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1 Introduction

Given a space X, Fix(T) denotes the set of fixed points of T: X — X, i.e. Fix(T) = {w e
X :w = T(w)}. For +° any point of X, by (v : m € {0} U N) we mean the sequence of
iteration of T': X — X starting at 1°, i.e. Veoyon V" = Tim (*)}.

Recall that maps satisfying the conditions (B) and (K) that are presented in Theo-
rems 1.1 and 1.2 below are called in literature Banach contractions and Kannan con-
tractions, respectively, and first arose in works [1,2] and [3,4], respectively.

Theorem 1.1 [1,2]Let (X, d) be a complete metric space. If T : X — X satisfies

(B) EI)\e[O,1)\le,yEX{d(T(x)l T(Y)) = )‘d(x' V)}/

then: (a) T has a unique fixed point w in X; and (b) Vocx{limpy— oo™ = w}.

Theorem 1.2 [3]Let (X, d) be a complete metric space. If T : X — X satisfies (K) 3pe
01/2)Vs, ye x {d(T(x), T(y) < 1 [d(T(x), ) + d(T(y), )]},

then: (a) T has a unique fixed point w in X; and (b) Vyocx{limm— oo™ = w}.

Theorem 1.3 [4]Let (X, d) be a metric space. Assume that: (i) T : X — X satisfies (K);
(ii) there exists w € X such that T is continuous at a point w; and (iii) there exists a
point Ve X such that the sequence (v : m € {0} U N) has a subsequence "k ke
{0} U N) satisfying limy,_, oo™ = w.Then, w is a unique fixed point of T in X.

A great number of applications and extensions of these results have appeared in the
literature and plays an important role in nonlinear analysis. The different line of
research focuses on the study of the following interesting aspects of fixed point theory
in metric spaces and has intensified in the past few decades: (a) the existence and
uniqueness of fixed points of various generalizations of Banach and Kannan contrac-
tions; (b) the similarity between Banach and Kannan contractions; and (c) the interplay
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between metric completeness and the existence of fixed points of Banach and Kannan
contractions. These aspects have been successfully studied in various papers; see, for
example, [5-21] and references therein.

It is interesting that Theorem 1.2 is independent of Theorem 1.1 that every Banach
contraction and every Kannan contraction on a complete metric space has a unique
fixed point and that in Theorem 1.3 the completeness of the metric space is omitted.
Clearly, Banach contractions are always continuous but Kannan contractions are not
necessarily continuous. Next, it is worth noticing that Theorem 1.2 is not an extension
of Theorem 1.1. In [5], it is constructed an example of noncomplete metric space X
such that each Banach contraction 7: X — X has a fixed point which implies that
Theorem 1.1 does not characterize metric completeness. In [6], it is proved that a
metric space X is complete if and only if every Kannan contraction 7' : X — X has a
fixed point which implies that Theorem 1.2 characterizes the metric completeness.
Similarity between Banach and Kannan contractions may be seen in [7,8]. In complete
metric spaces (X, d), w-distances [9] and z-distances [10] have found substantial appli-
cations in fixed point theory and among others generalizations of Banach and Kannan
contractions are introduced, many interesting extensions of Theorems 1.1 and 1.2 to
w-distances and z-distances are obtained, and techniques based on these distances are
presented (see, for example, [7-17]); t-distances generalize w-distances and metrics d.

The above are some of the reasons why in metric spaces the study of Kannan con-
tractions and generalizations of Kannan contractions plays a particularly important
part in fixed point theory.

In this article, in uniform spaces, using 7 -families of generalized pseudodistances,
we construct four kinds of contractions of Kannan type (see conditions (C1)-(C4)) and,
by techniques based on these generalized pseudodistances, we prove fixed point theo-
rems for such contractions (see Theorems 2.1-2.8). The definitions and the results are
new in uniform and locally convex spaces and even in metric spaces. Examples (see

Section 12) and some conclusions (see Section 13) are given.

2 Statement of main results

Let X be a Hausdorff uniform space with uniformity defined by a saturated family

D={d,:X*> > [0, 00), @ € A} of pseudometrics dy, « € A, uniformly continuous on

X?. The notion of 7 -family of generalized pseudodistances on X is as follows:
Definition 2.1 Let X be a uniform space. The family J = {J,, o € A} of maps J, :

X2 > [0, ©), & € A, is said to be a J-family of generalized pseudodistances on X

(J-family, for short) if the following two conditions hold:

(jl)voceAVx,y,zeX {Ja (x/ Z) < Ju (x/ V) +Jo (y/ Z)}; and
(J2)For any sequences (x,, : m € N) and (y,, : m € N) in X such that

Vaea{ lim sup Joo(%n, Xm) = 0} (2.1)

and

VaeA{r&i_I)T;o]a (%m, ym) = 0}, (2.2)
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the following holds:

VaeA{ﬂ%LHgo do (Xms ym) = O}. (2.3)

Remark 2.1 Let X be a uniform space.

(a) Let J = {Ju : X? — [0,00),a € A)be a J-family. if VgeaVrex{Jo(x, x) = 0}, then,
for each « € A, J, is quasi-pseudometric. Examples of 7 -families such that the maps
Jo» o € A are not quasi-pseudometrics are given in Section 12.

(b) The family J =D is a J-family on X.

It is the purpose of the present paper to prove the following results.

Theorem 2.1 Let X be a Hausdorff uniform space and assume that the map T : X —
X and the J-family J={,:X*—[0,00),a € Alon X satisfy (C1)
Vae, In,e [0,1/2)Vx,yex{]a (T(x), T(¥)) < nella(T(x), x) +Ju(T), V)} and, additionally,

(D1) 3, pexVaea{limp- oofo (v, w) = O}.

Then: (a) T has a unique fixed point w in X; (b) Vyoex{limy_oot™ = w}; and (c)
VozeA{]a(w/ w) = 0}.

Theorem 2.2 Let X be a Hausdorff uniform space and assume that the map T : X —
X and the J-family J = {J, : X* — [0,00),a € A}on X satisfy at least one of the fol-
lowing three conditions:

(C2) Ve eqoy YarexVa(TE), T()) < nalle(T(x), %) + Ja(T(G)), V1),

(C3) Va eAHnae[oll/z)Vx,yeX{]a (T(x), T(y)) < nalla(x, T(x)) +Ja(y, TN},

(c4) Vo eAanaE[oll/z)vx,yeX{]a (T(x), T(y)) < nalla(x T(x)) +Ja(T() I},

and, additionally,

(D2) Fpo wexVaeallimm oo (V" w) = limy,_, ooJo (w, v™) = 0}.

Then: (a) T has a unique fixed point w in X; (b) Vyoex{limy,_ cu™ = w}; and (c)
Vaeallo(w, w) = 0}.

It is worth noticing that conditions (C1)-(C4) are different and conditions (D1) and
(D2) are different since the 7 -family is not symmetric.

Clearly, (D1) include (D2). The following theorem shows that with some additional
conditions the converse holds.

Theorem 2.3 Let X be a Hausdorff uniform space and assume that the map T : X —
X and the J-family J = {J, : X*> — [0,00), a € A}on X satisfy at least one of the con-
ditions (C2)-(C4) and, additionally, condition (D1) and at least one of the following
conditions (D3)-(D6):

(D3) Yo ex{limy - ot = w = Fgen {T1 () = w}},

(D4) Vo ex{limpy oo™ = w = Jgen(T 9] is continuous at a point w}},

(D5) Vo wex {limp oot™ = w = Fgen {limy oo T (™) = T (w)}),

(D6) Vo ex {limp— oo™ = w => JgenVaea{limp oofo (T (1), T (w)) = 0}}.

Then: (a) T has a unique fixed point w in X; (b) Vo x{limy_ct™ = w} and (c)
VaeA{]oz(wf w) = 0}.

The following theorem shows that if we assume that the uniform space is sequen-
tially complete, then the conditions (D1) and (D2) can be omitted.

Theorem 2.4 Let X be a Hausdorff sequentially complete uniform space and assume
that the map T : X — X and the J-family J = {J4 : X*> — [0, 00),a € Aon X satisfy
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at least one of the conditions (C1)-(C4) and, additionally, at least one of the conditions
(D3)-(D6). Then: (a) T has a unique fixed point w in X; (b) Vo cx{limyy_ oot™ = w} and
(©) Vaeallo(w, w) = 0}.

We now introduce the concept of 7-admissible maps and in the following result
these maps will be used to extend Theorem 2.4 to the uniform spaces which are not
sequentially complete and without any conditions (D1)-(D6).

Definition 2.2 Let X be a Hausdorff uniform space and let
J=Uu:X* = [0,00),a € A) be a J-family on X. We say that T : X — X is
J -admissible if for each u®° e X satisfying Vg e 4{lim,_, ooSUP,,- ,Jo (U™, u™) = O} there
exists w € X such that Ve 4{limy— oofo (U™, w) = limpm_ oo (w, u™) = 0}.

Theorem 2.5 Let X be a Hausdorff uniform space and
J =y : X2 = [0,00),a € AYbe the J-family on X. Let the map T : X — X be
J -admissible and assume that T and [J satisfy at least one of the conditions (C1)-(C4).
Then: (a) T has a unique fixed point w in X; (b) Vo x{limp_ o™ =w}; and (c)
Voeallo(w, w) = 0}.

Also, the following uniqueness results hold.

Theorem 2.6 Let X be a Hausdorff uniform space and assume that the map T : X —
X and the J- familyJ = {J, : X*> — [0,00), a € Alon X satisfy at least one of the con-
ditions (C1)-(C4) and, additionally, the following conditions (D7) and (D8):

(D7) There exist g € N and we X such that T is continuous at a point w;

(D8) There exists a point v° € X such that the sequence (v : m € {0} U N) has a
subsequence (V'™ : ke {0} U N) satisfyinglimy,_, oo™ = w.

Then: (@) T has a unique fixed point w in X; (b) limy_ .o V" =w; and (c)
Voealloa(w, w) = 0}.

Theorem 2.7 Let X be a Hausdorff sequentially complete uniform space and let the
map T : X — X satisfy the condition

(C5) VaecaTn,e(0,1/2)Vyexida (T(x), T(1)) < nalde(T(x), %) + da (v, T(¥))]}-

Then: (a) T has a unique fixed point w in X; and (b) V0 cx{limpm_cou™ = w}.

Theorem 2.8 Let X be a Hausdorff uniform space and assume that the map T : X —
X satisfies (C5), (D7) and (D8). Then: (a) T has a unique fixed point w in X; and (b)
Voo ex{limy,— ott™ = w}.

The rest of this article is organized as follows. In Section 3, we prove some auxiliary
propositions. In Sections 4-11, we prove Theorems 2.1-2.8, respectively. Section 12
provides examples and comparisons. Section 13 includes some conclusions.

3 Auxiliary propositions
In this section, we present some propositions that will be used in Sections 4-11.

Proposition 3.1 Let X be a Hausdorff uniform space and let
T =, : X2 > [0,00),0 € AYbe a J-family. If x = y, x, y € X, then
Joealla(x,y) # 0V Ja(y, x) #0}.

Remark 3.1 If x, y € X and Vgea{lo(x,¥) = 0 AJo(y, x) = 0}, then x = y.

Proof of Proposition 3.1. Suppose that x = y and Vaea{Jo(x,¥) =0 A Jo(y, x) = 0}.
Then, Voeallo(x, x) = 0}, since, by (J1), we get
Vaea{dy(x,y) = 0}. Defining x,, = x and y,, = y for m € N, we conclude that (2.1) and

Page 4 of 24
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(2.2) hold. Consequently, by (72), we get (2.3) which implies Vyea{dy(x, y) = 0}.
However, X is a Hausdorff and hence, since x # y, we have. Jyca{dy(x,y) #0}.
Contradiction. O

Proposition 3.2 Let X be a uniform space and let J = {J, : X*> — [0,00),a € A}be a
J family. Let ® = {¢o, @ € A}be the family of maps ¢, X— [0, =), a € A .

(a) The families W) = {Wg) 1 X2 - [0,00), a € A}, i = 1, 2, where, for each

WED (x,y) = max {ga (%), Ju(x, 1)) WD (x,y) = max {ga (x), Ju(x,y)}and
WS) (x,y) = max{ds (), Ju(x, )} % y € X, are J -families on X.
(b) The families ® ={V§) X2 > [0,00), @ € A}, i = 1, 2, where for each

Vi (07) = 0a () + T ) Vi (5,0) = 9o (0) +Ju(x)and - Vi (xy) = @a(y) +Ja(x,7)
x, y € X, are J-families on X.

Remark 3.2 v, 11,2)VaeAVayexUa (%, y) < WS) (xy) Ada(xy) < VS) (x )}

Proof of Proposition 3.2. (a) For each o € A and for each x, y, z € X, using (J1)
for family I, we get
W (x,y) = max{e(2), Ju(x 2)} < max{ge (1) +¢a(2), Ju(x 1) +a(r,2)} < WO (x1)+ WOy, 2)}and
WO (x,y) = max {¢a(2), Jo(% 2)} < max (e (y)+da(2), Ju(x 1) +a(1.2)} < WO (x,y)+WD(y,2)}. Therefore,
for each i € {1, 2}, the condition (J'1) for family () holds.

Let i € {1, 2} be arbitrary and fixed and let (x,, : m € N) and (y,, : m € N) be arbi-
trary and fixed sequences in X satisfying
VaeA{limnﬁoosupmMWS) (%n, Xm) = limmﬁoowo(f) (Xm, ym) = 0} Then, by Remark 3. 2,
we obtain that the. conditions (2.1) and (2.2) for family 7 hold and, consequently,
since J is a J-family, by (J2), the condition (2.3) is satisfied, i.e.
Ve allimpm— codo (Xm, ym) = 0} which gives that (J2) for family )@ holds.

Therefore, for each i € {1, 2},)(is J-family.

(b) Using (J1) for family [J, we obtain that, for each « € A and for each x, y, z, €
X, VI (x2) = da(x) +Ja(,2) < Gu(x) +Ju(,7) + P (1) +Ja (112) = VD () + VD (1, 2), and
VO (5,2) = ¢a(2) +Jua(%,2) < Galy) +Ja(%,¥) + $u(2) + Ju(y,2) = VD (5,1) + VP, 2) - Thus, for
each i € {1, 2}, the condition (J1) for family () holds.

Let i € {1, 2} be arbitrary and fixed and let (x,, : m € N) (y,, : m € N) be arbitrary
and fixed sequences in X satisfying

vae.A{limneoosupm>an) (%, %m) = limm—»oong) (%m, ym) = 0}- Then, by Remark 3.2, we
obtain that the conditions (2.1) and (2.2) for family 7 hold and, consequently, by
Vaeallimm—sood, (Xm, Ym) = 0}, Voea{limy_ood, (Xm, ym) = 0}.This gives that (J2) for
family () holds.

We proved that, for each, i € {1, 2}, Y(dis a J-family. O

Proposition 3.3 Let X be a uniform space, let J ={J, : X? — [0,00), a € A}be a
J -family and let T: X— X.

(a) If T and J satisfy (C1) or (C3), then
VaeuTraepor) Yaex(maxfo(T(x), T(x)), Jo (T (%), T(x))} < Ao max{fo (x, T(x)), Ju(T(x), )}}.
(b) If T and J satisfy (C2) or (C4), then

VaeaFhaeqo,n) Vxex Ua (T (%), T(x)) +Ju (T(x), T2 (x)) < AalJa(T(x), ) +Ja(x T())]) -
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Proof. (a) The proof will be broken into two steps.

STEP 1. If (C1) holds, then the assertion holds.

By (C1), Veeadueto, y2)YaexUa(T (), T(x)) < nalla (T2 (x), T(6))+ha (T(x) %) Aa (T(6), T (5) < il (T(), )41 (T2 (), )
and, since Yuoe  {na/(1 —na) < 1}, we see that the first of these inequalities implies
(TP (2), T(x)) = /(1 = 1) Ju(T(2), %) < o (T(3), %) Hence
VaeaTnelonnVaex (max(fa (1), T2()), Jo(TP (@), T@)) < nalla( T (), T@)Ha(T@), 0] < 20aJa(T(x), x) < 200 maxtle (v, T (T, ). NOW, We
see that Voc  {Aa = 210 < 1}.

STEP 2. If (C3) holds, then the assertion holds.

By (C3), YeeaBnewoip¥eorlle(M(), T()) = nalla(T(), TH @) T@)N(T@), TH)) < nellee, T e (T(), TR}
and, since Yae, {n«/(1 —ne) < 1}, we see that the second from these inequalities
implies J,(T(x), TI!(x)) < [na/ (1 = 1a)] Ju(x, T(x)) < Jo(x, T(x)). Hence, we conclude
that Veeid,covmViextmaxti (1), T0), L0, TN < nalla (s T (169, T )] < 200k T()) < 210 maxthals, 7). LT, o, [t 18
clear that Vae ,{Aa = 210 < 1}.

(b) The proof will be broken into two steps.

STEP 1. If (C2) holds, then the assertion holds.

By (C2), VaeaTnelo1/2)Vxexlla (TP (), T(x)) < 10 (a (T (x), T()) e (5, O T(6), T (x)) < 1[I (T(6), 2) 47 (T(), T ()]}
Hence,  ¥aeaTi o) VaexUe(TP (%), T(x)) < AoJo(x T())AJe(T(x), T(x)) < Ao (T(x), %)};
here Voe  fra = 1a/(1 = 14)}. From this, we conclude that
VaeaTefon Veex Ve (T (%), T(x)) +Ja(T(x), TP (%)) < Ao lJa(T(x), %) +Ju (x, T(2))]} -

STEP 2. If (C4) holds, then the assertion holds.

By (C4), Yaeadyeoun¥sexlla(T? (), T() < 14 0a(T), T20)41a(T@), DINaT (), T2(x)) < 0l T@)+1a (T2 ), T
This IVeS Yeeadyconm et (M), T6) < 12/ (1=12) Jal Tena/ (1=12) F(T, DALTE), ) < e (1=12) T T 02/ (1=12) T (T(), 9L
Hence, VaeaTn,clo1/2)Yaexla (TP (%), TE))HLT@), TP ) < (a+12)/ (1=13) Ve (%, T (T(), ¥)] = 10/ (1=1a) ok, (T())Ha (T(x), )]
Since Voe fha = 1o/ (1 —ng) < 1}, therefore
VaeaTn,clonVaex Ua (T2 (x), T(x)) + 1 T(), T(x)) < 20l T(x)) +Ju(T(x), ¥)]. O

Proposition 3.4 Let X be a uniform space, let J = {J, : X* — [0,00), a € A}be a
J -family and let T : X — X. Assume that T and [J satisfy at least one of the conditions
(C1)-(C4). Then:

(@) VaeaVwo ex{limy— oosup,,o , Jo (U™, u™) = limy,_, ooSUP - ,Jo (U, u™) = 0}.

(b) YoeaVwoex im0 Jo (™, u™ 1) = limy, s oofo (™!, u™) = 0}.

(€) YaeaVioex{limy_ cosUp,,- odo (", u™) = 0}.

(d) If there exist z € X and q € N such that z = T (), then Fix(T) = {z} and
Vaealla (2, 2) = 0}.

(e) If V°, w e X satisfy (D1), then lim,,_,.. " = w.

(a) The proof will be broken into two steps.

STEP 1. If (C1) or (C3) holds, then the assertion holds.

There exist 7 -families () = {Wo(f), a € A}, i€ {1, 2}, such that
VaeaT,elon Yaex (WS (T(x), TP (2)) < 2 W (x, T(x))) (3.1)
and

VaeaTn, o) Vaedd WO (T (x), T(x)) < 2 WO(T(x), x)}. (3.2)
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Indeed, by Propositions 3.2(a) and 3.3(a), if
VoeaVaex (8 (%) = Jo(T(x), x) AP (x) = Ju(x, T(x))},  then  the  maps
W (xy) = max(@? (), Ja(xiand W(xy) = maxigP (), Ju(x)) % ¥ € X,
have properties (3.1)and (3.2), respectively.

Let @« € A and u° € X be arbitrary and fixed. By (3.1), using (J1) for 7 -family
w, if m > n, we get
ng)(u", u™) < Z;:l Wél)(uh, uk*l) < Z

limnﬁoosupmwwél)(u", u™) =0 and, by Remark 3.2, we obtain

-1 L
WO O, uly < WP, ')A/ (1-2,). This gives

k=n

VoeaVwex{limy, osup,,. Jo (1", u™) = 0}.
If o e A and u° € X are arbitrary and fixed, m, n € N and m > n, then, by (3.2),

using (J1) for J -family w@, we get
WO@", w) < 3 IO, uty < WO, 1) < WO, )i/ (1-44) and
limnemsupmwwéz)(u"‘, u") = 0. Hence, by Remark 3.2,

VaeaVioex{lim,_, osup,,- ,Jo (u™, u") = 0}.
STEP 2. If (C2) or (C4) holds, then the assertion holds.
There exist 7 -families Y = {Vi, @ € A},i € {1, 2}, such that

VaeaTejon Vaext VIV (T(x), T (x)) < 2 VI (x, T(x))} (3.3)
and
VaeaT, o) Vaex (VA (TP (x), T(x)) < 1o VP (T(x), x)). (3.4)

Indeed, by Propositions 3.2(b) and 3.3(b), we have that if

VocaVeox(9l (x) = Ju(T(x), 1) A 6(x) = Jo(x, T(x))}, ~ then  the  maps
Vi () = 87 (6) + Ju(xy) and VD (x,y) = 957 (y) + Ju(,7), %, y € X, have the above
properties.

Let ¢ € A and u® € X are arbitrary and fixed. Then, by (3.3), using (J1) for
Y1) -family y, if m > n, we have
v, wmy < 3T VO, ) < VD@, ) < VOGS, uaL/(1-h,).  conse-

quently, limn»oosupmmvél)(u", u™) = 0. By Remark 3.2, this gives
VaeaVioex{limy_, ooSUp,, ,Jo (u", u™) = 0}.

If « € A and u° € X are arbitrary and fixed, m, n € N and m > n, then, by (3.4),
using (J1) for J -family V@), we have
v (", u") < Z::[l VA ke, yky < Z:: M v @, u) < v (@, u°) A" (1-1,). Hence, we
obtain that limnﬁoosupmmvo([z)(um, u")=0. By Remark 3.2, this gives
VaeaVioex{limy_, ooSUp,,- ,Jo (™, u") = 0}.

(b) This is a consequence of (a) since

VoeAVwexVaenUo (", u™1) < sup,,. Jo (1", u™)AJo (W™, u") < sup,,. Jo(u™, u")}.
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(c) Let #° € X be arbitrary and fixed. By (a),
4 n my _—
Vaeal lim fnligfa(u , u™) =0} (3.5)
which implies Yoe 4Ve=03n2n, («, ¢) enVasn, {SUPUa (u", u™) : m > n} < &} and, in par-
ticular,
VaeAV€>03n1=n1(a,e)e[NVn>n1VseN{]ot(un/ us+n) < &} (3.6)

Let now iy, jo € N, iy >jo, be arbitrary and fixed. If we define

Xy = 4™ and Ym = W™ form e N, (3.7)
then (3.6) gives
VaeA{n}glgOIa(um, ) = lim Jo(u™, ym) = O}. (3.8)

Therefore, by (3.5), (3.8) and (J2),

Vaeal lim do(u™, xm) = lim de (u™, ym) = O}. (3.9)
From (3.7) and (3.9), we then claim that

VaeAYe=03mmns (a2 e m=n, {da (", u*") < £/2) (3.10)
and

VaeAVe=0Tnsmns (e, e)eN Vinsns {do (U™, 0™) < &/2}. (3.11)

Let now ap € A and gy > 0 be arbitrary and fixed, let ny = max {ny(co, &), n3(Co,
€)} + 1 and let k, [ € N be arbitrary and fixed such that k > [ > ny. Then, k = iy + ng
and [ = jy + ny for some iy, jo € N such that iy > j, and, using (3.10) and (3.11), we get
oy (U, 1) = o (U™, U0*10) < d (U™, U™ )+dg, (U™, W) < g9 /2+e9/2 = &9. Hence, we
conclude that Ve 4Ves03ng=no(@.e)elN Vi leN, ksl>no (Ao (u, uh) < e}.

(d) The proof will be broken into two steps.

STEP 1. If (C1) or (C3) holds, then the assertions hold.

Let z € Fix (T'7) for some z € X and g € N. First, we prove that if (1) is
J -family defined in the proof of (a), then

Vaea{ W(z, T(z)) = 0. (3.12)

Otherwise, we have 3aoeA{W§¢;)(Z, T(z)) > 0} Then, by (3.1), since z = T[q](z) =
7?41 T[zq](z), there exists Aq, € [0, 1), such that W(gi)(z, T(2)) = Wéi)(TW] (2)
TRI(T2171(2))) < 2o, W(T(TP2(2)),  TRHTPI11(2))) < g WD (T(TR9 ) )
T(TP2)(2)) < -+ < 12IW (& T(2)) < Wi (a T(2)),

T(T?21(2))) < - <A 2WD(z, T(2)) < W(z T(2)), which is absurd. Therefore,
(3.12) is satisfied.

Page 8 of 24
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Next, we see that
Vaea{W(T(2), 2) = 0}, (3.13)

Otherwise, Jy,eaf W(l)(T(z) z) > 0} and, since z = T'%(z) = T?%)(z) and if g + 1
<2gq, then by (3.1) and (3.12), for some Xy €[0, 1), we get O

<0 < WE(T(2), 2) = Wi (T(T17)(2)). TR (2)) = Wi (111 (2),
TR (2)) < Y00 1 Ak Wi (2, T(2)) < (W' /(1 = by )] Wi (2, T(2)) = 0, which is

absurd. If ¢ + 1 = 2g, i.e. ¢ = 1, then z = T(z) = T*(z) and, by (3.1) and (3.12),
0 < W&, (T(), 2) = Wi, (T(@), T (2)) < 2oy Wey) (=, T(2)) = 0, Which s absurd,
Therefore, (3.13) holds.

Now, using Remark 3.2, we see that (3.12) and (3.13) gives

Voeallu(z T(2)) =Ju(T(2), z) = 0}, (3.14)

which, by Remark 3.1, implies that z € Fix (7).

By (J1)and (3.14), we obtain Voea{lo (2, 2) < Jo(z, T(z)) +Jo(T(z), z) = 0}.

We show that z is a unique fixed point of 7. Otherwise, there exist a, b € Fix (T)
such that a4 = b. Then, using above for g = 1, we obtain
Voealu(a, T(a)) =Ju(T(a), a) =0} and VoealJo(b, T(b)) =Jo(T(b), b) = 0}. Hence, if
(C1) holds, then for each o € A, by (C1), Ju(a, b) = Jo(T (a), T (b)) < N lJoAT (a), a) +
Jo(T (b), b)] = 0 and Jy, (b, a) = Jo (T (b), T () < Ng Ve (T (b), b) + Jo(T (a), a)] = 0
where 1, € [0, 1/2). Hence, Yoeallo(a, b) =Jo(b, a) = 0}. By Remark 3.1, this implies
a = b. Contradiction. Similarly, if (C3) holds, then, for each o € A4, by (C3), J,(a, b) =
JlT (a), T (b)) < No U (@, T (@) + Joe (b, T (b))] = 0 and Jy, (b, a) = Jo (T (b), T (a)) <
Noe Ua (b, T (b)) + Jo (a, T (a))] = 0 where n, € [0, 1/2). Thus,
Voeallu(a, b) =Jo (b, a) = 0} which, by Remark 3.1, implies a = b. Contradiction.

STEP 2. If (C2) or (C4) holds, then the assertions hold.

Let z € Fix(T'") for some z e X and g € N. We prove that if Y1) is 7 -family
defined in the proof of (a), then

Voer (VI (z, T(z)) = 0}. (3.15)

Otherwise, we have Jy,¢ A{Vé(l))(z, T(z)) > 0} and, consequently, by (3.3), since z = T
“(z) = TP(z), we get, for some i, e0,1), V) (z T(z)) = V(1129 (2),
TETRI N (2))) < ae V(T(TP1(2),  TRI(TPT(2))) < ho VQU(T(TT)(2)),

T(T12-2(z))) < --- < Aqu(l)(z, T(z)) < Vn(t(l))(zl T(z))

T(T[2q—2] () <---< xzqv(l)(z, T(z)) < VO((O)(Z, T(z)), which is absurd. Therefore,
(3.15) holds.
Next, we prove that

Veea{VE(T(2), 2) = 0. (3.16)

Otherwise, EIO,OEA{VS))(T(Z), z) > 0} and, since z = T (z) = T?7(2), if g + 1 < 2g,
then, by (3.3) and (3.15), for some Ay, €[0, 1), we have
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() = 370 V(& T(2)) = R8/(1 = eIV (& T(2)) = 0,

i=q+1  ¥0 @0

T2(2)) = 320 V(& T(2)) = PEY(1 = ) IV (G T(2)) = 0,

i=q+1 %0 @0

T2(2)) < 3700 V(2 T(2)) < PEY(1 = 2 V(5 T(2)) =0,  which s

i=q+1 %0 @0
absurd. If g + 1 = 2¢, i.e. ¢ = 1, then z T (z) = T? () and, by (3.3) and (3.15),
T21(2)) = 2 Vi & T(2)) = 00 T1(2)) = 2, V&) (2 T(2)) =0, which is absurd,
Therefore, (3.16) holds.
By Remark 3.2, (3.15) and (3.16) implies

Vaeallu(z, T(z)) =Jo(T(z), 2) =0}, (3.17)

which, by Remark 3.1, gives z € Fix (7).

Now, by (J1) and (3.17), we obtain Yyealls(z 2) <Ju(z T(2)) +Ju(T(2),2) = 0}.

We show that z is a unique fixed point of 7. Otherwise, there exist a, b € Fix(T)
such that a # b. Then, by above considerations for g = 1, we get
Vaealu(a, T(a)) =Ju(T(a), a) =0} and Vyealla(b, T(b)) =J«(T(b), b) = 0}. Hence, if
(C2) holds, then for each « € A, by (C2), Jy (a, b) = Jo, (T (a), T (b)) < o Uy (T (a), a)
+Jo (b, T ()] = 0 and Jy (b, @) = Jo (T (b), T (@) < Ne U (T (b), b) + Jor (a, T (@))] =
0 where 1, € [0, 1/2). Therefore, Vye a{lu(a, b) =Jo(b, a) = 0}. Hence, by Remark 3.1,
we get a = b, which is impossible. Similarly, if (C4) holds, then, for each ¢ € A, by
(C4), Jo (@, b) = Jo (T (a), T (b)) < N U (a, T (a)) + Jo (T (b), b)] = 0 and J, (b, a) =
Jo (T (D), T (@) € N U (b, T (D)) + Jo (T (a), a)] = 0 where 1, € [0, 1/2). Therefore
Vaealla(a, b) =J4(b, a) = 0} and, by Remark 3.1, we get a = b, which is impossible.

(e) Indeed, by (a), we have Vyea{limpm— oosup,,. Jo (V", ™) = 0}. Next, by (D1),
Voeallimpy_ ooJo (V™, w) = 0}. Hence, defining x,, = v and y,, = w for m € N, we
conclude that (2.1) and (2.2) hold for sequences (x,, : m € N) and (y,, : m € N) in X.
Therefore, by (J2), we get (2.3) which implies Vye 4 {limy— cody (v, w) =0} O

4 Proof of Theorem 2.1
The proof will be broken into 11 steps.

STEP 1. If v, w € X satisfy (D1), then
Voeallimpy s oofo (v, ™) = limpyooJe (v™1, v™) = 0}. This follows from Proposition
3.4(b).

STEP 2. vao, w e X satisfy (D1), then lim,,_,., v" = w. This follows from Proposi-
tion 3.4(e).

STEP 3. If \°, w e X satisfy (D1), then Yye alo(T(w), w) = 0}.

Indeed, by (J1) and (Cl), VaecaTy.el01/2)Vmenla(T(w), w) <Jo(T(w),
T(™) +Ju(T(W"), w) < nallo(T(w), w) +Jo (™", v™)] +Jo(V"*!, w)}. Hence, by Step
1 and (D1), we obtain
VaeaTy,efo1/2) Uimm—ocle (T(W), ) < T oo (e o (T(w), W)+ ("™, v™)|+1e (™, W)} = noJa(T(w), w)). Thus,
VaeaTnelo1/2) Ua(T(w), w) < neJo(T(w), w)}, so, since Voea{ne €[0,1/2)}, we get
Vaeallu(T(w), w) = 0}.

STEP 4. If \°, w € X satisfy (D1), then T(w) € Fix(T).
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Indeed, by (C1) and Step 3, we have that
VaeaTn,cro1/2) (TP (w), T(w)) < nella (TP (w), T(w))+o(T(w), w)] = nau(T? (w), T(w))}. Hence,

Vaeallo (TP (w), T(w)) = 0}. (4.1)

On the other hand, by (C1),

VaeaTn,eo,1/2) e (T(w), T (w)) < nelJu(T(w), w) +Jo (T (w), T(w))]}. Hence, by
Step 3 and (4.1),

Vaealo (T(w), T (w)) = 0}. (4.2)

Now, by (4.1), (4.2) and Remark 3.1, we conclude that T(w) = T*(w) = T(T(w)), i.e. T
(w) e Fix(T) is satisfied.

STEP 5. If %, w e X satisfy (D1), then Vye a{limy,_ooJ (v", T(w)) = 0}.

Indeed, by (C1) and Step 3,
VaeaTy,e01/2)Ua (0", T(w)) < 1alJa (@™, V") + Jo(T(w), w)] = nuJo (v, v"~')}. Hence, by
Step 1, we obtain that Vye 4 {limy,— ooJo (", T(w)) = 0}.

STEP 6. If \°, w € X satisfy (D1), then lim,,_,.. vV"" = T (w).

Indeed, by (C1) and Proposition 3.4(a), in particular,
Vaeaflim,, sosup,,Jo (v", ¥™) = 0}. Next, by Step 5, Yoea{limpy—oofo (v, T(w)) = 0}.
Hence, defining x,,, = v and y,,, = T (w) for m € N, we conclude that for sequences
(%, : me N)and (y,,: m € N) in X the conditions (2.1) and (2.2) hold. Consequently,

by (J2), we get (2.3), which implies
Vaea{limpy— ocody (v", T(w)) = limy—cody (Xm, ¥m) = 0}, i.e. the limit lim,,_,.. v = T
(w) holds.

STEP 7. If\°, w € X satisfy (D1), then T(w) = w and VyealJo (w, w) = 0}.

Since X is Hausdorff, thus T(w) = w is a consequence of Steps 2 and 6.

Next, by (C1) and Step 3, we obtain
VaeaTnepo,1/2) U (w, w) = Jo (T(w), T(w)) < nelJo (T(w), w) +Jo(T(w), w)] =0}, i.e.
Voealle (w, w) = 0} holds.

STEP 8. If \°, w € X satisfy (D1), then ¥ge aVyoex{limp_ ooJo (4™, w) = 0}.

By (J1), (C1), Proposition 3.4(b), Step 1 and (D1), we obtain
Vare AT 0 Vaoex iMook (0, 10) = 1o U™, 7)1 (0", 0)] = malimyncsoolla (07, 0"Vl (07, 07 Ylimyoa (7, ) = 0,

STEP 9. If 1%, w € X satisfy (D1), then VYye aVyoex{limpy s cody (4™, w) = 0}.

Indeed, by (C1), Proposition 3.4(a) and Step 8,
VaeaVioex{limy_, oosUp,,. Jo (U, u™) =0}  and  VeeaVioex{limpy— oo (0™, w) = 0}.
Defining x,, = u,, and y,, = w for m € N, we conclude that for sequences (x,, : m €
N) and (y,, : m € N) in X the conditions (2.1) and (2.2) hold. Hence, by (J2), we get
(2.3) which implies VgeaVpoex{limpy_ cody (U™, w) = 0}.

STEP 10. IfV°, w € X satisfy (D1), then Fix (T) = {w}.

Indeed, by (C1), Step 7 and Proposition 3.4(d) (for g = 1), we get that Fix (T) = {w}.

STEP 11. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 10, 9 and 7.

5 Proof of Theorem 2.2
The proof will be broken into seven steps.
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STEP 1. If v, w € X satisfy (D2), then
Vaeallimy s oofo (v, v™1) = limpy 0oJe (V™!, v™) = 0}. This follows from Proposition
3.4(b).

STEP 2. If V°, w € X satisfy (D2), then lim,,_,., v = w. This follows from Proposi-
tion 3.4(e).

STEP 3. If \°, w € X satisfy (D2), then T(w) = w and VyealJu(w, w) = 0}.

Indeed, we consider three cases:

Case 1. If (C2) holds, then by (J1) and (C2), we have

YacaTy, (0,172 YmenlUa (W, T(w)) < Jo(w, TW™)Ho(TW™), T(w)) < Ju(w, v )tnelJa(@™ v")+Ju(w, Tw))}.  Conse-
quently, by (D2) and Step 1,
VaeaTy,e(0,1/2) limp ooe (W, T(w)) < limp oolJo (W, V™) 4naa (™, V™) +10)a(w, T(w))] = nalu(w, T(w))}, i.e.
VoeaTy e10,1/2)Ue(w, T(w)) < neJo(w, T(w))}. Hence, since Vgea{ne € [0,1/2)}, we
get
Vae.A{]rx (LU, T(LU)) = O} (51)
Similarly, by (J1) and (C2), we obtain
YaeaTye(0,1/2)Ymen{la (T(W), w) < Jo(T(w), TW")+a(TW"), w) < nalla(Tw), w)+la @™, v™")|+Je (0™, w)}. Conse-
quently, by Step 1 and (D2), we have

YaeaTne101/2) Ua(T(W), w) < fafo (T(W), w)Himyu oo nadu(@™, v™)+e (™!, w)] = nlu(T(w), w)} and, since
Vaeallla € [0,1/2)}, YacaTy e0,1/2)Ua(T(w), w) < nelo(T(w), w)} implies

Voealla(T(w), w) = 0}. (5.2)

From (5.1), (5.2) and Remark 3.1, we conclude that T(w) = w.

Case 2. If (C3) holds, then by (J1) and (C3), we have that
VaeaTncf0,1/2)¥menlle (W, TW)) < Ju(w, T@™)+a(T@™), TW)) < Ju(w, v )ena [l (" 0™ )4l (w, Tw))])).  Conse-
quently, by (D2) and Step 1,
Ve ATy, c0,1/2) (iMool (0, T(w)) < limp oo (w, V™ )45 Jo (0", ™ )4n0Je(w, T(w))] = nafo(w, T(w))). Therefore,

VoeaTy,ep0,1/2)Ue (W, T(w)) < nodo(w, T(w))}, so, since Voea{ng €[0,1/2)}, we get

VaGA{]a (wr T(w)) = O} (53)
Similarly,

VaeaTne0.1/2)Ymenila (T(w), w) < Jo(T(w), TW™)Ho(TW"), w) < nollo(w, T(w))+o (@™, v™ )|+ (™, w)}. Conse-

quently, by (5.3), Step 1 and (D2),

VaEAEln"E[O,l/Z){]D((T(w)/ w) = na]ot(wl T(W))+limm~>oo[77a]a(vm/ Vm+])+]o((vm+], LU)] =0} Therefore,
Voealla (T(w), w) = 0}. (5.4)

From (5.3), (5.4) and Remark 3.1, we conclude that T(w) = w.
Case 3. If (C4) holds, then by (J1) and (C4), we have that

VaeaTn,e(0,1/2) Ymen o (T(w), w) < Jo(T(w), T(v™))He(TW™), w) < nallu(w, T(w))+Je (V™ v™)] 4+ (™", w)}. Conse-
quently, by (D2) and Step 1,
VaeATnelo,1/2)Ua(T(w), w) < noo(w, T(w)) <Jo(w, T(w))}. (5.5)
However, by (J1) and (C4), we have
YaeATn, e(0,1/2) YmenUa (W, T(w)) < Jo(w, TW™)) o (TW™), Tw)) < Ja(w, v™ 406 (0™, ™)+ (T(w), w)]}. Conse-

quently, by Step 1 and (D2),
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VoedTy ep0,1/2)Ue (W, T(w)) < nedo(T(w), w) < Jo(T(w), w)}. (5.6)
Clearly, (5.5) and (5.6) give
VoedlJo(T(w), w) =Ju(w, T(w))} (5.7)

If, there exists ag € A, such that Jo, (w, T(w)) = Jo, (T(w), w) > O, then using the
above consideration, by (J1) and (C4), since 74, €[0,1/2), we obtain
0 < Joo (W, T(w)) < Napag (T(w), W) < Joo (T(w), w) = Jo, (w, T(w)), which is absurd.
Consequently, we have that

Vaeallu(T(w), w) =Jy(w, T(w)) = 0}. (5.8)

From (5.8) and Remark 3.1, we conclude that T(w) = w.

Clearly, by (J1) and (D2), we have
Voealo(w, w) < limpy_oo Jo(w, v™) + limpy—oo Jo(v™, w) = 0}.

STEP 4. If\°, w € X. satisfy (D2), then VyeAVyoex{limp o0 Jo (U™, w) = 0}.

Indeed, we consider three cases:

Case 1. If (C2) holds, then, by (J1), (C2), Proposition 3.4(b), Step 1 and (D2), we
conclude that
Ve a3y, coa/ Ve acllimn o T, 1) < i a0 V)T, )] < e (it G (" 0l 0, )i Ju(0, ) = 01, )
VaeaVoex{limpy— o Jo (U™, w) = 0} holds.

Case 2. If (C3) holds, then, by (J1), (C3), Proposition 3.4(b), Step 1 and (D2), we
conclude that

Vae a3y, o1/ Viox T e Ju (0", 10) < T U (0", 0710 (07, 10)] < o (i (™ ) a0 ") i (87, ) = O}, )
VaeaVoex{limpy o Jo (U™, w) = 0} holds.

Case 3. If (C4) holds, then, by (J1), (C4), Proposition 3.4(b), Step 1 and (D2), we
conclude that
Ve a3, cfory2 Yoo x i J (", ) < T, V" eJa (0, )] = Mol (0", ")l (0", ")) olim e o0, ) = 01, so
VaeaVoex{limpm— o0 Jo (U™, w) = 0} holds.

STEP 5. vao, w e X satisfy (D2), then VYye sV oex{limy_ o0 do(u", w) = 0}.

Assume that at least one of the conditions (C2) — (C4) holds. Then, by Proposition
3.4(a), Step 4 and (J2), YocaViwoex{limy oo do (u™, w) = 0}.

STEP 6. If1°, w € X satisfy (D2), then Fix(T) = {w}.

Indeed, assume that at least one of the conditions (C2)-(C4) holds. Then, by Step 3
and Proposition 3.4(d), we have that Fix(T) = {w}.

STEP 7. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 6, 5 and 3. ©

6 Proof of Theorem 2.3
The proof will be broken into six steps.
STEP 1. If\°* € X and w € X satisfy (D1), then
lim v" = w. (6.1)
m—0o0
This follows from Proposition 3.4(e).
STEP 2. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-
tions (D1) and (D3) hold, then (D2) is satisfied.
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Assume that v’ € X and w € X satisfy (DI). By (6.1) and (D3), we have that w = 7t
(w) for some g € N. Next, by (C2) or (C3) or (C4) and by Proposition 3.4(d), Fix(T) =
{w} and Vyea{lo(w, w) = 0}. This and T(w) = w, by (C2) or (C3) or (C4) and Proposi-
tion 3.4(b), imply: (i) lim,,_e Jo(w, V") = lim,,_,.. Jo, (T(w), TV ™)) < Ny lim,,,_, J T
W), w) + Jo(v"™ 1, v = N lim,, e lUe(w, w) + Jo(v", v™)] = 0 if (C2) holds; (ii)
lim,,,ye Jo(w, V™) = lim,,seo Jo(TW), T ™)) < N limy,seJo(w, TW)) + Jo(V"™ 5, v™)]
= No lim,ulJa(w, w) + Jo(V" Y, v™)] = 0 if (C3) holds; (iii) lim,,_s. Jo(w, V") =
im0 Jo(T(W), TV ) < N limyyuseUnw, TW)) + Jo(v™, v ] = N limy,see (W,
w) + Jo(v", v )] = 0 if (C4) holds. This and (D1) imply (D2).

STEP 3. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-
tions (D1) and (D4) hold, then (D2) is satisfied.

Let us observe that (D3), by assumption (DI), includes (D4). Indeed, if +° € X and w
€ X satisfy (DI) and if (D4) holds, then, by (6.1), T is continuous at w for some qe
N and, since v"7*% = 714 (0" D4k for k = 1,2,.., g and m e N and, for each k = 1,2,...
g, the sequences (V"7 . ;e {0} U N) and (V" 7** : m e {0} U N), as subsequences of
(v :me {0} UN), also converge to w, we obtain that w = T (w). By Step 2, (D2)
holds.

STEP 4. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-
tions (D1) and (D5) hold, then (D2) is satisfied.

Indeed, if v’ € X and w € X satisfy (DI) and if (D5) holds, then lim,,,_,..v" = T9w)
and, since X is Hausdorff, by (6.1), we obtain w = T'9(w), i.e. (D3) holds. By Step 2,
(D2) holds.

STEP 5. If at least one of the conditions (C2)-(C4) holds and, additionally, the condi-
tions (D1) and (D6) hold, then (D2) is satisfied.

Let *e Xand we X satisfy (DI). Then, by (C2) or (C3) or (C4) and Proposition 3.4
(b), we have that Vyec4{lim,_, o sup,,., Jo(v", v") =0} and, by (6.1) and (D6), it fol-
lows that J;enVeea{limy_ oo Jo (V") Tl4l(w)) = 0}. Defining x,, = v"* and y,, = T (w)
for m € N, we conclude that for sequences (x,, : m € N) and (y,, = m € N) in X the
conditions (2.1) and (2.2) hold. Hence, by (J2), we get (2.3) which implies
Yaeallimy oo do (v, Tl (w)) = 0}, ie. lim,, ,.v™ = T (w). Since X is Hausdorff and
(6.1) holds, this gives w = T'%(w), i.e. (D3) holds. By Step 2, (D2) holds.

STEP 6. The assertions (a)-(c) are satisfied.

This is a consequence of Steps 1-5 and Theorem 2.2.
The proof of Theorem 2.3 is complete. O

7 Proof of Theorem 2.4
The proof will be broken into five parts.

PART 1. Since X is a Hausdorff sequentially complete uniform space and, by (CI) or
(C2) or (C3) or (C4) and by Proposition 3.4(c), for each u® € X, the sequence (1™ : m
€ {0} U N)) is a Cauchy sequence, thus there exists a unique w € X such that lim,, ,.
u” = w.

PART 2. If u° € X, lim,, ,.. #" = w and (D3) holds, then we have that w e Fix(T'?)
for some g € N. Next, by Proposition 3.4(d), we conclude that the other assertions

hold.
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PART 3. If u° € X, lim,,_,.. 4" = w and (D4) holds, i.e. 71" is continuous at w for
some g € N, then w = T (w). Indeed, we have that 7" = T (3" V9*k) for k =
1,2,..., g and m € N and, for each k = 1, 2,..,, g, the sequences («”?** : m e {0}UN) and
(u V1K e {0JuN), as subsequences of (™ : m e {0} U N), also converge to w,
which, since 7'? is continuous at w, gives w = T9(w). Hence, using Proposition 3.4(d),
we conclude that the other assertions hold.

PART 4. If u° € X, lim,, ,.. #”" = w and (D5) holds, then we obtain that lim,, .. #™
= T(w), which, with Part 1, since X is Hausdorff, gives w = T (w), i.e. (D3) holds.

PART 5. If u° € X, lim,, ,.. #” = w and (D6) holds, then we obtain that
JgenVaeallimpy oo Jo (u™, Tl4l(w)) = 0} and next, using Proposition 3.4(a) and (J2),
we conclude that lim,, ,.. #” = T'9(w), which, with Part 1, gives w = T9w), i.e. (D3)
holds.

The proof of Theorem 2.4 is complete. O

8 Proof of Theorem 2.5
The proof will be broken into four steps.

STEP 1. Let at least one of the conditions (C1)-(C4) holds and let e Xbe arbitrary
and fixed. Then:

Vate.A{nango 'rsnli[z]a(u", u™) =0}, (8.1)
HWGXVQEA{VJE%O]D!(um’ w) = W%er;o]d(w' u™) =0}, (8.2)
VaeA{W}i_I)T;OIa(um, u™n) = r}l_r)rgo Jo (U™, u™) = 0). (8.3)

Indeed, (8.1) is a consequence of Proposition 3.4(a). Property (8.1) and Definition 2.2
imply (8.2). Proposition 3.3(d) implies (8.3).

STEP 2. Let (CI) hold and let u° € X and w € X be such as in the Step 1. Then, Fix
(T) = {w} and Vyea{loa(w, w) = 0}, i.e. the assertions (a) and (c) hold.

First, we show that

Vaealla(T(w), w) = 0} (8.4)
and

Vaealls(w, T(w)) = 0}. (8.5)

Suppose that 3y,eallo,(T(w), w) > 0}. By (J1) and (Cl), we obtain that

Bt Ve U (1), 10) = Ju (), TN 0)) ol (0, 1™ Yol (47, 10) = iy (7). )+l (1(0), Tk w7, sy, w)), Hence,
using (8.3) and (8.2),
ao (1), 0) = 1 Jap (T(0), 16) < T 10 U (T(10), ) g (", 2l U (0 6™ Y (0™, 16)] = g (T(w0), ). Thus,

since 1q, € [0,1/2), we get Jo, (T(w), w) = 0, which is impossible. Therefore, (8.4)

holds.
Next, we see that, for arbitrary and fixed ¢ e A, by (J1) and (Cl),
Bnetons2)Ymenlla (W, T(w)) < Ju(w, u") (T (W), T(w)) < Jo(w, w")+nalJo (T @), T @) 4o (T(w), w)]). Hence,

using (8.2)-(8.4), we get J,(w, T(w)) = lim,,, ,.. Jo(w, T(w, T(w)) < lim,,, .. Jo(w, ™) +
Ne imy,,seo U™, ™) + Jo(T(w), w)] = 0, i.e. (8.5) holds.
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Now, from (8.4), (8.5) and Remark 3.1, we obtain that w = T(w), i.e. w € Fix(T).
Hence, by Proposition 3.4(d) (for ¢ = 1), we have that Fix(T) = {w} and
Veea{lu(w, w) = 0}, i.e. the assertions (a) and (c) hold.

STEP 3. Let at least one of the conditions (C2)-(C4) holds and let We Xandwe X
be such as in the Step 1. Then, Fix(T) = {w} and Vye a{lo (W, w) = 0}, i.e. the assertions
(a) and (c) hold.

Indeed, the assertions (a) and (c) are consequences of (8.2), (8.3) and also conse-
quences of similar argumentation as in Case 1 (if (C2) holds) or Case 2 (if (C3) holds)
or Case 3 (if (C4) holds) of Step 3 of the proof of Theorem 2.2.

STEP 4. Let at least one of the conditions (Cl1)-(C4) holds. Then,
Voex{limy oo u™ = w}.

This is a consequence of (8.1), (8.2) and (J2). O

9 Proof of Theorem 2.6
Let ¢, w, v* and (v™ : k € {0} UN) be such as in (D7) and (D8).

Therefore,

lim v™ = w

and, by (Cl) or (C2) or (C3) or (C4) and by Proposition 3.4(c), we get, in particular,

VaeA{’}Lr& sup dy(v", v™) = 0}. (9.2)

First, we show that

lim v" = w. (9.3)

m—00
Indeed, we have that
VatE.AVnENElp(n)ew,mp(,.)znvk>p(n){da(vn' w) = da(vnl vmk)"'du(vmkl W) = Sup,,., du(v”, Vm)"'dot(vm’(' w)} Which, by
(9.1), implies that

VaeAVnen{de (V') w) < sup,,., do(V", V") +limp oo do(V™, w) = sup,,., ds(V",v")}. Hence, by
(9.2), it follows that Yyea{lim,_, o0 do (V", w) < limy_, o sup,,., do(v", v™) = 0}. There-
fore, (9.3) holds.

Next, we see that

w = Tldl (w). (9.4)

Indeed, we have v"7*% = T (" DKy for k= 1, 2,..., ¢ and m € N. Hence, by (D7)
and (9.3), we get (9.4).
Now, we see that (9.4), Proposition 3.4(d) and (9.3) imply the assertions. O

10 Proof of Theorem 2.7

If 7 =D, then (Cl) = (Cl) = (C2) = (C3) = (C4) = (C5) and, by Proposition 3.4(c), we
obtain that Vye aVioex{limp .o SUP,,., do(u", u™) = 0}. Hence, since X is a Hausdorff
sequentially complete uniform space, it follows that if #° € X is arbitrary and fixed,
then the sequence (4™ : m € {0} U N) is a Cauchy sequence and there exists a unique
w e X such that Voea{limy— oo do(u™, w) =limy_o do(w, u™) =0}, ie., for 7 =D,
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the conditions (DI) and (D2) hold. Using now Theorems 2.1 or 2.2, we get the asser-
tions (a)-(c). ©

11 Proof of Theorem 2.8
Let ¢, w, v* and (v™ : k € {0} UN) be such as in (D7) and (D8).
Using Theorem 2.6 for J = D, we obtain that Fix(T) = {w} and

lim v" = w. (11.1)
m—00

Next, by Proposition 3.4(b), we get

VacaVuex{ lim do(u™, u") = lim do(u", u™') = 0}. (11.2)

Moreover, by Proposition 3.4(c), we get, in particular, that
. no.my _
Vacallim sup do (", ") = 0. (11.3)

Finally, by (C5) and (11. 1)-(11.3),
VaeaBnetoa Vil e du(u, ) < i ee da(u, V)i o da(0”, ) < il [0, 0" )1, (7 0" i e do" w) =01, This gives

VuOGX{limm—mo u™ =wj}. O

12 Examples and comparisons
First, in the following, we record some conclusions on metric spaces.

Definition 12.1 Let (X, d) be a metric space. The map J : X> — [0, o) is said to be a
J-generalized pseudodistance on X if the following two conditions hold:

O0) Yy, 5, zex (0 2) < J (x,9) + ] (9, 2)} and

(J2’) For any sequences (x,, : m € N) and (y,,: m € N in X such that

nll)rgo 'rsnlilz](xn, Xm) =0 (12.1)
and
nliirgo](xm, Ym) =0, (12.2)

the following holds

lim d(x, ym) = 0. (12.3)

m— 00

Theorems 2.1, 2.2 and 2.4 imply:

Theorem 12.1 Let (X, d) be a metric space. Assume that the map T : X — X and the
J-generalized pseudodistance ] : X* — [0, ) on X satisfy

(CT) Fnefo,1/2) VayexU(T(x), T(r)) < nl(T(x), x) +I(T(y), )]}

and, additionally,

(DY) Fpo wex{limpy— 0o J(v™, w) = 0}.

Then: (a) T has a unique fixed point w in X; (b)Vypex{limm—oo 4™ =w}; and (c) J(w,
w) = 0.

Theorem 12.2 Let (X, d) be a metric space. Assume that the map T : X — X and the
J-generalized pseudodistance J : X* — [0, o) on X satisfy at least one of the following
three conditions:

(C2) Fnei012) Vs yex U(Tx), T(y)) < n(T(x), x) + Iy, TO)]}
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(C3) Fne or2) Vo, yex V(T), TO) < nlix, TE)) + i, TO)],

(C&) Fne 017 Vs, yex VTR, TW)) < NlJx, T@) + (TO), 91,

and, additionally,

(D2’) Fpo wex{limpy— 00 J(V™, w) = limy_ o0 J(w, V™) = 0}.

Then: (a) Thas a unique fixed point win X; (b) Vyoex{limy— oo u™ = w}; and (c) J(w,
w) = 0.

Theorem 12.3 Let (X, d) be a complete metric space and assume that the map T : X
— X and the J-generalized pseudodistance J : X* — [0, =) on X satisfy at least one of
the conditions (C2')-(C4’) and, additionally, condition (D1°) and at least one of the fol-
lowing conditions (D3’)-(D6’):

(D3') Yo wex{limp oo V" = w = g {T1 (w) = w}},

(DF) Vo pex{limp oo V" = w = EIqGN{T[‘” is continuous at a point w}},

)V

(D5) Vvo,wEX{limmeoo V' =w = quN{limmeoo Tlal (Um) = Tl (w)}}’
(D6’) Vo wex im0 V" = W = quN{limmeoo](T[q] ), Tldl (w)) = 0}}.

Then: (a) Thas a unique fixed point w in X; (b)Vyoex{limy—oo ™ = w}; and (c) J(w,
w) = 0.

Now, we present some examples illustrating the concepts introduced so far.

First, we present an example of symmetric J-generalized pseudodistance.

Example 12.1. Let X be a metric space with metric d. Let the set E € X, containing

at least two different points, be arbitrary and fixed and let ¢ > 0 satisty J (E) <c where
0 (E) = sup{d(x, y): x, y € E}. Let ] : X* — [0, ) be defined by the formula

d(x, y) if EN{x, y} = {x, y},

J(x, y) = {C IFEN 7] 7 [ 71, x,y€X. (12.4)

We show that / is a generalized pseudodistance on X.
Indeed, it is worth noticing that the condition (/1’) does not hold only if there exist
some Xo, Yo, 2o € X such that J(xo, zo) >/(%0, ¥0) + J(¥o, zo). This inequality is equivalent

to ¢ >d(xo, yo) + d(yo, zo) where J(xo, zo) = ¢, J(x0, y0) = d(x0, yo) and J(yo, zo) = d(yo,
zo). However, by (12.4): J(xo, zo) = ¢, gives that there exists v € {xo, zo} such that v ¢ E;
J(x0, y0) = d(x0, ¥o) gives {xo, yo} € E; J(¥o, 20) = d(¥o, 20) gives {yo, zo} < E. This is
impossible. Therefore, V,, ,, . xU(x, ) < J(, 2) + J(z, )}, i.e. the condition (J1') holds.

For proving that (J2’) holds we assume that the sequences (x,, : m € N) and (y,, : m
e N) in X satisfy (12.1) and (12.2). Then, in particular, (12.2) yields

Yo<e<cTmo=mo(e)eNYmzmo U (Xm, ¥Ym) < €}. (12.5)
By (12.5) and (12.4), since ¢ <c, we conclude that

Vimzmo {E N %, Ym} = {%m, ym}}- (12.6)
From (12.6), (12.4) and (12.5), we get

Vo<e<cFmoenVmzmo (d(Xm, Ym) =T (Xm, ym) < }.

Therefore, the sequences (x,, : m € N) and (y,, : m € N) satisfy (12.3).
Consequently, the property (J2’) holds.
Now, we define non-symmetric J-generalized pseudodistance.
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Example 12.2. Let X = N be a metric space with metric d(x, y) = |x - y|,
x,y€ X Leta, b, ¢, de (0, <) be arbitrary and fixed and satistying

a<b<c<d. (12.7)

LetJ: X2 > [0, ) be defined by the formula

0 ifm=n,
b if m-even, n-even, m+n,
Jim, n)=43c¢ ifm-odd, n-odd, m#n, x yeX. (12.8)

d if m-even, n-odd,
a ifm-odd, n-even,

We show that / is a generalized pseudodistance on X.

Indeed, first we show that the condition (/1’) holds. Let m, 1, s € N be arbitrary and
fixed. We consider the following cases:

Case 1. If m-even and n-odd, then: (i) if s-even, we have J(m, n) = d, J(m, s) = b, J(s,
n) = d, and, consequently, J(m, n) < J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = d, ]
(m, s) = d, J(s, n) = ¢, and, consequently, J(m, n) < J(m, s) + J(s, n).

Case 2. If m-even and n-even, then: (i) if s-even, we have J(m, n) = b, J(m, s) = b, J(s,
n) = b, and, consequently, J(m, n) < J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = b, ]
(m, s) = d, J(s, n) = a, and, consequently, by (12.7), we get J(m, n) < J(m, s) + J(s, n).

Case 3. If m-odd and #n-even, then: (i) if s-even, we have J(m, n) = a, J(m, s) = a, J(s,
n) = b, and, consequently, J(m, n) < J(m, s) + J(s, n); (ii) if s-odd, we have J(m, n) = a, ]
(m, s) = ¢, J(s, n) = a, and, consequently, J(m, n) < J(m, s) + J(s, n).

Case 4. If m-odd and #n-odd, then: (i) if s-even, we have J(m, n) = ¢, J(m, s) = a, J(s,
n) = d, and, consequently, by (12.7), we get J(m, n) < J(m, s) + J(s, n); (ii) if s-odd, we
have J(m, n) = ¢, J(m, s) = ¢, J(s, n) = ¢, and, consequently, J(m, n) < J(m, s) + J(s, n).

Thus, J satisfies the condition (J1’).

For proving that (J2’) holds we assume that the sequences (x,, : m € N) and (y,, : m
€ N) in X satisfy (12.1) and (12.2). Then, in particular, (12.2) yields

Y0<e<aTFmo=mo(e)eNYmzmo U (Xm, Ym) < €} (12.9)
By (12.9) and (12.8), since ¢ <a, we conclude that

Vinzmo {Xm = Ym}. (12.10)
From (12.10), (12.8) and (12.9), we get

Yo<e<aTmoeNVmemo{d(Xm, ym) =0 < €}.

Therefore, the sequences (x,, : m € N) and (y,, : m € N) satisty (12.3). Consequently,
the property (/2’) holds.

Next, we present an example of noncomplete metric space X, /-generalized pseudo-
distances on X and map 7 : X — X such that Theorems 12.1 and 12.2 hold.

Example 12.3. Let X = [0, 1) be a noncomplete metric space with a metric d : X*> —
[0, ), d(x, ¥) = |x - y|, x, y€ X. Let T: X — X be a map given by the formula

0 ifx=1/4,

T(x) = { 1/2 if x € X\{1/4}. (12.11)
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Let E = [0, 1/4) U [1/2, 3/4) and let

d(x, y)if {x, y} NE = {x, y},

J(x y) = {2 if (x, Y} NE #{x ). (12.12)

The map J is a generalized pseudodistance on X (see Example 12.1). Clearly,
VioexVms2 (V" = 1/2 =T (%) € B}, w = 1/2 € Eand V,, - 2{J(v", w) = J(w, V") = d
(v, w) = 0}. Hence, we conclude that the conditions (D1’) and (D2’) hold.

We observe that 7 satisfies conditions: (C1’)-(C4’). Indeed, for each x € X, by (12.11),
we have that T(x) € E, so J(T(x), T(y)) = d(T(x), T(y)) = d(1/2, 1/2) = 0 if {x, y} n {1/4}
=0, (T(x), T(y)) = d(T(x), T(y)) = 1/2 if {x = y Alx, ¥} n {1/4} = @} and J(T(x), T(y)) =
d(T(x), T(y)) = 0 if x = y = 1/4. Consequently, there exists A = 3/8 € [0, 1/2) such that
for each x, y € X, since 1/4 ¢ E, using (12.12) we have

J(T(x), T(7))
0= JU(T(), ) +J(T), NI iflx hN {51 =9,

=11 <3 <3, )+ I(TQ), Mifxy & (i} #9,
0< 3T, x)+J(TH), )] ifx=y=1.

Here, we use the fact that if x = y and {x, y} n {1/4} = @, then J(T(x), x) = 2 or J(y, T
(¥)) = J(T(y), ) = 2. Therefore, (C1’) holds. By formula (12.12), J is symmetric. Hence,
(CT) = (C2) = (C3) = (C4).

Assertions (a)-(c) of Theorems 12.1 and 12.2 hold: we have that Fix(T) = {1/2},
Voex{limy o u™ =1/2} and J(1/2, 1/2) = d(1/2, 1/2) = 0.

It is worth noticing that the conditions (D1’) in Theorem 12.1 and (D2’) in Theorem
12.2 cannot be omitted.

Example 12.4. Let X = [0, 1) be a noncomplete metric space with a metric d : X* —
[0, =), d(x, ) = |x - y|, x, y€ X. Let T: X — X be a map given by the formula T(x) =
x/4 + 3/4, x € X.

From Remark 2.1(b), it follows that the map J = d is a generalized pseudodistance on
X.

We observe that the conditions (C1’)-(C4’) hold.

Indeed, let n = 1/3 and let x, y € X be arbitrary and fixed.

If x < y, then, since T is strictly increasing, we have T(x) < T(y) and, consequently,

d(T(x), T(y)) =d(x/4 +3/4, y/4+3/4) =y/4 — x/4. (12.13)
Moreover, V. x{d(T (z), z) = z/4 + 3/4 - z = -(3/4)z + 3/4}. Hence,

;[d(T(x), %) +d(T(R), )] = ; [_ 34x N 43; _ 34y . ﬂ

13 3x 3y 1 x vy
“3l2 4 4| 2 4 4

(12.14)

From this, we conclude that d(T(x), T(y)) < n[d(T(x), x) + d(T(y), y)]. Indeed, other-
wise d(T(x), T(y)) > nld(T(x), x) + d(T(y), y)] and then, by (12.13) and (12.14), we
must have that y/4 - x/4 >1/2 - x/4 - y/4. However, this gives y >1, which is absurd.

If x > y, then, by analogous considerations, we obtain a similar conclusion.

Therefore, 3, _ 1,3V, ye x{d(T (x), T () < 1 [d(T (%), x) + d(T (y), y)]}, i.e. the condi-
tions (C1’)-(C4’) hold.

Page 20 of 24



Wiodarczyk and Plebaniak Fixed Point Theory and Applications 2011, 2011:90
http://www fixedpointtheoryandapplications.com/content/2011/1/90

Clearly, for each u° € X, the sequence (™ : m € {0} U N)}, where u” = T"(u°), m
€ N, is not convergent in X, so, the conditions (D1’) and (D2’) do not hold. We see
that Fix (T) = Q.

We illustrate Theorem 12.3.

Example 12.5. Let (X, d) be a metric space, where X = [0, 1] and d(x, y) = |x - |, «,
ye X. Let T: X — X be a map given by the formula

_Jo ifx=1/4,
T(x) = { 1/2 if x € X\({1/4}.

Clearly, the map T2, T*(x) = 1/2, x € X, is continuous on X, so the condition (D4’)
holds.
Let E = [0, 1/4) U [1/2, 3/4) and let

_Jdlx y)iffx, yENE = {x, v},
J@x y)‘{z if (x, )N E # {x, y).

By Example 12.1, / is a J-generalized pseudodistance. Using analogous considerations
as in Example 12.3, we prove that T and J satisfy conditions (C1’)-(C4).

The above implies that Theorem 12.3 holds. Assertions (a)-(c) are as follows:

w = 1/2, Fix (T) = {w}, Vyex{limy_ o u™ =w} and J(w, w) = d(w, w) = 0.

We notice that the existence of J-generalized pseudodistance such that J #d is
essential.

Example 12.6. Let X and T be such as in Examples 12.3 or 12.5. We observe that T’
is not Kannan contraction, i.e. T does not satisty (K). Indeed, suppose that

Fye10,1/2) Vayex{d(T(x), T(y)) < nld(T(x), x) +d(T(y), y)]}- (12.15)

Then, in particular, for x5 = 1/4 and y, = 3/4 from X, by (12.15), we obtain 1/2 = d
(0, 1/2) = d(T(xo), T (y0)) < Nld(T (x0), x0) + d(T (yo), y0)] = nld(0, 1/4) + d(1/2, 3/4)]
= n(1/4 + 1/4) <1/2, which is absurd.

In Examples 12.7 and 12.8, we compare conditions (C1’)-(C4’) and (K).

Example 12.7. Let X = {2, 3, 5} be a metric space with a metric d : X* — [0, ), d(x,
y) =|x-y,x ye X. Let T: X — X be a map given by the formula

5ifm=2,
T(m) = {3 if m e X\(2). (12.16)
Define
0 ifm=n,
1/4 if m - even, n - even, m #n,
J(m, n) =14 1/3ifm-odd, n-odd, m#n, «x yeX. (12.17)

1 ifm-even, n-odd,
1/7 if m - odd, n - even,

The map J is a generalized pseudodistance on X (see Example 12.2). Next, we see
that VyocxVyso{v" =3 = TI"M(10)}, w = 3 € X and V,, . »U(V", w) = J(w, v") = d(v",
w) = 0}. Hence, we conclude that the conditions (D1’) and (D2’) hold.

We also observe that T satisfies conditions (C3’). Indeed, let 1 = 1/3 € [0, 1/2), let x,
y € X be arbitrary and fixed and consider the following five cases:
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Case 1. If x = 2 and y = 3, then, using (12.16) and (12.17), we obtain: T(x) = 5; T(y)
=3; J(T(x), T(y)) = J(5, 3) = 1/3 < 1/3 = (1/3)(1 + 0) = (1L/3)[J(2, 5) + J(3, 3)] = (1/3)[J
(v, Tx) + J&y, T)]

Case 2. If x = 3 and y = 2, then, using (12.16) and (12.17), we obtain: T(x) = 3; T(y)
=5 J(T(x), T(y)) = J(3,5) = 1/3 < 1/3 = (1/3)(0 + 1) = (1/3)[J(3, 3) + J(2, 5)] = (1/3)[J
(x, T(x)) + J(&y, T)].

Case 3. If x = 2 and y = 5, then, using (12.16) and (12.17), we obtain: T(x) = 5; T(y)
=3; ](T(x) T(y) = J(5,3) = 1/3 < 4/9 = (1/3)(1 + 1/3) = (1/3)[J(2, 5) + J(5, 3)] = (1/3)
Ux, T(x) + J(y, T(9))]

Case 4. If x = 5 and y = 2, then, using (12.16) and (12.17), we obtain: T(x) = 3; T(y)
=5 J(T(x), T()) = J(3, 5) = 1/3 < 4/9 = (1/3)(1/3 + 1) = (IB)J(5, 3) + J(2, 5)] = (1/3)
U, T() + 10, TO)).

Case 5. If x =3 and y =5 or x = 5 and y = 3, then, using (12.16) and (12.17), in both
situations, we obtain: T(x) = 3; T(y) = 3; J(T(x), T(y)) = J(3, 3) = 0 < (1/3)[J(x, T(x)) + J
. TH)].

Therefore, the condition (C3’) holds.

Assertions (a)-(c) of Theorems 12.1 and 12.2 hold: we have that Fix(T) = {3},
Voex{limy_ou™ =3} and J(3, 3) = 0

Example 12.8. Let X, /, T be as in Example 12.7.

First, we show that 7 and J do not satisfy the condition (CI’). Indeed, suppose that
e 01/2)Yx e xU(T (), T (y)) < nUT (x), x) + J(T (), y)]}. Hence, in particular, for x
=2and y = 3, we get 1/3 = J(5, 3) = J(T(x), T(y)) < nl(T(x), x) + J(T(y), )] = nU(5, 2)
+J(3, 3)] = n[1/7 + 0] <1/14, absurd.

Now, we show that 7" and J does not satisfy the condition (C2’). Indeed, suppose that
e 01/2)Yx ye xU(T (), T (y)) < nlAT (x), x) + J(y, T (y))]}. Hence, in particular, for x
=2and y = 3, we get 1/3 = J(5, 3) = (T(x), T(y)) < n/(T(x), x) + J(y, T(y))] = nlJ(5, 2)
+J(3, 3)] = n[1/7 + 0] <1/14, absurd.

Next, we show that T and J do not satisfy the condition (C4’). Indeed, suppose that
e 101/2)V5 ye xU(T (%), T (y)) < nlx, T (x)) + J(T (), y)]}. Hence, in particular, for x
~3and y = 2, we get 13 = J(3, 5) = J(T(), T()) < nl/x, T()) + KTG), )] = N3, 3)
+J(5, 2)] = n[0 + 1/7] <1/14, absurd.

Finally, we observe that 7' do not satisfy the condition (K). Indeed, suppose that 3,
0,1/ ye x1d(T (x), T (y)) < n[d(T (x), x) + d(T (y), y)]}. Hence, in particular, for x = 2
and y = 3, we get 2 = d(5, 3) = d(T(x), T(y)) < n(T(x), x) + J(T(y), y)] = nld(5, 2) + d
(3, 3)] = n[3 + 0] <3/2, absurd.

13 Conclusion
Now, we present some conclusions:

(a) Let X be a Hausdorff sequentially complete uniform space. If 7 = D and T satis-
fies (C5), then (C1)-(C5) are identical and, by Proposition 3.4(c), for each e X, a
sequence (#” : m € {0} U N) is Cauchy and thus convergent. By Definition 2.2, this
gives that 7 is D -admissible.

Hence, in particular, it follows that in complete metric spaces (X, d), each Kannan
contraction is d-admissible.

(b) Theorem 2.2 includes Theorem 2.3.

(c) Theorem 2.7 is a version of Theorem 1.2 for uniform spaces.
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(d) If X is a Hausdorff sequentially complete uniform space, then, for 7 = D, Theo-
rems 2.1 and 2.2 include Theorem 2.7.

(e) In metric spaces, for J =D = {d}, we conclude that: (i) Theorem 2.6 includes
Theorem 1.3; (ii) Theorem 2.8 generalizes Theorem 1.3 (in Theorem 2.8, we have,
additionally, the assertion (b)).

(f) Four kinds of Kannan-type contractions (C1’)-(C4’) where J are z-distances are
introduced and studied by Suzuki [[14], Contractions: (a) and (b), p. 199; (c) and (d),
p. 200]. Our results are different from those given in [14].

(g) t-distances [10] and z-functions [22] are generalized pseudodistances but the con-
verse does not holds; see [23-26].

(h) Conditions (C1)-(C4) are different; see e.g. Examples 12.2, 12.7 and 12.8.
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