, z)} ≤ max {φα(y)+φα(z), Jα(x, y)+Jα(y, z)} ≤ W(2)

α (x, y)+W(2)
α (y, z)}. Therefore,

for each i Î {1, 2}, the condition (J 1) for family W(i) holds.

Let i Î {1, 2} be arbitrary and fixed and let (xm : m Î N) and (ym : m Î N) be arbi-

trary and fixed sequences in X satisfying

∀α∈A{limn→∞supm>nW
(i)
α (xn, xm) = limm→∞W(i)

α (xm, ym) = 0}. Then, by Remark 3. 2,

we obtain that the. conditions (2.1) and (2.2) for family J hold and, consequently,

since J is a J -family, by (J 2) , the condition (2.3) is satisfied, i.e.

∀α∈A{limm→∞dα(xm, ym) = 0} which gives that (J 2) for family W(i) holds.

Therefore, for each i Î {1, 2},W(i) is J -family.

(b) Using (J 1) for family J , we obtain that, for each α ∈ A and for each x, y, z, Î

X, V(1)
α (x, z) = φα(x) + Jα(x, z) ≤ φα(x) + Jα(x, y) +φα(y) + Jα(y, z) = V(1)

α (x, y) +V(1)
α (y, z),and

V(2)
α (x, z) = φα(z) + Jα(x, z) ≤ φα(y) + Jα(x, y) +φα(z) + Jα(y, z) = V(2)

α (x, y) +V(2)
α (y, z) . Thus, for

each i Î {1, 2}, the condition (J 1) for family V (i) holds.

Let i Î {1, 2} be arbitrary and fixed and let (xm : m Î N) (ym : m Î N) be arbitrary

and fixed sequences in X satisfying

∀α∈A{limn→∞supm>nV
(i)
α (xn, xm) = limm→∞V(i)

α (xm, ym) = 0}. Then, by Remark 3.2, we

obtain that the conditions (2.1) and (2.2) for family J hold and, consequently, by

∀α∈A{limm→∞d
α
(xm, ym) = 0} , ∀α∈A{limm→∞d

α
(xm, ym) = 0} .This gives that (J 2) for

family V (i)holds.

We proved that, for each, i Î {1, 2}, V (i)is a J -family. □
Proposition 3.3 Let X be a uniform space, let J = {Jα : X2 → [0,∞), α ∈ A}be a

J -family and let T: X® X.

(a) If T and J satisfy (C1) or (C3), then

∀α∈A∃λα∈[0,1)∀x∈X{max Jα(T(x), T[2](x)), Jα(T[2](x),T(x))} ≤ λα max {Jα(x,T(x)), Jα(T(x), x)}}.
(b) If T and J satisfy (C2) or (C4), then

∀α∈A∃λα∈[0,1)∀x∈X{Jα(T[2](x),T(x)) + Jα(T(x),T[2](x)) ≤ λα[Jα(T(x), x) + Jα(x,T(x))]} .
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Proof. (a) The proof will be broken into two steps.

STEP 1. If (C1) holds, then the assertion holds.

By (C1), ∀α∈A∃ηα∈[0, 1/2)∀x∈X{Jα(T[2](x),T(x)) ≤ ηα[Jα(T[2](x),T(x))+Jα(T(x), x)]∧Jα(T(x),T[2](x) ≤ ηα[Jα(T(x), x)+Jα(T[2](x),T(x))]}

and, since ∀α∈A{ηα /(1 − ηα) < 1} , we see that the first of these inequalities implies

Jα(T[2](x), T(x)) ≤ ηα /(1 − ηα)] Jα(T(x), x) ≤ Jα(T(x), x) . Hence

∀α∈A∃ηα∈[0,1/2)∀x∈X{max{Jα(T(x), T[2](x)), Jα(T[2](x), T(x))} ≤ ηα[Jα(T[2](x), T(x))+Jα(T(x), x)] ≤ 2ηαJα(T(x), x) ≤ 2ηα max{Jα(x,T(x)), Jα(T(x), x)}}. Now, we

see that ∀α∈A{λα = 2ηα < 1} .
STEP 2. If (C3) holds, then the assertion holds.

By (C3), ∀α∈A∃ηα∈[0,1/2)∀x∈X{Jα(T[2](x), T(x)) ≤ ηα[Jα(T(x), T[2](x))+Jα(x, T (x))]∧Jα(T(x), T[2](x)) ≤ ηα[Jα(x, T(x))+Jα(T(x),T[2](x))]}

and, since ∀α∈A{ηα /(1 − ηα) < 1} , we see that the second from these inequalities

implies Jα(T(x),T[2](x)) ≤ [ηα /(1 − ηα)] Jα(x,T(x)) ≤ Jα(x,T(x)) . Hence, we conclude

that ∀α∈A∃ηα∈[0,1/2)∀x∈X{max{Jα(T[2](x), T(x)), Jα(T(x), T[2](x))} ≤ ηα[Jα(x, T(x))+Jα(T(x),T[2](x))] ≤ 2ηαJα(x,T(x)) ≤ 2ηα max{Jα(x, T(x)), Jα(T(x), x)}}. It is

clear that ∀α∈A{λα = 2ηα < 1} .
(b) The proof will be broken into two steps.

STEP 1. If (C2) holds, then the assertion holds.

By (C2), ∀α∈A∃ηα∈[0,1/2)∀x∈X{Jα(T[2](x),T(x)) ≤ ηα(Jα(T[2](x),T(x))+Jα(x,T(x))]∧JαT(x),T[2](x)) ≤ ηα[Jα(T(x), x)+Jα(T(x),T[2](x))]} .

Hence, ∀α∈A∃λα∈[0,1)∀x∈X{Jα(T[2](x), T(x)) ≤ λαJα(x,T(x))∧Jα(T(x), T[2](x)) ≤ λαJα(T(x), x)} ;
here ∀α∈A{λα = ηα/(1 − ηα)} . From this, we conclude that

∀α∈A∃λα∈[0,1)∀x∈X{Jα(T[2](x), T(x)) + Jα(T(x),T[2](x)) ≤ λα[Jα(T(x), x) + Jα(x,T(x))]} .
STEP 2. If (C4) holds, then the assertion holds.

By (C4), ∀α∈A∃ηα∈[0,1/2)∀x∈X{Jα(T[2](x), T(x)) ≤ ηα(Jα(T(x), T[2](x))+Jα(T(x), x)]∧JαT(x), T[2](x)) ≤ ηα[Jα(x,T(x))+Jα(T[2](x),T(x))]}.

This gives ∀α∈A∃ηα∈[0,1/2)∀x∈X{Jα(T[2](x), T(x)) ≤ η2
α /(1−η2

α) Jα(x,T(x)+ηα /(1−η2
α) Jα(T(x), x)∧JαT(x),T[2](x)) ≤ ηα /(1−η2

α) Jα(x,T(x))+η2
α /(1−η2

α) Jα(T(x), x)}.

Hence, ∀α∈A∃ηα∈[0,1/2)∀x∈X{Jα(T[2](x), T(x))+JαT(x),T[2](x)) ≤ (ηα+η2
α)/(1−n2α) [Jα(x,T(x))+Jα(T(x), x)] = ηα /(1−ηα) [Jαx, (T(x))+Jα(T(x), x)] .

Since ∀α∈A{λα = ηα /(1 − ηα) < 1} , therefore

∀α∈A∃λα∈[0,1)∀x∈X{Jα(T[2](x), T(x)) + JαT(x), T[2](x)) ≤ λα[Jα(x,T(x)) + Jα(T(x), x)] . □

Proposition 3.4 Let X be a uniform space, let J = {Jα : X2 → [0,∞), α ∈ A}be a

J -family and let T : X ® X. Assume that T and J satisfy at least one of the conditions

(C1)-(C4). Then:

(a) ∀α∈A∀u0∈X{limn→∞supm>n Jα(u
n, um) = limn→∞supm>nJα(u

m, un) = 0}.
(b) ∀α∈A∀u0∈X {limm→∞ Jα(um, um+1) = limm→∞Jα(um+1, um) = 0}.
(c) ∀α∈A∀u0∈X{limn→∞supm>ndα(un, um) = 0}.
(d) If there exist z Î X and q Î N such that z = T[q] (z), then Fix(T) = {z} and

∀α∈A{Jα(z, z) = 0} .
(e) If v0, w Î X satisfy (D1), then limm®∞ v

m = w.

(a) The proof will be broken into two steps.

STEP 1. If (C1) or (C3) holds, then the assertion holds.

There exist J -families W(i) = {W(i)
α , α ∈ A} , i Î {1, 2}, such that

∀α∈A∃λα∈[0,1)∀x∈X{W(1)
α (T(x), T[2](x)) ≤ λαW

(1)
α (x,T(x))} (3:1)

and

∀α∈A∃λα∈[0,1)∀x∈x{W(2)
α (T[2](x), T(x)) ≤ λαW

(2)
α (T(x), x)}. (3:2)
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Indeed, by Propositions 3.2(a) and 3.3(a), if

∀α∈A∀x∈X{φ(1)
α (x) = Jα(T(x), x) ∧ φ(2)

α (x) = Jα(x,T(x))} , then the maps

W(2)
α (x, y) = max{φ(2)

α (y), Jα(x, y)}and W(2)
α (x, y) = max{φ(2)

α (y), Jα(x, y)} , x, y Î X,

have properties (3.1)and (3.2), respectively.

Let α ∈ A and u0 Î X be arbitrary and fixed. By (3.1), using (J 1) for J -family

W(1) , if m > n, we get

W(1)
α (un, um) ≤

∑m−1

k=n
W(1)

α (uk, uk+1) ≤
∑m−1

k=n
λk

α W
(1)
α (u0, u1) ≤ W(1)

α (u0, u1)λn
α /(1−λα). This gives

limn→∞supm>nW
(1)
α (un, um) = 0 and, by Remark 3.2, we obtain

∀α∈A∀u0∈X{limn→∞supm>nJα(u
n, um) = 0}.

If α ∈ A and u0 Î X are arbitrary and fixed, m, n Î N and m > n, then, by (3.2),

using (J 1) for J -family W(2) , we get

W(2)
α (um, un) ≤

∑m−1

k=n
W(2)

α (uk+1, uk) ≤
∑m−1

k=n
λk

αW
(2)
α (u1, u0) ≤ W(2)

α (u1, u0)λn
α /(1−λα) and

limn→∞supm>nW
(2)
α (um, un) = 0. Hence, by Remark 3.2,

∀α∈A∀u0∈X{limn→∞supm>nJα(u
m, un) = 0}.

STEP 2. If (C2) or (C4) holds, then the assertion holds.

There exist J -families V (i) = {Vi
α , α ∈ A}, i Î {1, 2}, such that

∀α∈A∃λα∈[0,1)∀x∈X{V(1)
α (T(x), T[2](x)) ≤ λαV

(1)
α (x,T(x))} (3:3)

and

∀α∈A∃λα∈[0,1)∀x∈X{V(2)
α (T[2](x),T(x)) ≤ λαV

(2)
α (T(x), x)}. (3:4)

Indeed, by Propositions 3.2(b) and 3.3(b), we have that if

∀α∈A∀x∈X{φ(1)
α (x) = Jα(T(x), x) ∧ φ

(2)
α (x) = Jα(x,T(x))}, then the maps

V(1)
α (x, y) = φ

(1)
α (x) + Jα(x, y) and V(2)

α (x, y) = φ
(2)
α (y) + Jα(x, y), x, y ∈ X, have the above

properties.

Let α ∈ A and u0 Î X are arbitrary and fixed. Then, by (3.3), using (J 1) for

V (1)-family V (1), if m > n, we have

V(1)
α (un, um) ≤

∑m−1

k=n
V(1)

α (uk, uk+1) ≤
∑m−1

k=n
λk

α V
(1)
α (u0, u1) ≤ V(1)

α (u0, u1)λn
α /(1−λα). conse-

quently, limn→∞supm>nV
(1)
α (un, um) = 0. By Remark 3.2, this gives

∀α∈A∀u0∈X{limn→∞supm>nJα(u
n, um) = 0} .

If α ∈ A and u0 Î X are arbitrary and fixed, m, n Î N and m > n, then, by (3.4),

using (J 1) for J -family V (2), we have

V(2)
α (um, un) ≤

∑m−1

k=n
V(2)

α (uk+1, uk) ≤
∑m−1

k=n
λk

α V
(2)
α (u1, u0) ≤ V(2)

α (u1, u0) λn
α (1−λα). Hence, we

obtain that limn→∞supm>nV
(2)
α (um, un) = 0. By Remark 3.2, this gives

∀α∈A∀u0∈X{limn→∞supm>nJα(u
m, un) = 0} .

(b) This is a consequence of (a) since

∀α∈A∀u0∈X∀n∈N{Jα(un, un+1) ≤ supm>nJα(u
n, um)∧Jα(un+1, un) ≤ supm>nJα(u

m, un)}.
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(c) Let u0 Î X be arbitrary and fixed. By (a),

∀α∈A{ lim
n→∞ sup

m>n
Jα(un, um) = 0} (3:5)

which implies ∀α∈A∀ε>0∃n1=n1(α, ε)∈N∀n>n1{sup{Jα(un, um) : m > n} < ε} and, in par-

ticular,

∀α∈A∀∈>0∃n1=n1(α,∈)∈�∀n>n1∀s∈�{Jα(un, us+n) < ε}. (3:6)

Let now i0, j0 Î N, i0 >j0, be arbitrary and fixed. If we define

xm = ui0+m and ym = uj0+m for m ∈ �, (3:7)

then (3.6) gives

∀α∈A{ lim
m→∞ Jα(um, xm) = lim

m→∞ Jα(um, ym) = 0}. (3:8)

Therefore, by (3.5), (3.8) and (J 2) ,

∀α∈A{ lim
m→∞ dα(um, xm) = lim

m→∞ dα(um, ym) = 0}. (3:9)

From (3.7) and (3.9), we then claim that

∀α∈A∀ε>0∃n2=n2(α, ε)∈�∀m>n2{dα(um, ui0+m) < ε /2} (3:10)

and

∀α∈A∀ε>0∃n3=n3(α, ε)∈�∀m>n3{dα(um, uj0+m) < ε /2}. (3:11)

Let now α0 ∈ A and ε0 > 0 be arbitrary and fixed, let n0 = max {n2(a0, ε0), n3(a0,

ε0)} + 1 and let k, l Î N be arbitrary and fixed such that k > l > n0. Then, k = i0 + n0
and l = j0 + n0 for some i0, j0 Î N such that i0 > j0 and, using (3.10) and (3.11), we get

dα0 (u
k, ul) = dα0 (u

i0+n0 , uj0+n0 ) ≤ dα0 (u
n0 , ui0+n0 )+dα0 (u

n0 , uj0+n0 ) < ε0
/
2+ε0

/
2 = ε0 . Hence, we

conclude that ∀α∈A∀ε>0∃n0=n0(α,ε)∈�∀k,l∈�, k>l>n0{dα(uk, ul) < ε} .
(d) The proof will be broken into two steps.

STEP 1. If (C1) or (C3) holds, then the assertions hold.

Let z Î Fix (T[q]) for some z Î X and q Î N. First, we prove that if W(1) is

J -family defined in the proof of (a), then

∀α∈A{W(1)
α (z, T(z)) = 0}. (3:12)

Otherwise, we have ∃α0∈A{W(1)
α0 (z, T(z)) > 0}. Then, by (3.1), since z = T[q](z) =

Τ[2q] = T[2q](z), there exists λα0 ∈ [0, 1) , such that W(1)
α0 (z, T(z)) = W(1)

α0 (T
[2q](z),

T[2](T[2q−1](z))) ≤ λα0W
(1)
α0

(T(T[2q−2](z)) , T[2](T[2q−1](z))) ≤ λα0W
(1)
α0

(T(T[2q−2](z)) ¸

T(T[2q−2](z))) ≤ · · · ≤ λ2q
α0
W(1)

α0
(z, T(z)) < W(1)

α0
(z, T(z)) ,

T(T[2q−2](z))) ≤ · · · ≤ λ2q
α0
W(1)

α0
(z, T(z)) < W(1)

α0
(z, T(z)) , which is absurd. Therefore,

(3.12) is satisfied.
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Next, we see that

∀α∈A{W(1)
α (T(z), z) = 0}. (3:13)

Otherwise, ∃α0∈A{W(1)
α0

(T(z), z) > 0} and, since z = T[q](z) = T[2q](z) and if q + 1

<2q, then by (3.1) and (3.12), for some λα0 ∈ [0, 1) , we get 0

<0 < W(1)
α0 (T(z), z) = W(1)

α0 (T(T[q](z)) , T[2q](z)) = W(1)
α0 (T[q+1](z) ,

T[2q](z)) ≤ ∑2q−1
i=q+1 λi

α0
W(1)

α0 (z, T(z)) ≤ [λq+1
α0 /(1 − λα0 )] W

(1)
α0 (z, T(z)) = 0 , which is

absurd. If q + 1 = 2q, i.e. q = 1, then z = T(z) = T2(z) and, by (3.1) and (3.12),

0 < W(1)
α0 (T(z), z) = W(1)

α0 (T(z), T[2](z)) ≤ λα0W
(1)
α0 (z, T(z)) = 0 , which is absurd.

Therefore, (3.13) holds.

Now, using Remark 3.2, we see that (3.12) and (3.13) gives

∀α∈A{Jα(z, T(z)) = Jα(T(z), z) = 0}, (3:14)

which, by Remark 3.1, implies that z Î Fix (T).

By (J 1)and (3.14), we obtain ∀α∈A{Jα(z, z) ≤ Jα(z, T(z)) + Jα(T(z), z) = 0} .
We show that z is a unique fixed point of T. Otherwise, there exist a, b Î Fix (T)

such that a ≠ b. Then, using above for q = 1, we obtain

∀α∈A{Jα(a, T(a)) = Jα(T(a), a) = 0} and ∀α∈A{Jα(b, T(b)) = Jα(T(b), b) = 0} . Hence, if

(C1) holds, then for each α ∈ A , by (C1), Ja(a, b) = Ja(T (a), T (b)) ≤ ha[Ja(T (a), a) +

Ja(T (b), b)] = 0 and Ja (b, a) = Ja (T (b), T (a)) ≤ ha [Ja (T (b), b) + Ja(T (a), a)] = 0

where ha Î [0, 1/2). Hence, ∀α∈A{Jα(a, b) = Jα(b, a) = 0} . By Remark 3.1, this implies

a = b. Contradiction. Similarly, if (C3) holds, then, for each α ∈ A , by (C3), Ja(a, b) =

Ja(T (a), T (b)) ≤ ha [Ja (a, T (a)) + Ja (b, T (b))] = 0 and Ja (b, a) = Ja (T (b), T (a)) ≤

ha [Ja (b, T (b)) + Ja (a, T (a))] = 0 where ha Î [0, 1/2). Thus,

∀α∈A{Jα(a, b) = Jα(b, a) = 0} which, by Remark 3.1, implies a = b. Contradiction.

STEP 2. If (C2) or (C4) holds, then the assertions hold.

Let z Î Fix(T[q]) for some z Î X and q Î N. We prove that if V (1) is J -family

defined in the proof of (a), then

∀α∈A{V(1)
α (z, T(z)) = 0}. (3:15)

Otherwise, we have ∃α0∈A{V(1)
α0

(z, T(z)) > 0} and, consequently, by (3.3), since z = T

[q](z) = T[2q](z), we get, for some λα0 ∈ [0, 1),V(1)
α0 (z, T(z)) = V(1)

α0 (T[2q](z) ,

T[2](T[2q−1](z))) ≤ λα0V
(1)
α0

(T(T[2q−2](z)) , T[2](T[2q−1](z))) ≤ λα0V
(1)
α0

(T(T[2q−2](z)) ,

T(T[2q−2](z))) ≤ · · · ≤ λ
2q
α0V

(1)
α0 (z, T(z)) < V(1)

α0 (z, T(z)) ,

T(T[2q−2](z))) ≤ · · · ≤ λ
2q
α0V

(1)
α0 (z, T(z)) < V(1)

α0 (z, T(z)) , which is absurd. Therefore,

(3.15) holds.

Next, we prove that

∀α∈A{V(1)
α (T(z), z) = 0}. (3:16)

Otherwise, ∃α0∈A{V(1)
α0

(T(z), z) > 0} and, since z = T[q](z) = T[2q](z), if q + 1 < 2q,

then, by (3.3) and (3.15), for some λα0 ∈ [0, 1) , we have
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T[2q](z)) ≤
∑2q−1

i=q+1
λi

α0
V(1)

α0
(z, T(z)) ≤ [λq+1

α0
/(1 − λα0)]V

(1)
α0

(z, T(z)) = 0 ,

T[2q](z)) ≤
∑2q−1

i=q+1
λi

α0
V(1)

α0
(z, T(z)) ≤ [λq+1

α0
/(1 − λα0)]V

(1)
α0

(z, T(z)) = 0 ,

T[2q](z)) ≤
∑2q−1

i=q+1
λi

α0
V(1)

α0
(z, T(z)) ≤ [λq+1

α0
/(1 − λα0)]V

(1)
α0

(z, T(z)) = 0 , which is

absurd. If q + 1 = 2q, i.e. q = 1, then z T (z) = T2 (z) and, by (3.3) and (3.15),

T[2](z)) ≤ λα0V
(1)
α0 (z, T(z)) = 0 , T[2](z)) ≤ λα0V

(1)
α0 (z, T(z)) = 0 , which is absurd.

Therefore, (3.16) holds.

By Remark 3.2, (3.15) and (3.16) implies

∀α∈A{Jα(z, T(z)) = Jα(T(z), z) = 0}, (3:17)

which, by Remark 3.1, gives z Î Fix (T).

Now, by (J 1) and (3.17), we obtain ∀α∈A{Jα(z, z) ≤ Jα(z, T(z)) + Jα(T(z), z) = 0} .
We show that z is a unique fixed point of T. Otherwise, there exist a, b Î Fix(T)

such that a ≠ b. Then, by above considerations for q = 1, we get

∀α∈A{Jα(a, T(a)) = Jα(T(a), a) = 0} and ∀α∈A{Jα(b, T(b)) = Jα(T(b), b) = 0} . Hence, if

(C2) holds, then for each α ∈ A , by (C2), Ja (a, b) = Ja (T (a), T (b)) ≤ a [Ja (T (a), a)

+ Ja (b, T (b))] = 0 and Ja (b, a) = Ja (T (b), T (a)) ≤ ha [Ja (T (b), b) + Ja (a, T (a))] =

0 where ha Î [0, 1/2). Therefore, ∀α∈A{Jα(a, b) = Jα(b, a) = 0} . Hence, by Remark 3.1,

we get a = b, which is impossible. Similarly, if (C4) holds, then, for each α ∈ A , by

(C4), Ja (a, b) = Ja (T (a), T (b)) ≤ ha [Ja (a, T (a)) + Ja (T (b), b)] = 0 and Ja (b, a) =

Ja (T (b), T (a)) ≤ ha [Ja (b, T (b)) + Ja (T (a), a)] = 0 where ha Î [0, 1/2). Therefore

∀α∈A{Jα(a, b) = Jα(b, a) = 0} and, by Remark 3.1, we get a = b, which is impossible.

(e) Indeed, by (a), we have ∀α∈A{limm→∞supm>nJα(v
n, vm) = 0}. Next, by (D1),

∀α∈A{limm→∞Jα(vm, w) = 0} . Hence, defining xm = vm and ym = w for m Î N, we

conclude that (2.1) and (2.2) hold for sequences (xm : m Î N) and (ym : m Î N) in X.

Therefore, by (J 2) , we get (2.3) which implies ∀α∈A{limm→∞dα(vm, w) = 0}. □

4 Proof of Theorem 2.1
The proof will be broken into 11 steps.

STEP 1. If v0, w Î X satisfy (D1), then

∀α∈A{limm→∞Jα(vm, vm+1) = limm→∞Jα(vm+1, vm) = 0} . This follows from Proposition

3.4(b).

STEP 2. If v0, w Î X satisfy (D1), then limm®∞ vm = w. This follows from Proposi-

tion 3.4(e).

STEP 3. If v0, w Î X satisfy (D1), then ∀α∈A{Jα(T(w), w) = 0} .
Indeed, by (J 1) and (C1), ∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(T(w), w) ≤ Jα(T(w) ,

T(vm)) + Jα(T(vm), w) ≤ ηα[Jα(T(w), w) + Jα(vm+1, vm)] + Jα(vm+1, w)} . Hence, by Step

1 and (D1), we obtain
∀α∈A∃ηα∈[0,1 / 2){limm→∞Jα(T(w), w) ≤ limm→∞{ηα[Jα(T(w), w)+Jα(vm+1, vm)]+Jα(vm+1, w)} = ηαJα(T(w), w)}. Thus,

∀α∈A∃ηα∈[0,1 / 2) {Jα(T(w), w) ≤ ηαJα(T(w), w)} , so, since ∀α∈A{ηα ∈ [0, 1/2)} , we get

∀α∈A{Jα(T(w), w) = 0} .
STEP 4. If v0, w Î X satisfy (D1), then T(w) Î Fix(T).
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Indeed, by (C1) and Step 3, we have that

∀α∈A∃ηα∈[0,1/2){Jα(T[2](w), T(w)) ≤ ηα[Jα(T[2](w), T(w))+Jα(T(w), w)] = ηαJα(T[2](w), T(w))}. Hence,

∀α∈A{Jα(T[2](w), T(w)) = 0}. (4:1)

On the other hand, by (C1),

∀α∈A∃ηα∈[0,1/2){Jα(T(w), T[2](w)) ≤ ηα[Jα(T(w), w) + Jα(T[2](w), T(w))]} . Hence, by

Step 3 and (4.1),

∀α∈A{Jα(T(w), T[2](w)) = 0}. (4:2)

Now, by (4.1), (4.2) and Remark 3.1, we conclude that T(w) = T2(w) = T(T(w)), i.e. T

(w) Î Fix(T) is satisfied.

STEP 5. If v0, w Î X satisfy (D1), then ∀α∈A{limm→∞Jα(vm, T(w)) = 0} .
Indeed, by (C1) and Step 3,

∀α∈A∃ηα∈[0,1/2){Jα(vm, T(w)) ≤ ηα[Jα(vm, vm−1) + Jα(T(w), w)] = ηαJα(vm, vm−1)} . Hence, by

Step 1, we obtain that ∀α∈A{limm→∞Jα(vm, T(w)) = 0}.
STEP 6. If v0, w Î X satisfy (D1), then limm®∞ vm = T (w).

Indeed, by (C1) and Proposition 3.4(a), in particular,

∀α∈A{limn→∞supm>nJα(v
n, vm) = 0} . Next, by Step 5, ∀α∈A{limm→∞Jα(vm, T(w)) = 0} .

Hence, defining xm = vm and ym = T (w) for m Î N, we conclude that for sequences

(xm : m Î N) and (ym : m Î N) in X the conditions (2.1) and (2.2) hold. Consequently,

by (J 2) , we get (2.3), which implies

∀α∈A{limm→∞dα(vm, T(w)) = limm→∞dα(xm, ym) = 0} , i.e. the limit limm®∞ vm = T

(w) holds.

STEP 7. If v0, w Î X satisfy (D1), then T(w) = w and ∀α∈A{Jα (w,w) = 0} .
Since X is Hausdorff, thus T(w) = w is a consequence of Steps 2 and 6.

Next, by (C1) and Step 3, we obtain

∀α∈A∃ηα∈[0,1/2){Jα(w, w) = Jα(T(w),T(w)) ≤ ηα[Jα(T(w), w) + Jα(T(w), w)] = 0}, i.e.

∀α∈A{Jα (w,w) = 0} holds.

STEP 8. If v0, w Î X satisfy (D1), then ∀α∈A∀u0∈X{limm→∞Jα(um, w) = 0}.
By (J 1) , (C1), Proposition 3.4(b), Step 1 and (D1), we obtain

∀α∈A∃ηα∈[0,1/2)∀u0∈X{limm→∞Jα(um, w) ≤ limm→∞[Jα(um, vm)+Jα(vm, w)] ≤ ηαlimm→∞[Jα(um, um−1)+Jα(vm, vm−1)]+limm→∞Jα(vm, w) = 0}.

STEP 9. If v0, w Î X satisfy (D1), then ∀α∈A∀u0∈X{limm→∞dα(um, w) = 0} .
Indeed, by (C1), Proposition 3.4(a) and Step 8,

∀α∈A∀u0∈X{limn→∞supm>nJα(u
n, um) = 0} and ∀α∈A∀u0∈X{limm→∞Jα(um, w) = 0} .

Defining xm = um and ym = w for m Î N, we conclude that for sequences (xm : m Î
N) and (ym : m Î N) in X the conditions (2.1) and (2.2) hold. Hence, by (J 2) , we get

(2.3) which implies ∀α∈A∀u0∈X{limm→∞dα(um, w) = 0} .
STEP 10. If v0, w Î X satisfy (D1), then Fix (T) = {w}.

Indeed, by (C1), Step 7 and Proposition 3.4(d) (for q = 1), we get that Fix (T) = {w}.

STEP 11. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 10, 9 and 7.

5 Proof of Theorem 2.2
The proof will be broken into seven steps.
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STEP 1. If v0, w Î X satisfy (D2), then

∀α∈A{limm→∞Jα(vm, vm+1) = limm→∞Jα(vm+1, vm) = 0} . This follows from Proposition

3.4(b).

STEP 2. If v0, w Î X satisfy (D2), then limm®∞ vm = w. This follows from Proposi-

tion 3.4(e).

STEP 3. If v0, w Î X satisfy (D2), then T(w) = w and ∀α∈A{Jα(w, w) = 0} .
Indeed, we consider three cases:

Case 1. If (C2) holds, then by (J 1) and (C2), we have

∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(w, T(w)) ≤ Jα(w, T(vm))+Jα(T(vm), T(w)) ≤ Jα(w, vm+1)+ηα[Jα(vm+1, vm)+Jα(w, T(w))]} . Conse-

quently, by (D2) and Step 1,
∀α∈A∃ηα∈[0,1/2){limm→∞Jα(w, T(w)) ≤ limm→∞[Jα(w, vm+1)+ηαJα(vm+1, vm)+ηαJα(w, T(w))] = ηαJα(w, T(w))}, i.e.

∀α∈A∃ηα∈[0,1/2){Jα(w, T(w)) ≤ ηαJα(w, T(w))} . Hence, since ∀α∈A{ηα ∈ [0, 1/2)} , we
get

∀α∈A{Jα(w, T(w)) = 0}. (5:1)

Similarly, by (J 1) and (C2), we obtain

∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(T(w), w) ≤ Jα(T(w), T(vm))+Jα(T(vm), w) ≤ ηα[Jα(T(w), w)+Jα(vm, vm+1)]+Jα(vm+1,w)} . Conse-

quently, by Step 1 and (D2), we have
∀α∈A∃ηα∈[0,1/2){Jα(T(w), w) ≤ ηαJα(T(w), w)+limm→∞[ηαJα(vm, vm+1)+Jα(vm+1, w)] = ηαJα(T(w), w)} and, since
∀α∈A{ηα ∈ [0, 1/2)},∀α∈A∃ηα∈[0,1/2){Jα(T(w), w) ≤ ηαJα(T(w), w)} implies

∀α∈A{Jα(T(w), w) = 0}. (5:2)

From (5.1), (5.2) and Remark 3.1, we conclude that T(w) = w.

Case 2. If (C3) holds, then by (J 1) and (C3), we have that

∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(w, T(w)) ≤ Jα(w, T(vm))+Jα(T(vm), T(w)) ≤ Jα(w, vm+1)+ηα[Jα(vm, vm+1)+Jα(w, T(w))]} . Conse-

quently, by (D2) and Step 1,
∀α∈A∃ηα∈[0,1/2){limm→∞Jα(w, T(w)) ≤ limm→∞[Jα(w, vm+1)+ηαJα(vm, vm+1)+ηαJα(w, T(w))] = ηαJα(w, T(w))}. Therefore,
∀α∈A∃ηα∈[0,1/2){Jα(w, T(w)) ≤ ηαJα(w, T(w))} , so, since ∀α∈A{ηα ∈ [0, 1/2)} , we get

∀α∈A{Jα(w, T(w)) = 0}. (5:3)

Similarly,
∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(T(w), w) ≤ Jα(T(w), T(vm))+Jα(T(vm), w) ≤ ηα[Jα(w, T(w))+Jα(vm, vm+1)]+Jα(vm+1, w)} . Conse-

quently, by (5.3), Step 1 and (D2),

∀α∈A∃ηα∈[0,1/2){Jα(T(w), w) ≤ ηαJα(w, T(w))+limm→∞[ηαJα(vm, vm+1)+Jα(vm+1, w)] = 0}. Therefore,

∀α∈A{Jα(T(w), w) = 0}. (5:4)

From (5.3), (5.4) and Remark 3.1, we conclude that T(w) = w.

Case 3. If (C4) holds, then by (J 1) and (C4), we have that

∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(T(w), w) ≤ Jα(T(w), T(vm))+Jα(T(vm), w) ≤ ηα[Jα(w, T(w))+Jα(vm+1, vm)]+Jα(vm+1, w)} . Conse-

quently, by (D2) and Step 1,

∀α∈A∃ηα∈[0,1/2){Jα(T(w), w) ≤ ηαJα(w, T(w)) ≤ Jα(w, T(w))}. (5:5)

However, by (J 1) and (C4), we have

∀α∈A∃ηα∈[0,1/2)∀m∈�{Jα(w, T(w)) ≤ Jα(w,T(vm))+Jα(T(vm), T(w)) ≤ Jα(w, vm+1)+ηα[Jα(vm, vm+1)+Jα(T(w), w)]} . Conse-

quently, by Step 1 and (D2),
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∀α∈A∃ηα∈[0,1/2){Jα(w, T(w)) ≤ ηαJα(T(w), w) ≤ Jα(T(w), w)}. (5:6)

Clearly, (5.5) and (5.6) give

∀α∈A{Jα(T(w), w) = Jα(w, T(w))} (5:7)

If, there exists α0 ∈ A, such that Jα0 (w,T(w)) = Jα0 (T(w),w) > 0, then using the

above consideration, by (J 1) and (C4), since ηα0 ∈ [0, 1/2), we obtain

0 < Jα0 (w,T(w)) ≤ ηα0 Jα0 (T(w),w) < Jα0 (T(w),w) = Jα0 (w,T(w)), which is absurd.

Consequently, we have that

∀α∈A{Jα(T(w), w) = Jα(w, T(w)) = 0}. (5:8)

From (5.8) and Remark 3.1, we conclude that T(w) = w.

Clearly, by (J 1) and (D2), we have

∀α∈A{Jα(w, w) ≤ limm→∞ Jα(w, vm) + limm→∞ Jα(vm, w) = 0} .
STEP 4. If v0, w Î X. satisfy (D2), then ∀α∈A∀u0∈X{limm→∞ Jα(um, w) = 0} .
Indeed, we consider three cases:

Case 1. If (C2) holds, then, by (J 1) , (C2), Proposition 3.4(b), Step 1 and (D2), we

conclude that
∀α∈A∃ηα∈[0,1/2)∀u0∈X{limm→∞ Jα(um, w) ≤ limm→∞ [Jα(um, vm)+Jα(vm, w)] ≤ ηα [limm→∞ (Jα(um, um−1)+Jα(vm−1, vm))]+limm→∞ Jα(vm, w) = 0}, so

∀α∈A∀u0∈X{limm→∞ Jα(um, w) = 0} holds.

Case 2. If (C3) holds, then, by (J 1) , (C3), Proposition 3.4(b), Step 1 and (D2), we

conclude that
∀α∈A∃ηα∈[0,1/2)∀u0∈X{limm→∞ Jα(um, w) ≤ limm→∞ [Jα(um, vm)+Jα(vm, w)] ≤ ηα [limm→∞ (Jα(um−1, um)+Jα(vm−1, vm))]+limm→∞ Jα(vm, w) = 0}, so

∀α∈A∀u0∈X{limm→∞ Jα(um, w) = 0} holds.

Case 3. If (C4) holds, then, by (J 1) , (C4), Proposition 3.4(b), Step 1 and (D2), we

conclude that
∀α∈A∃ηα∈[0,1/2)∀u0∈X{limm→∞ Jα(um, w) ≤ limm→∞[Jα(um, vm)+Jα(vm, w)] ≤ ηα[limm→∞(Jα(um−1, um)+Jα(vm, vm−1))]+limm→∞ Jα(vm, w) = 0} , so

∀α∈A∀u0∈X{limm→∞ Jα(um, w) = 0} holds.

STEP 5. If v0, w Î X satisfy (D2), then ∀α∈A∀u0∈X{limn→∞ dα(un, w) = 0} .
Assume that at least one of the conditions (C2) − (C4) holds. Then, by Proposition

3.4(a), Step 4 and (J 2) , ∀α∈A∀u0∈X{limm→∞ dα(um, w) = 0} .
STEP 6. If v0, w Î X satisfy (D2), then Fix(T) = {w}.

Indeed, assume that at least one of the conditions (C2)-(C4) holds. Then, by Step 3

and Proposition 3.4(d), we have that Fix(T) = {w}.

STEP 7. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 6, 5 and 3. □

6 Proof of Theorem 2.3
The proof will be broken into six steps.

STEP 1. If v0 Î X and w Î X satisfy (D1), then

lim
m→∞ vm = w. (6:1)

This follows from Proposition 3.4(e).

STEP 2. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-

tions (D1) and (D3) hold, then (D2) is satisfied.
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Assume that v0 Î X and w Î X satisfy (Dl). By (6.1) and (D3), we have that w = T[q]

(w) for some q Î N. Next, by (C2) or (C3) or (C4) and by Proposition 3.4(d), Fix(T) =

{w} and ∀α∈A{Jα(w, w) = 0} . This and T(w) = w, by (C2) or (C3) or (C4) and Proposi-

tion 3.4(b), imply: (i) limm®∞ Ja(w, v
m) = limm®∞ Ja (T(w), T(vm-1)) ≤ ha limm®∞[Ja(T

(w), w) + Ja(v
m-1, vm)] = ha limm®∞[Ja(w, w) + Ja(v

m-1, vm)] = 0 if (C2) holds; (ii)

limm®∞ Ja(w, v
m) = limm®∞ Ja(T(w), T(v

m-1)) ≤ ha limm®∞[Ja(w, T(w)) + Ja(v
m-1, vm)]

= ha limm®∞[Ja(w, w) + Ja(v
m-1, vm)] = 0 if (C3) holds; (iii) limm®∞ Ja(w, v

m) =

limm®∞ Ja(T(w), T(v
m-1)) ≤ ha limm®∞[Ja(w, T(w)) + Ja(v

m, vm-1)] = ha limm®∞[Ja(w,

w) + Ja(v
m, vm-1)] = 0 if (C4) holds. This and (D1) imply (D2).

STEP 3. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-

tions (D1) and (D4) hold, then (D2) is satisfied.

Let us observe that (D3), by assumption (Dl), includes (D4). Indeed, if v0 Î X and w

Î X satisfy (Dl) and if (D4) holds, then, by (6.1), T[q] is continuous at w for some q Î
N and, since vmq+k = T[q] (v(m-1)q+k) for k = 1,2,..., q and m Î N and, for each k = 1,2,...

q, the sequences (vm+q+k : m Î {0} ∪ N) and (vm-q+k : m Î {0} ∪ N), as subsequences of

(vm : m Î {0} ∪ N), also converge to w, we obtain that w = T[q](w). By Step 2, (D2)

holds.

STEP 4. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-

tions (D1) and (D5) hold, then (D2) is satisfied.

Indeed, if v0 Î X and w Î X satisfy (Dl) and if (D5) holds, then limm®∞v
m = T[q](w)

and, since X is Hausdorff, by (6.1), we obtain w = T[q](w), i.e. (D3) holds. By Step 2,

(D2) holds.

STEP 5. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-

tions (D1) and (D6) hold, then (D2) is satisfied.

Let v0 Î X and w Î X satisfy (Dl). Then, by (C2) or (C3) or (C4) and Proposition 3.4

(b), we have that ∀α∈A{limn→∞ supm>n Jα(v
n, vm) = 0} and, by (6.1) and (D6), it fol-

lows that ∃q∈�∀α∈A{limm→∞ Jα(vm, T[q](w)) = 0}. Defining xm = vm and ym = T[q](w)

for m Î N, we conclude that for sequences (xm : m Î N) and (ym = m Î N) in X the

conditions (2.1) and (2.2) hold. Hence, by (J 2) , we get (2.3) which implies

∀α∈A{limm→∞ dα(vm, T[q](w)) = 0}, i.e. limm®∞v
m = T[q](w). Since X is Hausdorff and

(6.1) holds, this gives w = T[q](w), i.e. (D3) holds. By Step 2, (D2) holds.

STEP 6. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 1-5 and Theorem 2.2.

The proof of Theorem 2.3 is complete. □

7 Proof of Theorem 2.4
The proof will be broken into five parts.

PART 1. Since X is a Hausdorff sequentially complete uniform space and, by (Cl) or

(C2) or (C3) or (C4) and by Proposition 3.4(c), for each u0 Î X, the sequence (um : m

Î {0} ∪ N) is a Cauchy sequence, thus there exists a unique w Î X such that limm®∞

um = w.

PART 2. If u0 Î X, limm®∞ um = w and (D3) holds, then we have that w Î Fix(T[q])

for some q Î N. Next, by Proposition 3.4(d), we conclude that the other assertions

hold.
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PART 3. If u0 Î X, limm®∞ um = w and (D4) holds, i.e. T[q] is continuous at w for

some q Î N, then w = T[q](w). Indeed, we have that umq+k = T[q](u(m-1)q+k) for k =

1,2,..., q and m Î N and, for each k = 1, 2,..., q, the sequences (umq+k : m Î {0}∪N) and

(u(m-1)q+k : m Î {0}∪N), as subsequences of (um : m Î {0} ∪ N), also converge to w,

which, since T[q] is continuous at w, gives w = T[q](w). Hence, using Proposition 3.4(d),

we conclude that the other assertions hold.

PART 4. If u0 Î X, limm®∞ um = w and (D5) holds, then we obtain that limm®∞ um

= T[q](w), which, with Part 1, since X is Hausdorff, gives w = T[q](w), i.e. (D3) holds.

PART 5. If u0 Î X, limm®∞ um = w and (D6) holds, then we obtain that

∃q∈�∀α∈A{limm→∞ Jα(um, T[q](w)) = 0} and next, using Proposition 3.4(a) and (J 2) ,

we conclude that limm®∞ um = T[q](w), which, with Part 1, gives w = T[q](w), i.e. (D3)

holds.

The proof of Theorem 2.4 is complete. □

8 Proof of Theorem 2.5
The proof will be broken into four steps.

STEP 1. Let at least one of the conditions (C1)-(C4) holds and let u0 Î X be arbitrary

and fixed. Then:

∀α∈A{ lim
n→∞ sup

m>n
Jα(un, um) = 0}, (8:1)

∃w∈X∀α∈A{ lim
m→∞ Jα(um, w) = lim

m→∞ Jα(w, um) = 0}, (8:2)

∀α∈A{ lim
m→∞ Jα(um, um+1) = lim

m→∞ Jα(um+1, um) = 0}. (8:3)

Indeed, (8.1) is a consequence of Proposition 3.4(a). Property (8.1) and Definition 2.2

imply (8.2). Proposition 3.3(d) implies (8.3).

STEP 2. Let (C1) hold and let u0 Î X and w Î X be such as in the Step 1. Then, Fix

(T) = {w} and ∀α∈A{Jα(w, w) = 0} , i.e. the assertions (a) and (c) hold.

First, we show that

∀α∈A{Jα(T(w), w) = 0} (8:4)

and

∀α∈A{Jα(w, T(w)) = 0}. (8:5)

Suppose that ∃α0∈A{Jα0 (T(w), w) > 0} . By (J 1) and (Cl), we obtain that
∃ηα0∈[0,1/2)∀m∈�{Jα0 (T(w), w) ≤ Jα0 (T(w), T

[m](u0))+Jα0 (u
m, um+1)+Jα0 (u

m+1, w) ≤ ηα0 [Jα0 (T(w), w)+Jα0 (T
[m](u0), T[m−1](u0))]+Jα0 (u

m, um+1)+Jα0 (u
m+1, w)}. Hence,

using (8.3) and (8.2),
Jα0 (T(w), w) = limm→∞ Jα0 (T(w),w) ≤ ηα0 limm→∞[Jα0 (T(w), w)+Jα0 (u

m, um−1)]+limm→∞[Jα0 (u
m, um+1)+Jα0 (u

m+1, w)] = ηα0 Jα0 (T(w), w) . Thus,

since ηα0 ∈ [0, 1/2) , we get Jα0 (T(w),w) = 0 , which is impossible. Therefore, (8.4)

holds.

Next, we see that, for arbitrary and fixed α ∈ A , by (J 1) and (Cl),

∃ηα∈[0,1/2)∀m∈�{Jα(w, T(w)) ≤ Jα(w, um)+Jα(T[m](u0), T(w)) ≤ Jα(w, um)+ηα[Jα(T[m](u0), T[m−1](u0))+Jα(T(w), w)]} . Hence,

using (8.2)-(8.4), we get Ja(w, T(w)) = limm®∞ Ja(w, T(w, T(w)) ≤ limm®∞ Ja(w, u
m) +

ha limm®∞ [Ja(u
m, um-1) + Ja(T(w), w)] = 0, i.e. (8.5) holds.
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Now, from (8.4), (8.5) and Remark 3.1, we obtain that w = T(w), i.e. w Î Fix(T).

Hence, by Proposition 3.4(d) (for q = 1), we have that Fix(T) = {w} and

∀α∈A{Jα(w, w) = 0} , i.e. the assertions (a) and (c) hold.

STEP 3. Let at least one of the conditions (C2)-(C4) holds and let u0 Î X and w Î X

be such as in the Step 1. Then, Fix(T) = {w} and ∀α∈A{Jα(w, w) = 0} , i.e. the assertions

(a) and (c) hold.

Indeed, the assertions (a) and (c) are consequences of (8.2), (8.3) and also conse-

quences of similar argumentation as in Case 1 (if (C2) holds) or Case 2 (if (C3) holds)

or Case 3 (if (C4) holds) of Step 3 of the proof of Theorem 2.2.

STEP 4. Let at least one of the conditions (C1)-(C4) holds. Then,

∀u0∈X{limm→∞ um = w} .
This is a consequence of (8.1), (8.2) and (J 2) . □

9 Proof of Theorem 2.6
Let q, w, v0 and (vmk : k ∈ {0} ∪�) be such as in (D7) and (D8).

Therefore,

lim
k→∞

vmk = w (9:1)

and, by (Cl) or (C2) or (C3) or (C4) and by Proposition 3.4(c), we get, in particular,

∀α∈A{ lim
n→∞ sup

m>n
dα(vn, vm) = 0}. (9:2)

First, we show that

lim
m→∞ vm = w. (9:3)

Indeed, we have that
∀α∈A∀n∈�∃p(n)∈�,mp(n)≥n∀k>p(n){dα(vn, w) ≤ dα(vn, vmk)+dα(vmk , w) ≤ supm>n dα(vn, vm)+dα(vmk , w)} which, by

(9.1), implies that

∀α∈A∀n∈�{dα(vn, w) ≤ supm>n dα(vn, vm)+limk→∞ dα(vmk , w) = supm>n dα(vn, vm)} . Hence, by

(9.2), it follows that ∀α∈A{limn→∞ dα(vn, w) ≤ limn→∞ supm>n dα(vn, vm) = 0} . There-
fore, (9.3) holds.

Next, we see that

w = T[q](w). (9:4)

Indeed, we have vmq+k = T[q](v(m-1)q+k) for k = 1, 2,..., q and m Î N. Hence, by (D7)

and (9.3), we get (9.4).

Now, we see that (9.4), Proposition 3.4(d) and (9.3) imply the assertions. □

10 Proof of Theorem 2.7
If J = D , then (Cl) = (Cl) = (C2) = (C3) = (C4) = (C5) and, by Proposition 3.4(c), we

obtain that ∀α∈A∀u0∈X{limn→∞ supm>n dα(un, um) = 0} . Hence, since X is a Hausdorff

sequentially complete uniform space, it follows that if u0 Î X is arbitrary and fixed,

then the sequence (um : m Î {0} ∪ N) is a Cauchy sequence and there exists a unique

w Î X such that ∀α∈A{limm→∞ dα(um, w) = limm→∞ dα(w, um) = 0}, i.e., for J = D ,
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the conditions (Dl) and (D2) hold. Using now Theorems 2.1 or 2.2, we get the asser-

tions (a)-(c). □

11 Proof of Theorem 2.8
Let q, w, v0 and (vmk : k ∈ {0} ∪�) be such as in (D7) and (D8).

Using Theorem 2.6 for J = D , we obtain that Fix(T) = {w} and

lim
m→∞ vm = w. (11:1)

Next, by Proposition 3.4(b), we get

∀α∈A∀u0∈X{ lim
n→∞ dα(un+1, un) = lim

n→∞ dα(un, un+1) = 0}. (11:2)

Moreover, by Proposition 3.4(c), we get, in particular, that

∀α∈A{ lim
n→∞ sup

m>n
dα(vn, vm) = 0. (11:3)

Finally, by (C5) and (11. 1)-(11.3),
∀α∈A∃ηα∈[0,1/2)∀u0∈X{limm→∞ dα(um, w) ≤ limm→∞ dα(um, vm)+limm→∞ dα(vm, w) ≤ ηα limm→∞ [dα(um, um−1)+dα(vm−1, vm)]+limm→∞ dα(vm, w) = 0}. This gives

∀u0∈X{limm→∞ um = w} . □

12 Examples and comparisons
First, in the following, we record some conclusions on metric spaces.

Definition 12.1 Let (X, d) be a metric space. The map J : X2 ® [0, ∞) is said to be a

J-generalized pseudodistance on X if the following two conditions hold:

(Jl’) ∀x, y, zÎX (x, z) ≤ J (x, y) + J (y, z)}; and

(J2’) For any sequences (xm : m Î N) and (ym : m Î N in X such that

lim
n→∞ sup

m>n
J(xn, xm) = 0 (12:1)

and

lim
m→∞ J(xm, ym) = 0, (12:2)

the following holds

lim
m→∞ d(xm, ym) = 0. (12:3)

Theorems 2.1, 2.2 and 2.4 imply:

Theorem 12.1 Let (X, d) be a metric space. Assume that the map T : X ® X and the

J-generalized pseudodistance J : X2 ® [0, ∞) on X satisfy

(C1’)∃η∈[0,1/2)∀x,y∈X{J(T(x), T(y)) ≤ η[J(T(x), x) + J(T(y), y)]}
and, additionally,

(D1’) ∃v0,w∈X{limm→∞ J(vm, w) = 0} .
Then: (a) T has a unique fixed point w in X; (b)∀u0∈X{limm→∞ um = w} ; and (c) J(w,

w) = 0.

Theorem 12.2 Let (X, d) be a metric space. Assume that the map T : X ® X and the

J-generalized pseudodistance J : X2 ® [0, ∞) on X satisfy at least one of the following

three conditions:

(C2’) ∃hÎ[0,1/2) ∀x, yÎX {J(T(x), T(y)) ≤ h[J(T(x), x) + J(y, T(y))]},
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(C3’) ∃hÎ[0,1/2) ∀x, yÎX {J(T(x), T(y)) ≤ h[J(x, T(x)) + J(y, T(y))]},

(C4’) ∃hÎ[0,1/2) ∀x, yÎX {J(T(x), T(y)) ≤ h[J(x, T(x)) + J(T(y), y)]},

and, additionally,

(D2’) ∃v0,w∈X{limm→∞ J(vm, w) = limm→∞ J(w, vm) = 0} .
Then: (a) T has a unique fixed point w in X; (b) ∀u0∈X{limm→∞ um = w} ; and (c) J(w,

w) = 0.

Theorem 12.3 Let (X, d) be a complete metric space and assume that the map T : X

® X and the J-generalized pseudodistance J : X2 ® [0, ∞) on X satisfy at least one of

the conditions (C2’)-(C4’) and, additionally, condition (D1’) and at least one of the fol-

lowing conditions (D3’)-(D6’):

(D3’) ∀v0,w∈X{limm→∞ vm = w ⇒ ∃q∈�{T[q](w) = w}},
(D4’) ∀v0,w∈X{limm→∞ vm = w ⇒ ∃q∈�{T[q] is continuous at a point w}},
(D5’) ∀v0,w∈X{limm→∞ vm = w ⇒ ∃q∈�{limm→∞ T[q](vm) = T[q](w)}},
(D6’) ∀v0,w∈X{limm→∞ vm = w ⇒ ∃q∈�{limm→∞ J(T[q](vm), T[q](w)) = 0}} .
Then: (a) T has a unique fixed point w in X; (b)∀u0∈X{limm→∞ um = w} ; and (c) J(w,

w) = 0.

Now, we present some examples illustrating the concepts introduced so far.

First, we present an example of symmetric J-generalized pseudodistance.

Example 12.1. Let X be a metric space with metric d. Let the set E ⊂ X, containing

at least two different points, be arbitrary and fixed and let c > 0 satisfy δ (E) <c where

δ (E) = sup{d(x, y): x, y Î E}. Let J : X2 ® [0, ∞) be defined by the formula

J(x, y) =
{
d(x, y) if E ∩ {x, y} = {x, y},
c if E ∩ {x, y} 
= {x, y}, x, y ∈ X. (12:4)

We show that J is a generalized pseudodistance on X.

Indeed, it is worth noticing that the condition (J1’) does not hold only if there exist

some x0, y0, z0 Î X such that J(x0, z0) >J(x0, y0) + J(y0, z0). This inequality is equivalent

to c >d(x0, y0) + d(y0, z0) where J(x0, z0) = c, J(x0, y0) = d(x0, y0) and J(y0, z0) = d(y0,

z0). However, by (12.4): J(x0, z0) = c, gives that there exists v Î {x0, z0} such that v ∉ E;

J(x0, y0) = d(x0, y0) gives {x0, y0} ⊂ E; J(y0, z0) = d(y0, z0) gives {y0, z0} ⊂ E. This is

impossible. Therefore, ∀x, y, zÎX{J(x, y) ≤ J(x, z) + J(z, y)}, i.e. the condition (J1’) holds.

For proving that (J2’) holds we assume that the sequences (xm : m Î N) and (ym : m

Î N) in X satisfy (12.1) and (12.2). Then, in particular, (12.2) yields

∀0<ε<c∃m0=m0(ε)∈�∀m≥m0{J(xm, ym) < ε}. (12:5)

By (12.5) and (12.4), since ε <c, we conclude that

∀m≥m0{E ∩ {xm, ym} = {xm, ym}}. (12:6)

From (12.6), (12.4) and (12.5), we get

∀0<ε<c∃m0ε�∀m≥m0{d(xm, ym) = J(xm, ym) < ε}.

Therefore, the sequences (xm : m Î N) and (ym : m Î N) satisfy (12.3).

Consequently, the property (J2’) holds.

Now, we define non-symmetric J-generalized pseudodistance.
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Example 12.2. Let X = N be a metric space with metric d(x, y) = |x - y|,

x, y Î X. Let a, b, c, d Î (0, ∞) be arbitrary and fixed and satisfying

a < b < c < d. (12:7)

Let J : X2 ® [0, ∞) be defined by the formula

J(m, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if m = n,
b if m - even, n - even, m 
= n,
c if m - odd, n - odd, m 
= n, x, y ∈ X
d if m - even, n - odd,
a if m - odd, n - even,

. (12:8)

We show that J is a generalized pseudodistance on X.

Indeed, first we show that the condition (J1’) holds. Let m, n, s Î N be arbitrary and

fixed. We consider the following cases:

Case 1. If m-even and n-odd, then: (i) if s-even, we have J(m, n) = d, J(m, s) = b, J(s,

n) = d, and, consequently, J(m, n) ≤ J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = d, J

(m, s) = d, J(s, n) = c, and, consequently, J(m, n) ≤ J(m, s) + J(s, n).

Case 2. If m-even and n-even, then: (i) if s-even, we have J(m, n) = b, J(m, s) = b, J(s,

n) = b, and, consequently, J(m, n) ≤ J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = b, J

(m, s) = d, J(s, n) = a, and, consequently, by (12.7), we get J(m, n) ≤ J(m, s) + J(s, n).

Case 3. If m-odd and n-even, then: (i) if s-even, we have J(m, n) = a, J(m, s) = a, J(s,

n) = b, and, consequently, J(m, n) ≤ J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = a, J

(m, s) = c, J(s, n) = a, and, consequently, J(m, n) ≤ J(m, s) + J(s, n).

Case 4. If m-odd and n-odd, then: (i) if s-even, we have J(m, n) = c, J(m, s) = a, J(s,

n) = d, and, consequently, by (12.7), we get J(m, n) ≤ J(m, s) + J(s, n); (ii) if s-odd, we

have J(m, n) = c, J(m, s) = c, J(s, n) = c, and, consequently, J(m, n) ≤ J(m, s) + J(s, n).

Thus, J satisfies the condition (J1’).

For proving that (J2’) holds we assume that the sequences (xm : m Î N) and (ym : m

Î N) in X satisfy (12.1) and (12.2). Then, in particular, (12.2) yields

∀0<ε<a∃m0=m0(ε)∈�∀m≥m0{J(xm, ym) < ε}. (12:9)

By (12.9) and (12.8), since ε <a, we conclude that

∀m≥m0{xm = ym}. (12:10)

From (12.10), (12.8) and (12.9), we get

∀0<ε<a∃m0∈�∀m≥m0{d(xm, ym) = 0 < ε}.

Therefore, the sequences (xm : m Î N) and (ym : m Î N) satisfy (12.3). Consequently,

the property (J2’) holds.

Next, we present an example of noncomplete metric space X, J-generalized pseudo-

distances on X and map T : X ® X such that Theorems 12.1 and 12.2 hold.

Example 12.3. Let X = [0, 1) be a noncomplete metric space with a metric d : X2 ®
[0, ∞), d(x, y) = |x - y|, x, y Î X. Let T : X ® X be a map given by the formula

T(x) =
{
0 if x = 1/4,
1/2 if x ∈ X\{1/4}. (12:11)
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Let E = [0, 1/4) ∪ [1/2, 3/4) and let

J(x, y) =
{
d(x, y) if {x, y} ∩ E = {x, y},
2 if {x, y} ∩ E 
= {x, y}. (12:12)

The map J is a generalized pseudodistance on X (see Example 12.1). Clearly,

∀v0∈X∀m≥2{vm = 1/2 = T[m](v0) ∈ E} , w = 1/2 Î E and ∀m ≥ 2{J(v
m, w) = J(w, vm) = d

(vm, w) = 0}. Hence, we conclude that the conditions (D1’) and (D2’) hold.

We observe that T satisfies conditions: (C1’)-(C4’). Indeed, for each x Î X, by (12.11),

we have that T(x) Î E, so J(T(x), T(y)) = d(T(x), T(y)) = d(1/2, 1/2) = 0 if {x, y} ∩ {1/4}

= Ø, J(T(x), T(y)) = d(T(x), T(y)) = 1/2 if {x ≠ y ⋀{x, y} ∩ {1/4} ≠ Ø} and J(T(x), T(y)) =

d(T(x), T(y)) = 0 if x = y = 1/4. Consequently, there exists l = 3/8 Î [0, 1/2) such that

for each x, y Î X, since 1/4 ∉ E, using (12.12) we have

J(T(x), T(y))

=

⎧⎨
⎩
0 ≤ 3

8 [J(T(x), x) + J(T(y), y)] if {x, y} ∩ { 14 } = ∅,
1
2 < 3

4 ≤ 3
8 [J(T(x), x) + J(T(y), y)] if x 
= y, {x, y} ∩ { 14 } 
= ∅,

0 ≤ 3
8 [J(T(x), x) + J(T(y), y)] if x = y = 1

4 .

Here, we use the fact that if x ≠ y and {x, y} ∩ {1/4} ≠ Ø, then J(T(x), x) = 2 or J(y, T

(y)) = J(T(y), y) = 2. Therefore, (C1’) holds. By formula (12.12), J is symmetric. Hence,

(C1’) = (C2’) = (C3’) = (C4’).

Assertions (a)-(c) of Theorems 12.1 and 12.2 hold: we have that Fix(T) = {1/2},

∀u0∈X{limm→∞ um = 1/2} and J(1/2, 1/2) = d(1/2, 1/2) = 0.

It is worth noticing that the conditions (D1’) in Theorem 12.1 and (D2’) in Theorem

12.2 cannot be omitted.

Example 12.4. Let X = [0, 1) be a noncomplete metric space with a metric d : X2 ®
[0, ∞), d(x, y) = |x - y|, x, y Î X. Let T : X ® X be a map given by the formula T(x) =

x/4 + 3/4, x Î X.

From Remark 2.1(b), it follows that the map J = d is a generalized pseudodistance on

X.

We observe that the conditions (C1’)-(C4’) hold.

Indeed, let h = 1/3 and let x, y Î X be arbitrary and fixed.

If x < y, then, since T is strictly increasing, we have T(x) < T(y) and, consequently,

d(T(x), T(y)) = d(x/4 + 3/4, y/4 + 3/4) = y/4 − x/4. (12:13)

Moreover, ∀zÎX{d(T (z), z) = z/4 + 3/4 - z = -(3/4)z + 3/4}. Hence,

1
3
[d(T(x), x) + d(T(y), y)] =

1
3

[
−3x

4
+
3
4

− 3y
4

+
3
4

]

=
1
3

[
3
2

− 3x
4

− 3y
4

]
=
1
2

− x
4

− y
4
.

(12:14)

From this, we conclude that d(T(x), T(y)) ≤ h[d(T(x), x) + d(T(y), y)]. Indeed, other-

wise d(T(x), T(y)) > h[d(T(x), x) + d(T(y), y)] and then, by (12.13) and (12.14), we

must have that y/4 - x/4 >1/2 - x/4 - y/4. However, this gives y >1, which is absurd.

If x > y, then, by analogous considerations, we obtain a similar conclusion.

Therefore, ∃h = 1/3∀x, yÎX{d(T (x), T (y)) ≤ h [d(T (x), x) + d(T (y), y)]}, i.e. the condi-

tions (C1’)-(C4’) hold.
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Clearly, for each u0 Î X, the sequence (um : m Î {0} ∪ N)}, where um = T[m](u0), m

Î N, is not convergent in X, so, the conditions (D1’) and (D2’) do not hold. We see

that Fix (T) = Ø.

We illustrate Theorem 12.3.

Example 12.5. Let (X, d) be a metric space, where X = [0, 1] and d(x, y) = |x - y|, x,

y Î X. Let T : X ® X be a map given by the formula

T(x) =
{
0 if x = 1/4,
1/2 if x ∈ X\{1/4}.

Clearly, the map T2, T2(x) = 1/2, x Î X, is continuous on X, so the condition (D4’)

holds.

Let E = [0, 1/4) ∪ [1/2, 3/4) and let

J(x, y) =
{
d(x, y) if {x, y} ∩ E = {x, y},
2 if {x, y} ∩ E 
= {x, y}.

By Example 12.1, J is a J-generalized pseudodistance. Using analogous considerations

as in Example 12.3, we prove that T and J satisfy conditions (C1’)-(C4’).

The above implies that Theorem 12.3 holds. Assertions (a)-(c) are as follows:

w = 1/2, Fix (T) = {w}, ∀u0∈X{limm→∞ um = w} and J(w, w) = d(w, w) = 0.

We notice that the existence of J-generalized pseudodistance such that J 
= d is

essential.

Example 12.6. Let X and T be such as in Examples 12.3 or 12.5. We observe that T

is not Kannan contraction, i.e. T does not satisfy (K). Indeed, suppose that

∃η∈[0,1/2)∀x,y∈X{d(T(x), T(y)) ≤ η[d(T(x), x) + d(T(y), y)]}. (12:15)

Then, in particular, for x0 = 1/4 and y0 = 3/4 from X, by (12.15), we obtain 1/2 = d

(0, 1/2) = d(T(x0), T (y0)) ≤ h[d(T (x0), x0) + d(T (y0), y0)] = h[d(0, 1/4) + d(1/2, 3/4)]

= h(1/4 + 1/4) <1/2, which is absurd.

In Examples 12.7 and 12.8, we compare conditions (C1’)-(C4’) and (K).

Example 12.7. Let X = {2, 3, 5} be a metric space with a metric d : X2 ® [0, ∞), d(x,

y) = |x - y|, x, y Î X. Let T : X ® X be a map given by the formula

T(m) =
{
5 if m = 2,
3 if m ∈ X\{2}. (12:16)

Define

J(m, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if m = n,
1/4 if m - even, n - even, m 
= n,
1/3 if m - odd, n - odd, m 
= n, x, y ∈ X
1 if m - even, n - odd,
1/7 if m - odd, n - even,

. (12:17)

The map J is a generalized pseudodistance on X (see Example 12.2). Next, we see

that ∀v0∈X∀m≥2{vm = 3 = T[m](v0)} , w = 3 Î X and ∀m ≥ 2{J(v
m, w) = J(w, vm) = d(vm,

w) = 0}. Hence, we conclude that the conditions (D1’) and (D2’) hold.

We also observe that T satisfies conditions (C3’). Indeed, let h = 1/3 Î [0, 1/2), let x,

y Î X be arbitrary and fixed and consider the following five cases:
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Case 1. If x = 2 and y = 3, then, using (12.16) and (12.17), we obtain: T(x) = 5; T(y)

= 3; J(T(x), T(y)) = J(5, 3) = 1/3 ≤ 1/3 = (1/3)(1 + 0) = (1/3)[J(2, 5) + J(3, 3)] = (1/3)[J

(x, T(x)) + J(y, T(y))].

Case 2. If x = 3 and y = 2, then, using (12.16) and (12.17), we obtain: T(x) = 3; T(y)

= 5; J(T(x), T(y)) = J(3, 5) = 1/3 ≤ 1/3 = (1/3)(0 + 1) = (1/3)[J(3, 3) + J(2, 5)] = (1/3)[J

(x, T(x)) + J(y, T(y))].

Case 3. If x = 2 and y = 5, then, using (12.16) and (12.17), we obtain: T(x) = 5; T(y)

= 3; J(T(x), T(y)) = J(5, 3) = 1/3 ≤ 4/9 = (1/3)(1 + 1/3) = (1/3)[J(2, 5) + J(5, 3)] = (1/3)

[J(x, T(x)) + J(y, T(y))].

Case 4. If x = 5 and y = 2, then, using (12.16) and (12.17), we obtain: T(x) = 3; T(y)

= 5; J(T(x), T(y)) = J(3, 5) = 1/3 ≤ 4/9 = (1/3)(1/3 + 1) = (1/3)[J(5, 3) + J(2, 5)] = (1/3)

[J(x, T(x)) + J(y, T(y))].

Case 5. If x = 3 and y = 5 or x = 5 and y = 3, then, using (12.16) and (12.17), in both

situations, we obtain: T(x) = 3; T(y) = 3; J(T(x), T(y)) = J(3, 3) = 0 ≤ (1/3)[J(x, T(x)) + J

(y, T(y))].

Therefore, the condition (C3’) holds.

Assertions (a)-(c) of Theorems 12.1 and 12.2 hold: we have that Fix(T) = {3},

∀u0∈X{limm→∞um = 3} and J(3, 3) = 0.

Example 12.8. Let X, J, T be as in Example 12.7.

First, we show that T and J do not satisfy the condition (C1’). Indeed, suppose that

∃hÎ[0,1/2)∀x, yÎX{J(T (x), T (y)) ≤ h[J(T (x), x) + J(T (y), y)]}. Hence, in particular, for x

= 2 and y = 3, we get 1/3 = J(5, 3) = J(T(x), T(y)) ≤ h[J(T(x), x) + J(T(y), y)] = h[J(5, 2)
+ J(3, 3)] = h[1/7 + 0] <1/14, absurd.

Now, we show that T and J does not satisfy the condition (C2’). Indeed, suppose that

∃hÎ[0,1/2)∀x, yÎX{J(T (x), T (y)) ≤ h[J(T (x), x) + J(y, T (y))]}. Hence, in particular, for x

= 2 and y = 3, we get 1/3 = J(5, 3) = J(T(x), T(y)) ≤ h[J(T(x), x) + J(y, T(y))] = h[J(5, 2)
+ J(3, 3)] = h[1/7 + 0] <1/14, absurd.

Next, we show that T and J do not satisfy the condition (C4’). Indeed, suppose that

∃hÎ[0,1/2)∀x, yÎX{J(T (x), T (y)) ≤ h[J(x, T (x)) + J(T (y), y)]}. Hence, in particular, for x

= 3 and y = 2, we get 1/3 = J(3, 5) = J(T(x), T(y)) ≤ h[J(x, T(x)) + J(T(y), y)] = h[J(3, 3)
+ J(5, 2)] = h[0 + 1/7] <1/14, absurd.

Finally, we observe that T do not satisfy the condition (K). Indeed, suppose that ∃hÎ

[0,1/2)∀x, yÎX{d(T (x), T (y)) ≤ h[d(T (x), x) + d(T (y), y)]}. Hence, in particular, for x = 2

and y = 3, we get 2 = d(5, 3) = d(T(x), T(y)) ≤ h[J(T(x), x) + J(T(y), y)] = h[d(5, 2) + d

(3, 3)] = h[3 + 0] <3/2, absurd.

13 Conclusion
Now, we present some conclusions:

(a) Let X be a Hausdorff sequentially complete uniform space. If J = D and T satis-

fies (C5), then (C1)-(C5) are identical and, by Proposition 3.4(c), for each u0 Î X, a

sequence (um : m Î {0} ∪ N) is Cauchy and thus convergent. By Definition 2.2, this

gives that T is D -admissible.

Hence, in particular, it follows that in complete metric spaces (X, d), each Kannan

contraction is d-admissible.

(b) Theorem 2.2 includes Theorem 2.3.

(c) Theorem 2.7 is a version of Theorem 1.2 for uniform spaces.
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(d) If X is a Hausdorff sequentially complete uniform space, then, for J = D , Theo-

rems 2.1 and 2.2 include Theorem 2.7.

(e) In metric spaces, for J = D = {d} , we conclude that: (i) Theorem 2.6 includes

Theorem 1.3; (ii) Theorem 2.8 generalizes Theorem 1.3 (in Theorem 2.8, we have,

additionally, the assertion (b)).

(f) Four kinds of Kannan-type contractions (C1’)-(C4’) where J are τ-distances are

introduced and studied by Suzuki [[14], Contractions: (a) and (b), p. 199; (c) and (d),

p. 200]. Our results are different from those given in [14].

(g) τ-distances [10] and τ-functions [22] are generalized pseudodistances but the con-

verse does not holds; see [23-26].

(h) Conditions (C1)-(C4) are different; see e.g. Examples 12.2, 12.7 and 12.8.
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