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Abstract

Shrinking projection algorithms for finding a solution of an equilibrium problem with
a bifunction defined on the dual space of a Banach space, in this paper, are
introduced and studied. Under some suitable assumptions, strong and weak
convergence results of the shrinking projection algorithms are established,
respectively. Finally, we give an example to illustrate the algorithms proposed in this
paper.
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1 Introduction
Let Ω be a nonempty closed subset of a real Hilbert space H. Let g be a bifunction

from Ω × Ω to R, where R is the set of real numbers. The equilibrium problem for g is

as follows: Find x̄ ∈ � such that

g(x̄, y) ≥ 0, ∀y ∈ �.

Many problems in structural analysis, optimization, management sciences, econom-

ics, variational inequalities and complementary problems coincide to find a solution of

the equilibrium problem. Various methods have been proposed to solve some kinds of

equilibrium problems in Hilbert and Banach spaces (see [1-8]).

In [9], Takahashi and Zembayashi proved strong and weak convergence theorems for

finding a common element of the set of solutions of an equilibrium problem and the set

of fixed points of a relatively nonexpansive mapping in Banach spaces. Ibaraki and Taka-

hashi [10] introduced a new resolvent of a maximal monotone operator in Banach

spaces and the concept of the generalized nonexpansive mapping in Banach spaces.

Honda et al. [11], Kohsaka and Takahashi [12] also studied some properties for the gen-

eralized nonexpansive retractions in Banach spaces. Takahashi et al. [13] proved a strong

convergence theorem for nonexpansive mapping by hybrid method. In 2009, Ceng et al.

[2] proved strong and weak convergence theorems for equilibrium problems and dealt

maximal monotone operators by hybrid proximal-point methods. Motivated by Ibaraki
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and Takahashi [10] and Takahashi et al. [13], Takahashi and Zembayashi [14] considered

the following equilibrium problem:

Let E be a smooth Banach space with dual space E* and C be a nonempty closed

subset of E such that J(C) is a closed and convex subset of E*, where J is the normal-

ized duality mapping from E onto E*. Let f: J(C) × J(C) ® R be a mapping. Consider

the equilibrium problem as follows: Find x̄ ∈ C such that

f (J(x̄), J(y)) ≥ 0, ∀y ∈ C. (1:1)

Then they proved a strong convergence theorem for finding a solution of the equili-

brium problem (1.1) in Banach spaces. Forward, we denote the set of solutions of the

problem (1.1) by EP(f):

Inspired and motivated by Ceng et al. [2], Takahashi and Zembayashi [14], Takahashi

and Zembayashi [9], the main aim of this paper is to introduce and investigate a new

iterative method for finding a solution of the equilibrium problem (1.1). Under some

appropriate assumptions, strong and weak convergence results of the iterative algo-

rithms are established, respectively. Furthermore, we also give an example to illustrate

the algorithms proposed in this paper.

2 Preliminaries
Throughout this paper, we denote the sets of nonnegative integers and real numbers

by Z+ and R, respectively.

Let E be a real Banach space with the dual space E*. The norm and the dual pair

between E and E* are denoted by ║·║ and 〈·,·〉, respectively. The weak convergence and

strong convergence are denoted by ⇀ and ®, respectively. Let C be a nonempty closed

subset of E. We denote the normalized duality mapping from E to E* by J defined by

J(x) =
{
j(x) ∈ E∗ : 〈j(x), x〉 =‖ j(x) ‖‖ x ‖=‖ j(x)‖2 =‖ x‖2} , ∀x ∈ E.

J is said to be weakly sequentially continuous if the strong convergence of a sequence

{xn} to x in E implies the weak* convergence of {J(xn)} to J(x) in E*.

Many properties of the normalized duality mapping J can be found in [15-17] and,

now, we list the following properties:

(p1) J(x) is nonempty for any x Î E;

(p2) J is a monotone and bounded operator in Banach spaces;

(p3) J is a strictly monotone operator in strictly convex Banach spaces;

(p4) J is the identity operator in Hilbert spaces;

(p5) If E is a reflexive, smooth and strictly convex Banach space and J*: E* ® 2E is

the normalized duality mapping on E*, then J-1 = J*; JJ* = IE* and J*J = IE; where IE*

and IE*are the identity mappings on E and E*, respectively.

(p6) If E is a strictly convex Banach space, then J is one to one, that is,

x 	= y ⇒ J(x) ∩ J(y) = ∅;

(p7) If E is smooth, then J is single-valued;

(p8) E is a uniformly convex Banach space if and only if E* is uniformly smooth;

(p9) If E is uniformly convex and uniformly smooth Banach space, then J is uniformly

norm-to-norm continuous on bounded subsets of E and J-1 = J* is also uniformly

norm-to-norm continuous on bounded subsets of E*:

Chen et al. Fixed Point Theory and Applications 2011, 2011:91
http://www.fixedpointtheoryandapplications.com/content/2011/1/91

Page 2 of 11



Let E be a smooth Banach space. Let a function j: E × E ® R be defined as follows:

φ(x, y) = ‖ x‖2 − 2〈x, J(y)〉+ ‖ y‖2, ∀x, y ∈ E.

Then we have

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, J(z) − J(y)〉, ∀x, y, z ∈ E.

Remark 2.1. (see [17,18]) The following statements hold:

(1) If E is a reflexive, strictly convex and smooth Banach space, then, for all x, y Î E,

j(x; y) = 0 if and only if x = y;

(2) If E is a Hilbert space, then j(x, y) = ║x - y║2 for all x; y Î E;

(3) For all x, y Î E, (║x║ - ║y║)2 ≤ j(x, y) ≤ (║x║ + ║y║)2.
For solving the equilibrium problem (1.1), we assume that f: J(C) × J(C) ® R satisfies

the following conditions (A1) - (A4) [9]:

(A1) f(x*, x*) = 0 for all x* Î J(C);

(A2) f is monotone, that is, f(x*; y*) + f(y*, x*) ≤ 0 for all x*, y* Î J(C);

(A3) f is upper hemicontinuous, that is, for all x*, y*, z* Î J(C),

lim sup
t→0+

f (x∗ + t(z∗ − x∗), y∗) ≤ f (x∗, y∗);

(A4) For all x* Î J(C), f(x*, ·) is convex and lower semicontinuous.

In the sequel, we recall some concepts and results.

Definition 2.1. (see [11]) Let C be a nonempty closed subset of a smooth Banach

space E. A mapping T: C ® C is said to be generalized nonexpansive if F(T) is none-

mpty and

φ(Tx, p) ≤ φ(x, p), ∀x ∈ C, p ∈ F(T),

where F(T) denotes the set of fixed points of T, that is, F(T) = {x Î C: Tx = x}.

Definition 2.2. (see [11]) Let C be a nonempty closed subset of E. A mapping R:

E ® C is called:

(1) a retraction if R2 = R;

(2) sunny if R(Rx + t(x - Rx)) = Rx for all x Î E and t > 0.

Definition 2.3. (see [11]) A nonempty closed subset C of a smooth Banach space E

is called a sunny generalized nonexpansive retract of E if there exists a sunny general-

ized nonexpansive retraction R from E onto C.

Lemma 2.1. (see [19]) Let E be a uniformly convex and smooth Banach space, and

let {xn} and {yn} be two sequences of E. If j(xn, yn) ® 0 and either {xn} or {yn} is

bounded, then xn - yn ® 0.

Lemma 2.2. (see [18]) Let E be a uniformly convex Banach space. Then, for any r > 0;

there exists a strictly increasing, continuous and convex function h: [0, 2r] ® R such that

h(0) = 0 and

‖ tx+(1− t)y‖2 ≤ t ‖ x‖2 + (1− t) ‖ y‖2 − t(1− t)h(‖ x− y ‖), ∀x, y ∈ Br , t ∈ [0, 1],

where Br = {z Î E: ║z║ ≤ r}.

Lemma 2.3. (see [1]) Let C be a nonempty closed subset of a smooth, strictly convex

and reflexive Banach space E such that J(C) is closed and convex. Assume that a map-

ping f: J(C) × J(C) ® R satisfies the conditions (A1)-(A4). Then, for any r > 0 and x Î
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E, there exists z Î C such that

f (J(z), J(y)) +
1
r
〈z − x, J(y) − J(z)〉 ≥ 0, ∀y ∈ C.

Lemma 2.4. (see [14]) Let C be a nonempty closed subset of a uniformly smooth,

strictly convex and reflexive Banach space E such that J(C) is closed and convex.

Assume that a mapping f: J(C) × J(C) ® R satisfies the conditions (A1)-(A4). For any r

> 0 and x Î E, define a mapping Tr: E ® C by

Tr(x) =
{
z ∈ C : f (J(z), J(y)) +

1
r
〈z − x, J(y) − J(z)〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ E.

Then the following statements hold:

(1) Tr is single-valued;

(2) For all x, y Î E,

〈Tr(x) − Tr(y), J(Tr(x)) − J(Tr(y))〉 ≤ 〈x − y, J(Tr(x)) − J(Tr(y))〉;

(3) F(Tr) = EP(f) and J(EP(f)) is closed and convex;

(4) j(x, Tr(x)) + j(Tr(x), p) ≤ j(x, p) for all x Î E and p Î F(Tr).

Lemma 2.5. (see [9]) Let C be a nonempty closed subset of a smooth, strictly convex

and reflexive Banach space E, and let R be a retraction of E onto C. Then the following

statements are equivalent:

(1) R is sunny generalized nonexpansive;

(2) 〈x - Rx, J(y) - J(Rx)〉 ≤ 0 for all (x, y) Î E × C.

Lemma 2.6. (see [20]) Let C be a nonempty closed sunny generalized nonexpansive

retract of a smooth and strictly convex Banach space E. Then the sunny generalized

nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.7. (see [10]) Let C be a nonempty closed subset of a smooth and strictly

convex Banach space E such that there exists a sunny generalized nonexpansive retrac-

tion R from E onto C. Then, for any x Î E and z Î C, the following statements hold:

(1) z = Rx if and only if 〈x - z, J(y) ≤ J(z)〉 ≤ 0 for all y Î C;

(2) j(x, Rx) + j(Rx, z) ≤ j(x, z).
Lemma 2.8. (see [12]) Let C be a nonempty closed subset of a smooth, strictly con-

vex and reflexive Banach space E. Then the following statements are equivalent:

(1) C is a sunny generalized nonexpansive retract of E;

(2) J(C) is closed and convex.

Remark 2.2. If E is a Hilbert space, then, from Lemmas 2.6 and 2.8, a sunny general-

ized nonexpansive retraction from E onto C reduces to a metric projection operator P

from E onto C.

Lemma 2.9. (see [12]) Let C be a nonempty closed sunny generalized nonexpansive

retract subset of a smooth, strictly convex and reflexive Banach space E. Let R be the

sunny generalized nonexpansive retraction from E onto C. Then, for any x Î E and z Î C,

z = Rx ⇔ φ(x, z) = miny∈Cφ(x, y).

Lemma 2.10. (see [21]) Let {an} and {bn} be two sequences of nonnegative real num-

bers satisfying the inequality
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an+1 ≤ an + bn, ∀n ∈ Z+.

If
∑∞

n=0
bn < ∞ , then limn ®∞ an exists.

3 Main results
In this section, we propose iterative algorithms for finding a solution of the equilibrium

problem (1.1) and prove the strong and weak convergence for the algorithms in a

Banach space under some suitable conditions.

Theorem 3.1. Let C be a nonempty closed subset of a uniformly convex and uni-

formly smooth Banach space E such that J(C) is closed and convex. Assume that a

mapping f: J(C) × J(C) ® R satisfies the conditions (A1)-(A4). Define a sequence {xn}

in C by the following algorithm:

⎧⎨
⎩
x0 ∈ C,
un ∈ C such that f (J(un), J(y)) + 1

rn
〈un − xn, J(y) − J(un)〉 ≥ 0, ∀y ∈ C,

xn+1 = αnx0 + (1 − αn)(βnxn + (1 − βn)un), ∀n ∈ Z+,

where {an}, {bn} ⊂ [0, 1] such that

∞∑
n=0

αn < ∞, lim inf
n→∞ βn(1 − βn) > 0, lim inf

n→∞ rn > 0.

Then the sequence {REP(f)xn} converges strongly to a point ω Î EP(f), where REP(f) is

the sunny generalized nonexpansive retraction from E onto EP(f).

Proof. For the sake of simplicity, let un = Trn xn and yn = bnxn + (1 - bn)un. Then xn+1
= an x0 + (1 - an)yn. From Lemma 2.4, it follows that EP(f) is a nonempty closed and

convex subset of E.

First, we claim that {xn} is bounded. Indeed, let ω Î EP(f). Since

φ(yn,ω) = ||βnxn + (1 − βn)un||2 − 2〈βnxn + (1 − βn)un, J(ω)〉 + ||ω||2
≤ βn||xn||2 + (1 − βn)||un||2 − 2βn〈xn, J(ω)〉 − 2(1 − βn)〈un, J(ω)〉 + ||ω||2

= βnφ(xn,ω) + (1 − βn)φ(un,ω)

= βnφ(xn,ω) + (1 − βn)φ(Trnxn,ω)

≤ φ(xn,ω),

we have

φ(xn+1,ω) ≤ αnφ(x0,ω) + (1 − αn)φ(yn,ω)

≤ αnφ(x0,ω) + (1 − αn)φ(xn,ω)

≤ αnφ(x0,ω) + φ(xn,ω).

By virtue of
∑∞

n=0 αn < ∞ and Lemma 2.10, it follows that the limit of {j(xn, ω)}

exists. Therefore, {j(xn, ω)} is bounded and so {xn}, {un} and {yn} are also bounded. Let

zn = REP(f)xn. Then zn Î EP(f) and so, from Lemma 2.7, we have

φ(xn, zn) = φ(xn,REP(f )xn) ≤ φ(xn,ω) − φ(REP(f )xn,ω) ≤ φ(xn,ω).

Therefore, {zn} is bounded and so j(x0, zn) is bounded. Since j(xn+1, zn) ≤ anj(x0, zn)
+ j(xn, zn), by Lemma 2.7, one has
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φ(xn+1, zn+1) = φ(xn+1,REP(f )xn+1)

≤ φ(xn+1, zn) − φ(REP(f )xn+1, zn)

≤ φ(xn+1, zn)

≤ αnφ(x0, zn) + φ(xn, zn).

Since {j (x0, zn)} is bounded, there exists M >0 such that |j(x0, zn)| ≤ M. By∑∞
n=0 αn < ∞ , we have

∞∑
n=0

αnφ(x0, zn) ≤ M
∞∑
n=0

αn < ∞,

that is,
∑∞

n=0 αnφ(x0, zn) < ∞ From Lemma 2.10, it follows that {j(xn, zn)} is a con-

vergent sequence. For any m Î Z+\{0}, one can get

φ(xn+m,ω) ≤ φ(xn,ω) +
m−1∑
j=0

αn+jφ(x0,ω).

Then we have

φ(xn+m, zn) ≤ φ(xn, zn) +
m−1∑
j=0

αn+jφ(x0, zn).

From zn+m = REP(f)xn+m and Lemma 2.7, it follows that

φ(xn+m, zn+m) + φ(zn+m, zn) ≤ φ(xn+m, zn) ≤ φ(xn, zn) +
m−1∑
j=0

αn+jφ(x0, zn)

and so

φ(zn+m, zn) ≤ φ(xn, zn) − φ(xn+m, zn+m) +
m−1∑
j=0

αn+jφ(x0, zn).

Set r = sup{║zn║: n Î Z+}. Then, from Lemma 2.2 and [19], it follows that there is a

strictly increasing, continuous and convex function h: [0, 2r] ® R such that h(0) = 0

and

h(||zn − zn+m||) ≤ φ(zn+m, zn) ≤ φ(xn, zn) − φ(xn+m, zn+m) +
m−1∑
j=0

αn+jφ(x0, zn).

Since {j(xn, zn)} is convergent, {j(x0, zn)} is bounded and
∑∞

n=0 αn is convergent, it

follows that, for any m Î Z+,

lim
n→∞ ||zn − zn+m|| = 0,

which shows that {zn} is a Cauchy sequence. Since EP(f) is closed, there exists ω Î
EP(f) such that zn ® ω. Therefore, the sequence {REP(f)xn} converges strongly to the ω

Î EP(f). This completes the proof. □
Theorem 3.2. Let C be a nonempty closed subset of a uniformly convex and uni-

formly smooth Banach space E such that J(C) is closed and convex. Assume that a
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mapping f: J(C) × J(C) ® R satisfies the conditions (A1)-(A4). Define a sequence {xn} in

C by the following algorithm:
⎧⎨
⎩
x0 ∈ C,
un ∈ C such that f (J(un), J(y)) + 1

rn
〈un − xn, J(y) − J(un)〉 ≥ 0, ∀y ∈ C,

xn+1 = αnx0 + (1 − αn)(βnxn + (1 − βn)un), ∀n ∈ Z+,

where {an}, {bn} ⊂ [0, 1] such that

∞∑
n=0

αn < ∞, lim inf
n→∞ βn(1 − βn) > 0, lim inf

n→∞ rn > 0.

If J is weakly sequentially continuous, then the sequence {xn} converges weakly to a

point ω Î EP(f), where ω = limn®∞ REP(f)xn and REP(f) is the sunny generalized nonex-

pansive retraction from E onto EP(f).

Proof. For the sake of simplicity, let un = Trn xn , yn = bnxn + (1 - bn)un and zn = REP(f)
xn. As in the proof of Theorem 3.1, we have {xn}, {un}, {zn}, {J(xn)} and {yn} are

bounded. Set r = sup{║xn║, ║zn║: n Î Z+}. It follows from Lemma 2.2 that there exists

a strictly increasing, continuous and convex function h: [0, 2r] ® R such that h(0) = 0

and

||βnxn + (1 − βn)un||2 ≤ βn||xn||2 + (1 − βn)||un||2 − βn(1 − βn)h(||xn − un||).

Since

φ(yn,ω) = φ(βnxn + (1 − βn)un,ω)

≤ βn||xn||2 + (1 − βn)||un||2 − βn(1 − βn)h(||xn − un||)
− 2βn〈xn, J(ω)〉 − 2(1 − βn)〈un, J(ω)〉 + ||ω||2

= βnφ(xn,ω) + (1 − βn)φ(un,ω) − βn(1 − βn)h(||xn − un||)
= βnφ(xn,ω) + (1 − βn)φ(Trnxn,ω) − βn(1 − βn)h(||xn − un||)

≤ φ(xn,ω) − βn(1 − βn)h(||xn − un||),

we have

φ(xn+1,ω) = φ(αnx0 + (1 − αn)yn,ω)

≤ αnφ(x0,ω) + (1 − αn)φ(yn,ω)

≤ αnφ(x0,ω) + φ(yn,ω)

≤ αnφ(x0,ω) + φ(xn,ω) − βn(1 − βn)h(||xn − un||).

Moreover, one has

βn(1 − βn)h(||xn − un||) ≤ φ(xn,ω) − φ(xn+1,ω) + αnφ(x0,ω).

From lim infn®∞ bn(1 - bn) > 0,
∑∞

n=0 αn < ∞ and the limit existence of {j(xn, ω)},

we have

lim
n→∞ h(||xn − un||) = 0.

By the property of h, we get

lim
n→∞ ||xn − un|| = 0.
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Since J is uniformly norm-to-norm continuous on the bounded subset of E, we

obtain

lim
n→∞ ||J(xn) − J(un)|| = 0.

Since {J(xn)} is bounded, we have that J(xn) ⇀ p* (here we may take a subnet {xnk} of

{xn} if necessary). Then J(un) ⇀ p*. From lim infn®∞ rn > 0, it follows that

limn→∞ ||xn−un||
rn

= 0 . Note that

f (J(un), J(y)) +
1
rn

〈un − xn, J(y) − J(un)〉 ≥ 0.

By (A2), we obtain

f (J(y), J(un)) ≤ −f (J(un), J(y)) ≤ 1
rn

〈un − xn, J(y) − J(un)〉.

Therefore, it follows that f(J(y), p*) ≤ 0. Let y∗t = tJ(y) + (1 − t)p∗ for any t Î (0,1).

Then y∗t ∈ J(C) . Since

0 = f
(
y∗t , y

∗
t

) ≤ tf
(
y∗t , J(y)

)
+ (1 − t)f

(
y∗t , p

∗) ≤ tf
(
y∗t , J(y)

)
,

we get f (y∗t , J(y)) ≥ 0 . By (A3), one has f (p*, J(y)) ≥ 0.Therefore, p* Î J(EP(f)).

Let zn = REP(f)xn. From Theorem 3.1, one can get that zn ® ω and so

〈xn − zn, p∗ − J(zn)〉 ≤ 0.

Since J is weakly sequentially continuous, we have

〈
J−1(p∗) − J−1(J(ω)), J(ω) − p∗〉 ≥ 0. (3:1)

By the monotonicity of J-1,

〈
J−1(p∗) − J−1(J(ω)), J(ω) − p∗〉 ≤ 0. (3:2)

Thus, from both (3.1) and (3.2), it follows that

〈
J−1(p∗) − J−1(J(ω)), J(ω) − J(J−1(p∗))

〉
= 0,

this together with the strictly monotonicity of J yields that J-1(p*) = ω. Therefore, the

sequence {xn} converges weakly to the point ω Î EP(f), where ω = limn®∞ REP(f)xn.

This completes the proof. □

4 Numerical test
In this section, we give an example of numerical test to illustrate the algorithms given

in Theorems 3.1 and 3.2.

Example 4.1. Let E = R, C = [-1000, 1000] and define f(x, y): = -5x2 + xy + 4y2. Find

x̄ ∈ C such that

f (x̄, y) ≥ 0, ∀y ∈ C. (4:1)

First, we verify that f satisfies the conditions (A1)-(A4) as follows:

(A1) f(x, x) = - 5x2 + x2 + 4x2 = 0 for all x Î [-1000, 1000];

(A2) f(x, y) + f(y, x) = -(x - y)2 ≤ 0 for all x, y Î [-1000, 1000];
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(A3) For all x, y, z Î [-1000, 1000],

lim sup
t→0+

f (x + t(z − x), y) = lim sup
t→0+

−5((1 − t)x + tz)2 + (1 − t)xy + tzy + 4y2

= −5x2 + xy + 4y2

≤ f (x, y).

(A4) For all x Î [-1000, 1000], F(y) = f(x, y) = -5x2 + xy + 4y2 is convex and lower

semicontinuous.

From Lemma 2.4, Tr is single-valued. Now, we deduce a formula for Tr(x). For any y

Î C, r > 0,

f (z, y) +
1
r
〈z − x, y − z〉 ≥ 0 ⇔ 4ry2 + ((r + 1)z − x)y + xz − (5r + 1)z2 ≥ 0.

Set G(y) = 4ry2 + ((r + 1)z - x)y + xz - (5r + 1)z2. Then G(y) is a quadratic function

of y with coefficients a = 4r, b = (r + 1)z - x and c = xz - (5r + 1)z2. So its discriminant

Δ = b2 - 4ac is

� = [(r + 1)z − x]2 − 16r(xz − (5r + 1)z2)

= (r + 1)2z2 − 2(r + 1)xz + x2 − 16rxz + (80r2 + 16r)z2

= [(9r + 1)z − x]2.

Since G(y) ≥ 0 for all y Î C, this is true if and only if Δ ≤ 0. That is, [(9r + 1)z -x]2 ≤

0. Therefore, z = x
9r+1 , which yields that Tr(x) = x

9r+1 . Let rn = n
n+1 , βn = n

3n+1 and

αn = 1
(3n+1)2 . It is easy to check that

∞∑
n=0

αn < +∞, lim inf
n→∞ βn(1 − βn) =

2
9

> 0, lim inf
n→∞ rn = 1.

Thus, from Lemma 2.4, it follows that EP(f) = {0}. Therefore, all the assumptions in

Theorems 3.1 and 3.2 are satisfied. Setting x0 = 1 and using the algorithm in Theorem

3.1, we obtain the following sequences:
⎧⎪⎨
⎪⎩
x0 = 1,
un = Trn(xn) =

n+1
10n+1xn,

xn+1 = 1
(3n+1)2

x0 + 108n4+108n3+33n2+6n
270n4+297n3+117n2+19n+1xn.

Therefore, by Theorem 3.1, the sequence {PEP(f) xn} must converge strongly to a solu-

tion of the problem (4.1). In fact, PEP(f) xn = 0 for all n Î Z+. Also, according to Theo-

rem 3.2, the sequence {xn} converges weakly to a solution of the problem (4.1). For a

number ε = 10-3, if we use MATLAB, then we generate a sequence {xn} as follows:

Selected values of {un} and {xn} computed by computer programs are listed below

Tables 1 and 2, respectively. The convergent process of the sequence {xn} is described

in Figure 1.

Table 1 Selected values of {un}

un un un un un un

0.1818 0.0607 0.0026 0.0012 0.0007 0.0003

0.0002 0.0001 0.0001 0.0001 0.0000 0.0000
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From Table 1, we can see that the sequence {un} converges to 0. Moreover, F(Tr) =

EP(f) = {0}. Table 2 shows that the iterative sequence {xn} converges to 0, which is

indeed a solution of the problem (4.1). Moreover, limn→∞ PEP(f )xn = 0 .
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Table 2 Selected values of {xn}

xn xn xn xn xn xn

0.4247 0.0204 0.0100 0.0059 0.0028 0.0021

0.0016 0.0013 0.0010 0.0008 0.0007 0.0006

0.0005 0.0004 0.0003 0.0003 0.0002 0.0002

0.0002 0.0002 0.0002 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0000 0.0000 0.0000
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Figure 1 The convergent process of the sequence {xn}.
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