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Abstract

In this article, we first consider weak convergence theorems of implicit iterative
processes for two nonexpansive mappings and a mapping which satisfies condition (C).
Next, we consider strong convergence theorem of an implicit-shrinking iterative process
for two nonexpansive mappings and a relative nonexpansive mapping on Banach
spaces. Note that the conditions of strong convergence theorem are different from the
strong convergence theorems for the implicit iterative processes in the literatures.
Finally, we discuss a strong convergence theorem concerning two nonexpansive
mappings and the resolvent of a maximal monotone operator in a Banach space.

1 Introduction
Let E be a Banach space, and let C be a nonempty closed convex subset of E. A map-

ping T: C ® E is nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for every x, y Î C. Let F(T): =

{x Î C: x = Tx} denote the set of fixed points of T. Besides, a mapping T: C ® E is

quasinonexpansive if F(T) �= ∅ and ||Tx - y|| ≤ ||x - y|| for all x Î C and y Î F(T).

In 2008, Suzuki [1] introduced the following generalized nonexpansive mapping on

Banach spaces. A mapping T: C ® E is said to satisfy condition (C) if for all x, y Î C,

1
2

||x − Tx|| ≤ ||x − y|| ⇒ ||Tx − Ty|| ≤ ||x − y||.

In fact, every nonexpansive mapping satisfies condition (C), but the converse may be

false [1, Example 1]. Besides, if T: C ® E satisfies condition (C) and F(T) �= ∅ , then T

is a quasinonexpansive mapping. However, the converse may be false [1, Example 2].

Construction of approximating fixed points of nonlinear mappings is an important

subject in the theory of nonlinear mappings and its applications in a number of applied

areas.

Let C be a nonempty closed convex subset of a real Hilbert space H, and let T: C ®
C be a mapping. In 1953, Mann [2] gave an iteration process:

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1:1)

where x0 is taken in C arbitrarily, and {an} is a sequence in [0,1].

In 2001, Soltuz [3] introduced the following Mann-type implicit process for a nonex-

pansive mapping T: C ® C:

xn = αnxn−1 + (1 − αn)Txn, n ∈ N, (1:2)
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where x0 is taken in C arbitrarily, and {tn} is a sequence in [0,1].

In 2001, Xu and Ori [4] have introduced an implicit iteration process for a finite

family of nonexpansive mappings. Let T1, T2, ..., TN be N self-mappings of C and sup-

pose that F := ∩N
i=1F(Ti) �= ∅ , the set of common fixed points of Ti, i = 1, 2, ..., N. Let I:

= {1, 2, ..., N}. Xu and Ori [4] gave an implicit iteration process for a finite family of

nonexpansive mappings:

xn = tnxn−1 + (1 − tn)Tnxn, n ∈ N, (1:3)

where x0 is taken in C arbitrarily, {tn} is a sequence in [0,1], and Tk = Tk mod N. (Here

the mod N function takes values in I.) And they proved the weak convergence of pro-

cess (1.3) to a common fixed point in the setting of a Hilbert space.

In 2010, Khan et al. [5] presented an implicit iterative process for two nonexpansive

mappings in Banach spaces. Let E be a Banach space, and let C be a nonempty closed

convex subset of E, and let T, S: C ® C be two nonexpansive mappings. Khan et al.

[5] considered the following implicit iterative process:

xn = αnxn−1 + βnSxn + γnTxn, n ∈ N, (1:4)

where {an}, {bn}, and {gn} are sequences in [0,1] with an + bn + gn = 1.

Motivated by the above works in [5], we want to consider the following implicit

iterative process. Let E be a Banach space, C be a nonempty closed convex subset of E,

and let T1, T2 : C ® C be two nonexpansive mappings, and let S: C ® C be a mapping

which satisfy condition (C). We first consider the weak convergence theorems for the

following implicit iterative process:
{
x0 ∈ C chosen arbitrary,
xn = anxn−1 + bnSxn−1 + cnT1xn + dnT2xn,

(1:5)

where {an}, {bn}, {cn}, and {dn} are sequences in [0,1] with an + bn + cn + dn = 1.

Next, we also consider weak convergence theorems for another implicit iterative pro-

cess:
⎧⎨
⎩
x0 ∈ C chosen arbitrary,
yn = anxn−1 + bnT1yn + cnT2yn,
xn = dnyn + (1 − dn)Syn,

(1:6)

where {an}, {bn}, {cn}, and {dn} are sequences in [0,1] with an + bn + cn = 1.

In fact, for the above implicit iterative processes, most researchers always considered

weak convergence theorems, and few researchers considered strong convergence theo-

rem under suitable conditions. For example, one can see [5-7]. However, some condi-

tions are not natural. For this reason, we consider the following shrinking-implicit

iterative processes and study the strong convergence theorem. Let {xn} be defined by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary and C0 = D0 = C,
yn = anxn−1 + bnT1yn + cnT2yn,
zn = J−1(dnJyn + (1 − dn)JSyn),
Cn = {z ∈ Cn−1 : φ(z, zn) ≤ φ(z, yn)},
Dn = {z ∈ Dn−1 : ||yn − z|| ≤ ||xn−1 − z||},
xn = �Cn∩Dnx0,

(1:7)
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where {an}, {bn}, {cn}, and {dn} are sequences in (0, 1) with an + bn + cn = 1.

In this article, we first consider weak convergence theorems of implicit iterative pro-

cesses for two nonexpansive mappings and a mapping which satisfy condition (C). And

we generalize Khan et al.’s result [5] as special case. Next, we consider strong conver-

gence theorem of an implicit-shrinking iterative process for two non-expansive map-

pings and a relative nonexpansive mapping on Banach spaces. Note that the conditions

of strong convergence theorem are different from the strong convergence theorems for

the implicit iterative processes in the literatures. Finally, we discuss a strong conver-

gence theorem concerning two nonexpansive mappings and the resolvent of a maximal

monotone operator in a Banach space.

2 Preliminaries
Throughout this article, let N and ℝ be the sets of all positive integers and real num-

bers, respectively. Let E be a Banach space and let E* be the dual space of E. For a

sequence {xn} of E and a point x Î E, the weak convergence of {xn} to x and the strong

convergence of {xn} to x are denoted by xn ⇀ x and xn ® x, respectively.

A Banach space E is said to satisfy Opial’s condition if {xn} is a sequence in E with xn
⇀ x, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ E, y �= x.

Let E be a Banach space. Then, the duality mapping J : E � E∗ is defined by

Jx :
{
x∗ ∈ E∗ :

〈
x, x∗〉 = ||x||2 = ||x∗||2} , ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then, the space E is said to

be smooth if the limit

lim
t→0

||x + ty|| − ||x||
t

exists for all x, y Î S(E). It is also said to be uniformly smooth if the limit exists uni-

formly in x, y Î S(E). A Banach space E is said to be strictly convex if
∥∥∥x + y

2

∥∥∥ < 1

whenever x, y Î S(E) and x ≠ y. It is said to be uniformly convex if for each ε Î (0, 2],

there exists δ > 0 such that
∥∥∥x + y

2

∥∥∥ < 1 − δ whenever x, y Î S(E) and ||x - y|| ≥ ε.

Furthermore, we know that [8]

(i) if E in smooth, then J is single-valued;

(ii) if E is reflexive, then J is onto;

(iii) if E is strictly convex, then J is one-to-one;

(iv) if E is strictly convex, then J is strictly monotone;

(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E.

A Banach space E is said to have Kadec-Klee property if a sequence {xn} of E satisfy-

ing that xn ⇀ x and ||xn|| ® ||x||, then xn ® x. It is known that if E uniformly convex,

then E has the Kadec-Klee property [8].
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Let E be a smooth, strictly convex and reflexive Banach space and let C be a none-

mpty closed convex subset of E. Throughout this article, define the function j: C × C

® ℝ by

φ(x, y) := ||x||2 − 2
〈
x, Jy

〉
+ ||y||2, ∀x, y ∈ E.

Observe that, in a Hilbert space H, j(x, y) = ||x - y||2 for all x, y Î H. Furthermore,

for each x, y, z, w Î E, we know that:

(1) (||x|| - ||y||)2 ≤ j(x, y) ≤ (||x|| + ||y||)2;

(2) j(x, y) ≥ 0;

(3) j(x, y) = j(x, z) + j(z, y) + 2〈x - z, Jz - Jy〉;

(4) 2〈x - y, Jz - Jw〉 = j(x, w) + j(y, z) - j(x, z) - j(y, w);
(5) if E is additionally assumed to be strictly convex, then

φ(x, y) = 0 if and only if x = y;

(6) j(x, J-1(lJy + (1 - l)Jz)) ≤ lj(x, y) + (1 - l)j(x, z).

Lemma 2.1. [9] Let E be a uniformly convex Banach space and let r > 0. Then, there

exists a strictly increasing, continuous, and convex function g: [0, 2r] ® [0, ∞) such

that g(0) = 0 and

||ax + by + cz + dw||2 ≤ a||x||2 + b||y||2 + c||z||2 + d||w||2 − abg(||x − y||)

for all x, y, z, w Î Br and a, b, c, d Î [0,1] with a + b + c + d = 1, where Br : = {z Î
E: ||z|| ≤ r}.

Lemma 2.2. [10] Let E be a uniformly convex Banach space and let r > 0. Then,

there exists a strictly increasing, continuous, and convex function g: [0, 2r] ® [0, ∞)

such that g(0) = 0 and

φ(x, J−1(λJy + (1 − λ)Jz)) ≤ λφ(x, y) + (1 − λ)φ(x, z) − λ(1 − λ)g(||Jy − Jz||)

for all x, y, z Î Br and l Î [0,1], where Br : = {z Î E: ||z|| ≤ r}.

Lemma 2.3. [11] Let E be a uniformly convex Banach space, let {an} be a sequence

of real numbers such that 0 <b ≤ an ≤ c < 1 for all n Î N, and let {xn} and {yn} be

sequences of E such that lim supn®∞ ||xn|| ≤ a, lim supn®∞ ||yn|| ≤ a, and limn®∞ ||

anxn + (1 - an)yn|| = a for some a ≥ 0. Then, limn®∞ ||xn - yn|| = 0.

Lemma 2.4. [12] Let E be a smooth and uniformly convex Banach space, and let {xn}

and {yn} be sequences in E such that either {xn} or {yn} is bounded. If limn®∞ j(xn, yn)
= 0, then limn®∞ ||xn - yn|| = 0.

Remark 2.1. [13] Let E be a uniformly convex and uniformly smooth Banach space.

If {xn} and {yn} are bounded sequences in E, then

lim
n→∞ φ(xn, yn) = 0 ⇔ lim

n→∞ ||xn − yn|| = 0 ⇔ lim
n→∞ ||Jxn − Jyn|| = 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive

Banach space E. For an arbitrary point x of E, the set
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{
z ∈ C : φ(z, x) = min

y∈C
φ(y, x)

}

is always nonempty and a singleton [14]. Let us define the mapping ΠC from E onto

C by ΠCx = z, that is,

φ(�Cx, x) = min
y∈C

φ(y, x)

for every x Î E. Such ΠC is called the generalized projection from E onto C [14].

Lemma 2.5. [14,15] Let C be a nonempty closed convex subset of a smooth, strictly

convex, and reflexive Banach space E, and let (x, z) Î E × C. Then:

(i) z = ΠCx if and only if 〈y - z, Jx - Jz〉 ≤ 0 for all y Î C;

(ii) j(z, ΠCx) + j(ΠCx, x) ≤ j(z, x).

Lemma 2.6. [16] Let E be a uniformly convex Banach space, C be a nonempty closed

convex subset of E and T: C ® C is a nonexpansive mapping. Let {xn} be a sequence

in C with xn ⇀ x Î C and limn®∞ ||xn - Txn|| = 0. Then, Tx = x.

Lemma 2.7. [1] Let C be a nonempty subset of a Banach space E with the Opial

property. Assume that T: C ® E satisfies condition (C). Let {xn} be a sequence in C

with xn ⇀ x Î C and limn®∞ ||xn - Txn|| = 0. Then, Tx = x.

Lemma 2.8. [1] Let T be a mapping on a closed subset C of a Banach space E.

Assume that T satisfies condition (C). Then, F(T) is a closed set. Moreover, if E is

strictly convex and C is convex, then F(T) is also convex.

Lemma 2.9. [17] Let C be a nonempty closed convex subset of a strictly convex

Banach space E, and T: C ® C be a nonexpansive mapping. Then, F(T) is a closed

convex subset of C.

3 Weak convergence theorems
Lemma 3.1. Let E be a uniformly convex Banach space, C be a nonempty closed con-

vex subset of E, and let T1, T2 : C ® C be two nonexpansive mappings, and let S: C

® C be a mapping with condition (C). Let {an}, {bn}, {cn}, and {dn} be sequences with

0 <a ≤ an, bn, cn, dn ≤ b < 1 and an + bn + cn + dn = 1. Suppose that

	 := F(S) ∩ F(T1) ∩ F(T2) �= ∅ . Define a sequence {xn} by

{
x0 ∈ C chosen arbitrary,
xn = anxn−1 + bnSxn−1 + cnT1xn + dnT2xn.

Then, we have:

(i) lim
n→∞ ||xn − p|| exists for each p Î Ω.

(ii) lim
n→∞ ||xn − Sxn|| = lim

n→∞ ||xn − T1xn|| = lim
n→∞ ||xn − T2xn|| = 0 .

Proof. First, we show that {xn} is well-defined. Now, let f(x): = a1x0+b1Sx0+c1T1x

+d1T2x. Then,

||f (x)− f (y)|| ≤ c1||T1x−T1y||+d1||T2x−T2y|| ≤ (c1 +d1)||x−y|| ≤ (1−2a)||x−y||.
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By Banach contraction principle, the existence of x1 is established. Similarly, the exis-

tence of {xn} is well-defined.

(i) For each p Î Ω and n Î N, we have:

||xn − p||
≤ an||xn−1 − p|| + bn||Sxn−1 − p|| + cn||T1xn − p|| + dn||T2xn − p||
≤ an||xn−1 − p|| + bn||xn−1 − p|| + (cn + dn)||xn − p||.

This implies that (1 - cn - dn)||xn - p|| ≤ (an + bn)||xn-1-p||. Hence, ||xn-p||≤ ||xn-1-

p||, limn ®∞ ||xn -p|| exists, and {xn} is a bounded sequence.

(ii) Take any p Î Ω and let p be fixed. Suppose that lim
n→∞ ||xn − p|| = d .

Clearly,lim sup
n→∞

||T2xn − p|| ≤ d , and we have:

lim
n→∞ ||xn − p||

= lim
n→∞ ||anxn−1 + bnSxn−1 + cnT1xn + dnT2xn − p||

= lim
n→∞

∥∥∥∥(1 − dn)
[

an
1 − dn

(xn−1 − p) +
bn

1 − dn
(Sxn−1 − p) +

cn
1 − dn

(T1xn − p)
]
+ dn(T2xn − p)

∥∥∥∥ .

Besides,

lim sup
n→∞

∥∥∥∥ an
1 − dn

(xn−1 − p) +
bn

1 − dn
(Sxn−1 − p) +

cn
1 − dn

(T1xn − p)

∥∥∥∥
≤ lim sup

n→∞
an

1 − dn
||xn−1 − p|| + bn

1 − dn
||Sxn−1 − p|| + cn

1 − dn
||T1xn − p||

≤ lim sup
n→∞

an
1 − dn

||xn−1 − p|| + bn
1 − dn

||Sxn−1 − p|| + cn
1 − dn

||T1xn − p||

≤ lim sup
n→∞

an + bn
1 − dn

||xn−1 − p|| + cn
1 − dn

||xn − p||

≤ lim sup
n→∞

an + bn + cn
1 − dn

||xn−1 − p|| = d.

By Lemma 2.3,

lim
n→∞

∥∥∥∥ an
1 − dn

(xn−1 − p) +
bn

1 − dn
(Sxn−1 − p) +

cn
1 − dn

(T1xn − p) − (T2xn − p)

∥∥∥∥ = 0.

This implies that limn®∞ ||xn - T2xn|| = 0. Similarly, limn®∞ ||xn - T1xn|| = 0.

Since {xn} is bounded, there exists r > 0 such that 2 sup{||xn-p||:n Î N}≤ r.

By Lemma 2.1, there exists a strictly increasing, continuous, and convex function g:

[0, 2r] ® [0, ∞) such that g(0) = 0 and

||xn − p||2
≤ an||xn−1 − p||2 + bn||Sxn−1 − p||2 + cn||T1xn − p||2 + dn||T2xn − p||2

−anbng(||xn−1 − Sxn−1||)
≤ (an + bn)||xn−1 − p||2 + (cn + dn)||xn − p||2 − anbng(||xn−1 − Sxn−1||).
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This implies that

anbng(||xn−1 − Sxn−1||) ≤ (an + b2)(||xn−1 − p||2 − ||xn − p||2).

By the properties of g and limn®∞ ||xn - p|| = d, we get limn®∞ ||xn - Sxn|| = 0.

Theorem 3.1. Let E be a uniformly convex Banach space with Opial’s condition, C

be a nonempty closed convex subset of E, and let T1, T2 : C ® C be two nonexpansive

mappings, and let S: C ® C be a mapping with condition (C). Let {an}, {bn}, {cn}, and

{dn} be sequences with 0 <a ≤ an, bn, cn, dn ≤ b < 1 and an + bn + cn + dn= 1. Suppose

that 	 := F(S) ∩ F(T1) ∩ F(T2) �= ∅ . Define a sequence {xn} by

{
x0 ∈ C chosen arbitrary,
xn = anxn−1 + bnSxn−1 + cnT1xn + dnT2xn.

Then, xn ⇀ z for some z Î Ω.

Proof. By Lemma 3.1, {xn} is a bounded sequence. Then, there exists a subsequence

{xnk} of {xn} and z Î C such that xnk ⇀ z . By Lemmas 2.6, 2.7, and 3.1, we know that

z Î Ω. Since E has Opial’s condition, it is easy to see that xn ⇀ z.

Hence, the proof is completed.

Remark 3.1. The conclusion of Theorem 3.1 is still true if S: C ® C is a quasi-non-

expansive mapping, and I - S is demiclosed at zero, that is, xn ⇀ x and (I - S)xn ⇀ 0

implies that (I - S)x = 0.

In Theorem 3.1, if S = I, then we get the following result. Hence, Theorem 3.1 gen-

eralizes Theorem 4 in [5].

Corollary 3.1. [5] Let E be a uniformly convex Banach space with Opial’s condition,

C be a nonempty closed convex subset of E, and let T1, T2 : C ® C be two nonexpan-

sive mappings. Let {an}, {bn}, and {cn} be sequences with 0 <a ≤ an, bn, cn ≤ b < 1 and

an + bn + cn = 1. Suppose that 	 := F(T1) ∩ F(T2) �= ∅ .
Define a sequence {xn} by

{
x0 ∈ C chosen arbitrary,
xn = anxn−1 + bnT1xn + cnT2xn.

Then, xn ⇀ z for some z Î Ω.

Besides, it is easy to get the following result from Theorem 3.1.

Corollary 3.2. Let E be a uniformly convex Banach space with Opial’s condition, C

be a nonempty closed convex subset of E, and let S: C ® C be a mapping with condi-

tion (C). Let {an} be a sequence with 0 <a ≤an≤b < 1. Suppose that F(S) �= � 0 . Define a

sequence {xn} by
{
x0 ∈ C chosen arbitrary,
xn = anxn−1 + (1 − an)Sxn−1.

Then, xn ⇀ z for some z Î F(S).

Proof. Let T1 = T2 = I, where I is the identity mapping. For each n Î N, we know

that

xn =
an
2
xn−1 +

1 − an
2

Sxn−1 +
1
4
T1xn +

1
4
T2xn.

By Theorem 3.1, it is easy to get the conclusion.

Lin et al. Fixed Point Theory and Applications 2011, 2011:96
http://www.fixedpointtheoryandapplications.com/content/2011/1/96

Page 7 of 20



Theorem 3.2. Let E be a uniformly convex Banach space with Opial’s condition, C

be a nonempty closed convex subset of E, and let T1, T2 : C ® C be two nonexpansive

mappings, and let S: C ® C be a mapping with condition (C). Let {an}, {bn}, {cn}, and

{dn} be sequences with 0 <a ≤ an, bn, cn, dn ≤ b < 1 and an + bn + cn = 1. Suppose that

	 := F(S) ∩ F(T1) ∩ F(T2) �= ∅ . Define a sequence {xn} by

⎧⎨
⎩
x0 ∈ C chosen arbitrary,
yn = anxn−1 + bnT1yn + cnT2yn,
xn = dnyn + (1 − dn)Syn.

Then, xn ⇀ z for some z Î Ω.

Proof. Following the same argument as in Lemma 3.1, we know that {yn} is well-

defined. Take any w Î Ω and let w be fixed. Then, for each n Î N, we have

||yn − w|| = ||anxn−1 + bnT1yn + cnT2yn − w||
≤ an||xn−1 − w|| + bn||T1yn − w|| + cn||T2yn − w||
≤ an||xn−1 − w|| + (bn + cn)||yn − w||.

This implies that ||yn - w|| ≤ ||xn-1 - w|| for each n Î N. Besides, we also have

||xn − w|| = ||dnyn + (1 − dn)Syn − w||
≤ dn||yn − w|| + (1 − dn)||Syn − w||
≤ ||yn − w||.

Hence, ||xn - w|| ≤ ||yn - w|| ≤ ||xn-1 - w|| for each n Î N. So, limn®∞ ||xn - w|| and

limn®∞||yn - w|| exist, and {xn}, {yn} are bounded sequences.

Suppose that limn®∞ ||xn-w|| = limn®∞||yn-w|| = d. Clearly, lim supn®∞ ||T2yn-w|| ≤

d, and we have

lim
n→∞ ||yn − w||

= lim
n→∞ ||anxn−1 + bnT1yn + cnT2yn − w||

= lim
n→∞

∥∥∥∥(1 − cn)
[

an
1 − cn

(xn−1 − w) +
bn

1 − cn
(T1yn − w)

]
+ cn(T2yn − w)

∥∥∥∥ .
Besides,

lim sup
n→∞

∥∥∥∥ an
1 − cn

(xn−1 − w) +
bn

1 − cn
(T1yn − w)

∥∥∥∥
≤ lim sup

n→∞
an

1 − cn
||xn−1 − w|| + bn

1 − cn
||T1yn − w||

≤ lim sup
n→∞

an
1 − cn

||xn−1 − w|| + bn
1 − cn

||yn − w||

≤ lim sup
n→∞

||xn−1 − w|| = d.

By Lemma 2.3,

lim
n→∞

∥∥∥∥ an
1 − cn

(xn−1 − w) +
bn

1 − cn
(T1yn − w) − (T2yn − w)

∥∥∥∥ = 0.

This implies that limn®∞ ||yn - T2yn|| = 0. Similarly, limn®∞ ||yn - T1yn|| = 0.

Lin et al. Fixed Point Theory and Applications 2011, 2011:96
http://www.fixedpointtheoryandapplications.com/content/2011/1/96

Page 8 of 20



Since {xn} and {yn} are bounded sequences, there exists r > 0 such that

2 sup{||xn||, ||yn||, ||xn − w||, ||yn − w|| : n ∈ N} ≤ r.

By Lemma 2.1, there exists a strictly increasing, continuous, and convex function g:

[0, 2r] ® [0, ∞) such that g(0) = 0 and

||dnyn+(1−dn)Syn−w||2 ≤ dn||yn−w||2+(1−dn)||Syn−w||2−dn(1−dn)g(||yn−Syn||).

This implies that

dn(1 − dn)g(||yn − Syn||) ≤ ||yn − w||2 − ||xn − w||2.

Since limn®∞ ||xn - w|| = limn®∞ ||yn - w|| = d, and the properties of g, we get

limn®∞ ||yn - Syn|| = 0. Besides,

||xn − yn|| = ||dnyn + (1 − dn)Syn − yn|| = (1 − dn)||yn − Syn||.

Hence, limn®∞ ||xn-yn|| = 0. Finally, following the same argument as in the proof of

Theorem 3.1, we know that xn ⇀ z for some z Î Ω.

Next, we give the following examples for Theorems 3.1 and 3.2.

Example 3.1. Let E = ℝ, C: = [0,3], T1x = T2x = x, and let S: C ® C be the same as

in [1]:

Sx :=
{
0 if x �= 3,
1 if x = 3.

For each n, let an = bn = cn = dn =
1
4
. Let x0 = 1. Then, for the sequence {xn}, in The-

orem 3.1, we know that xn =
1
2n

for all n Î N, and xn ® 0, and 0 is a common fixed

point of S, T1, and T2.

Example 3.2. Let E, C, T1, T2, S be the same as in Example 3.1. For each n, let

an = bn = cn =
1
3
, and dn =

1
2
. Let x0 = 1. Then, for the sequence {xn} in Theorem 3.1,

we know that xn =
1
2n

for all n Î N, and xn ® 0, and 0 is a common fixed point of S,

T1, and T2.

Example 3.3. Let E, C, {an}, {bn}, {cn}, {dn}, and let S: C ® C be the same as in

Example 3.1. Let T1x = T2x = 0 for each x Î C. Then, for the sequence {xn} in Theo-

rem 3.1, we know that xn =
1
4n

for all n Î N.

Example 3.4. Let E, C, {an}, {bn}, {cn}, {dn}, and let S: C ® C be the same as in

Example 3.2. Let T1x = T2x = 0 for each x Î C. Then, for the sequence {xn} in Theo-

rem 3.2, we know that xn =
1
6n

for all nÎ N.

Remark 3.2.

(i) For the rate of convergence, by Examples 3.3 and 3.4, we know that the iteration

process in Theorem 3.2 may be faster than the iteration process in Theorem 3.1.
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But, the times of iteration process for Theorem 3.2 is much than ones in Theorem

3.1.

(ii) The conclusion of Theorem 3.2 is still true if S: C ® C is a quasi-nonexpansive

mapping, and I - S is demiclosed at zero, that is, xn ⇀ x and (I - S)xn ® 0 implies

that (I - S)x = 0.

(iii) Corollaries 3.1 and 3.2 are special cases of Theorem 3.2.

Definition 3.1. [18] Let C be a nonempty subset of a Banach space E. A mapping T:

C ® E satisfy condition (E) if there exists μ ≥ 1 such that for all x, y Î C,

||x − Ty|| ≤ μ||x − Tx|| + ||x − y||.

By Lemma 7 in [1], we know that if T satisfies condition (C), then T satisfies condi-

tion (E). But, the converse may be false [18, Example 1]. Furthermore, we also observe

the following result.

Lemma 3.2. [18] Let C be a nonempty subset of a Banach space E. Let T: C ® E be

a mapping. Assume that:

(i) lim
n→∞ ||xn − Txn|| = 0 and xn ⇀ x;

(ii) T satisfies condition (E);

(iii) E has Opial condition.

Then, Tx = x.

By Lemma 3.2, if S satisfies condition (E), then the conclusions of Theorems 3.1 and

3.2 are still true. Hence, we can use the following condition to replace condition (C) in

Theorems 3.1 and 3.2 by Proposition 19 in [19].

Definition 3.2. [19] Let T be a mapping on a subset C of a Banach space E.

Then, T is said to satisfy (SKC)-condition if

1
2

||x − Tx|| ≤ ||x − y|| ⇒ ||Tx − Ty|| ≤ N(x, y),

where N(x, y) := max{||x − y||, 1
2
(||x − Tx|| + ||Ty − y||), 1

2
(||Tx − y|| + ||x − Ty||)} for

all x, y Î C.

4 Strong convergence theorems (I)
Let C be a nonempty closed convex subset of a Banach space E. A point p in C is said

to be an asymptotic fixed point of a mapping T: C ® C if C contains a sequence {xn}

which converges weakly to p such that limn®∞, ||xn - Txn|| = 0. The set of asymptotic

fixed points of T will be denoted by F̂(T) . A mapping T: C ® C is called relatively

nonexpansive [20] if F(T) �=� 0, F̂(T) = F(T) , and j(p,Tx) ≤ j(p,x) for all x Î C and p Î

F(T). Note that every identity mapping is a relatively nonexpansive mapping.

Lemma 4.1. [21] Let E be a strictly convex and smooth Banach space, let C be a

closed convex subset of E, and let T: C ® C be a relatively nonexpansive mapping.

Then, F(T) is a closed and convex subset of C.

The following property is motivated by the property (Q4) in [22].
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Definition 4.1. Let E be a Banach space. Then, we say that E satisfies condition (Q)

if for each x, y, z1, z2 Î E and t Î [0,1],

||x − zi|| ≤ ||y − zi||, i = 1, 2 ⇒ ||x − (tz1 + (1 − t)z2|| ≤ ||y − (tz1 + (1 − t)z2)||.

Remark 4.1. If H is a Hilbert space, then H satisfies condition (Q).

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space with

condition (Q), and let C be a nonempty closed convex subset of E, and let T1, T2 : C

® C be two nonexpansive mappings, and let S: C ® C be a relatively nonexpansive

mapping. Let {an}, {bn}, {cn}, and {dn} be sequences in (0,1) with and an + bn + cn = 1.

Suppose that 	 := F(S) ∩ F(T1) ∩ F(T2) �= ∅ . Define a sequence {xn} by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary and C0 = D0 = C,
yn = anxn−1 + bnT1yn + cnT2yn,
zn = J−1(dnJyn + (1 − dn)JSyn),
Cn = {z ∈ Cn−1 : φ(z, zn) ≤ φ(z, yn)},
Dn = {z ∈ Dn−1 : ||yn − z|| ≤ ||xn−1 − z||},
xn = �Cn∩Dnx0 .

Assume that lim infn®∞ bn > 0, lim infn®∞ cn > 0, and lim infn®∞ dn(1 - dn) > 0.

Then, limn®∞ xn = limn®∞ yn = limn®∞ zn = ΠΩx0.

Proof. Following the same argument as in Lemma 3.1, we know that {yn} is well-

defined.

Clearly, C0 and D0 are nonempty closed convex subsets of C, and Cn is a closed sub-

set of C for every n Î N. Since j(z, zn) ≤ j(z, yn) is equivalent to

2
〈
z, Jyn − Jzn

〉 ≤ ||yn||2 − ||zn||2,

it is easy to see that Cn is a convex set for each n Î N. Besides, by condition (Q), it

is easy to see that Dn is a nonempty closed convex subset of C.

Next, we want to show that Ω ⊆ Cn ⋂ Dn for each n Î N ∪ {0}. Clearly, Ω ⊆ C0.

Suppose that Ω ⊆ Cn-1. Let w Î Ω. Then, w Î F(S) and

φ(w, zn) = φ(w, J−1(dnJyn + (1 − dn)JSyn))

≤ dnφ(w, yn) + (1 − dn)φ(w, Syn)

≤ dnφ(w, yn) + (1 − dn)φ(w, yn) = φ(w, yn).

So, Ω ⊆ Cn. By induction, Ω ⊆ Cn for each n Î N ∪ {0}.

Clearly, Ω ⊆ D0. Suppose that Ω ⊆ Dn-1. Let w Î Ω. Then, w Î F(T1) ⋂ F(T2) and

||yn − w|| ≤ an||xn−1 − w|| + bn||T1yn − w|| + cn||T2yn − w||
≤ an||xn−1 − w|| + bn||yn − w|| + cn||yn − w||.

This implies that ||yn - w|| ≤ ||xn-1 - w|| and w Î Dn. By induction, Ω ⊆ Dn for each

n Î N ∪ {0}. So, Ω ⊆ Cn ⋂ Dn for each n Î N ∪ {0}.

Since xn = �Cn∩Dnx0 ,

φ(xn, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0)

for each w Î Ω. Therefore, {j(xn, x0)} is a bounded sequence. Furthermore, {xn} is a

bounded sequence.
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By Lemma 2.5, xn = �Cn∩Dnx0 , and xn+1 = �Cn+1∩Dn+1x0 ,

φ(xn+1, xn) = φ(xn+1,�Cn∩Dnx0) ≤ φ(xn+1, x0) − φ(xn, x0).

Hence, j(xn, x0) ≤ j(xn+1, x0), limn®∞ j(xn, x0) exists, and limn®∞ j(xn+1, xn) = 0. By

Lemma 2.4, limn®∞, ||xn+1 - xn|| = 0. Since xn Î Dn, we know that ||yn -xn|| ≤ ||xn-1-

xn|| and limn®∞ ||xn-yn|| = 0. Furthermore, limn®∞ j (xn, yn) = 0. Since xn Î Cn, it is

easy to see that limn®∞ j(xn, zn) = 0. Hence, limn®∞ ||xn -zn|| = 0.

Take any w Î Ω and let w be fixed. Let r: = 2sup{||xn||, ||xn- w||, ||yn||, ||yn-w||: n

Î N}. By Lemma 2.1, there exists a strictly increasing, continuous, and convex function

g: [0, 2r] ® [0, ∞) such that g(0) = 0 and

||yn − w||2
≤ an||xn−1 − w||2 + bn||T1yn − w||2 + cn||T2yn − w||2 − anbng(||xn−1 − T1yn||)
≤ an||xn−1 − w||2 + bn||yn − w||2 + cn||yn − w||2 − anbng(||xn−1 − T1yn||).

This implies that

bng(||xn−1 − T1yn||) ≤ ||xn−1 − yn||(||xn−1 − w|| + ||yn − w||).

So, limn®∞ bn g(||xn-1 - T1yn||) = 0. By (ii), limn®∞ ||xn-1 - T1yn|| = 0. Furthermore,

limn®∞ ||yn - T1yn|| = 0. Similarly, limn®∞ ||yn - T2yn|| = 0.

By Lemma 2.2, there exists a strictly increasing, continuous, and convex function g’:

[0, 2r] ® [0, ∞) such that g’(0) = 0 and

φ(w, zn) ≤ dnφ(w, yn) + (1 − dn)φ(w, Syn) − dn(1 − dn)g′(||Jyn − JSyn||)
≤ φ(w, yn) − dn(1 − dn)g′(||Jyn − JSyn||).

Hence,

dn(1 − dn)g′(||Jyn − JSyn||)
≤ φ(w, yn) − φ(w, zn)

= (||w||2 + ||yn||2 − 2
〈
w, Jyn

〉
) − (||w||2 + ||zn||2 − 2 〈w, Jzn〉)

= ||yn||2 − ||zn||2 + 2
〈
w, Jzn − Jyn

〉
= ||yn − zn||(||yn|| + ||zn||) + 2||w|| · ||Jzn − Jyn||.

By Remark 2.1, limn®∞ dn(1 - dn)g(||Jyn - JSyn||) = 0. By assumptions and the proper-

ties of g, limn®∞ ||Jyn - JSyn|| = 0. Furthermore, limn®∞ ||yn - Syn|| = 0.

Since {yn} is a bounded sequence, there exists a subsequence {ynk} of {yn} and x̄ ∈ C

such that ynk ⇀ x̄ . By Lemma 2.6, x̄ ∈ F(T1) ∩ F(T2). Besides, since S is a relatively

nonexpansive mapping, x̄ ∈ F̂(S) = F(S) . So, x̄ ∈ 	 .

Finally, we want to show that yn ® ΠΩx0. Let q = ΠΩx0. Then, q Î Ω ⊆ Cn ⋂ Dn for

each n Î N. So,

φ(xn, x0) = min
y∈Cn∩Dn

φ(y, x0) ≤ φ(q, x0).

On the other hand, from weakly lower semicontinuity of the norm and limn®∞ ||xn-

yn|| = 0, we have
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φ(x̄, x0) = ||x̄||2 − 2 〈x̄, Jx0〉 + ||x0||2
≤ lim inf

n→∞ (||ynk ||2 − 2
〈
ynk , Jx0

〉
+ ||x0||2)

= lim inf
n→∞ (||xnk ||2 − 2

〈
xnk , Jx0

〉
+ ||x0||2)

≤ lim inf
n→∞ φ(xnk , x0)

≤ lim sup
n→∞

φ(xnk , x0) ≤ φ(q, x0).

Since q = �	x0, x̄ = q . Hence, limn→∞φ(xnk , x0) = φ(x̄, x0) . So, we have

limn→∞||xnk || = ||x̄|| . Using the Kadec-Klee property of E, we obtain that

limk→∞xnk = q = �	x0 .

Furthermore, for each weakly convergence subsequence {xnm} of {xn}, we know that

limm→∞xnm = q = �	y1 by following the same argument as the above conclusion.

Therefore,

lim
n→∞ xn = lim

n→∞ yn = lim
n→∞ zn = �	x0.

Hence, the proof is completed.

Remark 4.2. Since nonspreading mappings with fixed points in a strictly convex

Banach space with a uniformly Gateaux differentiable norm are relatively nonex-pan-

sive mappings [[23], Theorem 3.3], we know that the conclusion of Theorem 4.1 is still

true if S is replaced by a nonspreading mapping.

Next, we give an easy example for Theorem 4.1.

Example 4.1. Let E = ℝ, C: = [0,3], T1x = T2x = x, and let S: C ® C be the as in [1]:

Sx :=
{
0 if x �= 3,
1 if x = 3.

For each n, let an = bn = cn =
1
3
and dn =

1
2
. Let x0 = 1. Hence, we have

(a) yn = xn-1 for each n Î N;

(b) zn =
1
2
yn for each n Î N;

(c) Cn := {z ∈ Cn−1 : |z − zn| ≤ |z − yn|} = 0
[
0,

yn + zn

2

]
;

(d) Dn : = {z Î Dn-1 : |z - yn| ≤ |z - xn-1|} = [0,3];

(e) xn =
1
2
(yn + zn) =

1
2

(
xn−1 +

1
2
xn−1

)
=
3
4
xn−1 .

By (e) and x0 = 1, we know that xn =
(
3
4

)n

for each n Î N ∪ {0}, limn®∞ xn = 0,

and 0 is a common fixed point of S, T1, and T2.

The following results are special cases of Theorem 4.1.

Corollary 4.1. Let E be a uniformly convex and uniformly smooth Banach space with

condition (Q), and let C be a nonempty closed convex subset of E, and let T1, T2 : C

® C be two nonexpansive mappings. Let {an}, {bn}, {cn} be sequences in (0,1) with and

an + bn + cn = 1. Suppose that 	 := F(T1) ∩ F(T2) �= ∅ . Define a sequence {xn} by
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⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ C chosen arbitrary and D0 = C,
yn = anxn−1 + bnT1yn + cnT2yn,
Dn = {z ∈ Dn−1 : ||yn − z|| ≤ ||xn−1 − z||},
xn = �Dnx0.

Assume that lim infn®∞ bn > 0, lim infn®∞ cn > 0. Then, limn®∞ xn = limn®∞, yn =

∏Ωx0.
Corollary 4.2. Let E be a uniformly convex and uniformly smooth Banach space, and

let C be a nonempty closed convex subset of E, and let S: C ® C be a relatively nonex-

pansive mapping. Let {dn} be a sequence in (0,1). Suppose that F(S) �=� 0 . Define a

sequence {xn} by
⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ C chosen arbitrary and C0 = C,
zn = J−1(dnJxn−1 + (1 − dn)JSxn−1),
Cn = {z ∈ Cn−1 : φ(z, zn) ≤ φ(z, xn−1)},
xn = �Cnx0.

Assume that lim infn®∞ dn(1 - dn) > 0. Then, limn®∞ xn = limn®∞ zn = ΠF(s)x0.

Remark 4.3. Corollary 4.2 is a generalization of Theorem 4.1 in [24]. But, it is a spe-

cial case of Theorem 3.1 in [25].

5 Strong convergence theorems (II)
In this section, we need the following important lemmas.

Lemma 5.1. [26] Let E be a reflexive Banach space and f: E ® ℝ ∪ {+∞} be a convex

and lower semicontinuous function. Let C be a nonempty bounded and closed convex

subset of E. Then, the function f attains its minimum on C. That is, there exists x* Î
C such that f(x*) ≤ f(x) for all x Î C.

Lemma 5.2. In a Banach space E, there holds the inequality

||x + y||2 ≤ ||x||2 + 2
〈
y, j(x + y)

〉
, x, y ∈ E,

where j(x+y) Î J(x+y).

Lemma 5.3. [27] Let C be a nonempty closed convex subset of a Banach space E

with a uniformly Gâteaux differentiable norm. Let {xn} be a bounded sequence of E

and let μn be a Banach limit and z Î C. Then,

μn||xn − z||2 = min
y∈C

μn||xn − y||2 ⇔ μn
〈
y − z, J(xn − z)

〉 ≤ 0 for all y ∈ C.

Lemma 5.4. [28] Let a be a real number and (x0, x1,...) Î ℓ
2 such that μn xn ≤ a for

all Banach μn. If lim supn®∞ (xn+1 - xn) ≤ 0, then lim supn®∞ xn ≤ a.
Lemma 5.5. [29] Assume that {an}nÎN is a sequence of nonnegative real numbers

such that an+1 < (1 - gn)an + δn, n Î N, where {gn} ⊆ (0,1) and δn is a sequence in ℝ

such that (i)
∑∞

n=1 γn = ∞; (ii) lim supn→∞
δn
γ n

≤ 0 or
∑∞

n=1
|δn| < ∞ . Then, limn®∞

an = 0.

Theorem 5.1. Let E be a uniformly convex and uniformly smooth Banach space with

Opial’s condition, C be a nonempty closed convex subset of E, and let T1, T2 : C ® C

be two nonexpansive mappings, and let S: C ® C be a mapping with condition (C).

Let {an}, {bn}, and {cn} be sequences in (a, b) for some 0 <a, b < 1 with an + bn + cn =
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1. Let {dn} be a sequence in [0,1]. Suppose that 	 := F(S) ∩ F(T1) ∩ F(T2) �= ∅ . Define
a sequence {xn} by⎧⎨

⎩
x0 ∈ C chosen arbitrary,
yn = anxn−1 + bnT1yn + cnT2yn,
xn = dnx0 + (1 − dn)Syn.

Assume that:

(i) lim
n→∞ dn = 0,

∞∑
n=1

dn = ∞, and lim
n→∞

|dn+1 − dn|
dn

= 0 ;

(ii) lim
n→∞(an+1 − an) = lim

n→∞(bn+1 − bn) = lim
n→∞(cn+1 − cn) = 0 .

Then, limn→∞xn = limn→∞yn = x̄ for some x̄ ∈ 	 .

Proof. Following the same argument as in Lemma 3.1, we know that {yn} is well-

defined. Take any w Î Ω: = F(S) ⋂ F(T1) ⋂ F(T2) and let w be fixed. Then, for each n

Î N, we have
∥∥yn - w∥∥

≤ an ‖xn−1 − w‖ + bn
∥∥T1yn − w

∥∥ + cn
∥∥T2yn − w

∥∥
≤ an ‖xn−1 − w‖ + (bn + cn)

∥∥yn − w
∥∥ .

This implies that ||yn - w|| ≤ ||xn-1 - w|| for each n Î N. Next, we have

||xn − w||
≤ dn||x0 − w|| + (1 − dn)||Syn − w||
≤ dn||x0 − w|| + (1 − dn)||yn − w||
≤ dn||x0 − w|| + (1 − dn)||xn−1 − w||
...

≤ max{||x0 − w||, ||x1 − w||}.

Then, {xn} is a bounded sequence. Furthermore, {yn}, {Syn}, {T1yn}, {T2yn} are

bounded sequences. Define M as

M := sup{||xn||, ||yn||, ||T1yn||, ||T2yn||, ||Syn||, ||xn − w||, ||yn − w|| : n ∈ N}.

Besides, we know that

lim sup
n→∞

||xn − w||

≤ lim sup
n→∞

(dn||x0 − w|| + (1 − dn)||yn − w||)

≤ lim sup
n→∞

dn||x0 − w|| + lim sup
n→∞

||yn − w||

≤ lim sup
n←∞

||xn−1 − w||.

This implies that

lim sup
n→∞

||xn − w|| = lim sup
n→∞

||yn − w||.
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By Lemma 2.1, there exists a strictly increasing, continuous, and convex function g:

[0, 2M] ® ℝ such that

||yn − w||2
≤ an||xn−1 − w||2 + bn||T1yn − w||2 + cn||T2yn − w||2 − anbn||xn−1 − T1yn||2
≤ an||xn−1 − w||2 + bn||yn − w||2 + cn||yn − w||2 − anbn||xn−1 − T1yn||2.

Then,

||yn − w||2
≤ ||yn − w||2 + a||xn−1 − T1yn||2
≤ ||yn − w||2 + bn||xn−1 − T1yn||2
≤ ||xn−1 − w||2.

This implies that

lim
n→∞ ||xn−1 − T1yn|| = 0.

Similar, we have

lim
n→∞ ||xn−1 − T2yn|| = 0.

By (i),

lim
n→∞ ||xn − Syn|| = lim

n→∞ dn||x0 − Syn|| = 0

and

||xn+1 − xn||
= ||dn+1x0 + (1 − dn+1)Syn+1 − dnx0 − (1 − dn)Syn||
≤ ||dn+1x0 + (1 − dn+1)Syn+1 − dnx0 − (1 − dn)Syn+1||
+ ||dnx0 + (1 − dn)Syn+1 − dnx0 − (1 − dn)Syn||

≤ |dn+1 − dn| · ||x0|| + |dn+1 − dn| · ||Syn+1|| + (1 − dn) · ||Syn+1 − Syn||
≤ |dn+1 − dn| · ||x0|| + |dn+1 − dn| · ||Syn+1|| + (1 − dn) · ||xn+1 − dn+1x0 − xn + dnx0||
≤ 2M · |dn+1 − dn| + (1 − dn) · (||xn+1 − xn|| + |dn+1 − dn| · ||x0||).

So,

||xn+1 − xn|| ≤ 3M · |dn+1 − dn|
dn

.

By (i),

lim
n→∞ ||xn+1 − xn|| = 0.

Furthermore,

lim
n→∞ ||Syn+1 − Syn|| = 0.
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Next, we have

||yn+1 − yn||
= ||(an+1xn + bn+1T1yn+1 + cn+1T2yn+1) − (an xn−1 + bn T1 yn + cnT2yn)||
≤ ||(an+1xn + bn+1T1yn+1 + cn+1T2yn+1) − (anxn + bnT1yn+1 + cnT2yn+1)||
+ ||(anxn + bnT1yn+1 + cnT2yn+1) − (an xn−1 + bn T1 yn + cnT2yn)||

≤ |an+1 − an| · ||xn|| + |bn+1 − bn| · ||T1yn+1|| + |cn+1 − cn| · ||T2yn+1)||
+ an||xn − xn−1|| + bn||T1yn+1 − T1 yn|| + cn||T2yn+1 − T2yn||

≤ M · (|an+1 − an| + |bn+1 − bn| + |cn+1 − cn|)
+ an||xn − xn−1|| + bn||yn+1 − yn|| + cn||yn+1 − yn||.

This implies that

||yn+1 − yn|| ≤ M · (|an+1 − an| + |bn+1 − bn| + |cn+1 − cn|)
an

+ ||xn − xn−1||.

So,

lim
n→∞ ||yn+1 − yn|| = 0.

Besides,

lim
n→∞ ||yn − xn−1|| = lim

n→∞ ||bn(T1yn − xn−1) + cn(T2yn − xn−1)|| = 0

and

lim
n→∞ ||yn − Syn|| = lim

n→∞ ||yn − T1yn|| = lim
n→∞ ||yn − T2yn|| = 0.

Let �: C ® ℝ be defined by �(u): = μn||xn - u|| for each u Î C. Clearly, � is convex

and continuous. Taking p Î Ω and defining a subset D of C by

D := {x ∈ C : ||x − p|| ≤ r},

where r: = max{||x0 - p||, ||x1 - p||}. Then, D is a nonempty closed bounded convex

subset of C and {xn} ⊆ D. By Lemma 5.1,

Cmin := {z ∈ D : ϕ(z) := min
y∈D

ϕ(y)} �=� 0.

Obviously, Cmin is a bounded closed convex subset. Following the property of Banach

limit μn, for all z Î Cmin, we have

ϕ(Sz) = μn||xn − Sz||2
≤ μn(||xn − yn|| + ||yn − Sz||)2
≤ μn(||xn − yn|| + 3||yn − Syn|| + ||yn − z||)2
= μn||yn − z||2
≤ μn(||yn − xn|| + ||xn − z||)2
≤ μn||xn − z||2.

Then, Sz Î Cmin. By Theorem 4 in [1], there exists x̄ ∈ Cmin such that Sx̄ = x̄ . By

Lemma 5.3,
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μn〈y − x̄, J(xn − x̄)〉 ≤ 0 for all y ∈ C.

Take any y Î C and let y be fixed. Since limn®∞ ||xn+1 - xn|| = 0, then it follows

from the norm-weak* uniformly continuity of the duality mapping J that

lim
n→∞(〈y − x̄, J(xn+1 − x̄)〉 − 〈y − x̄, J(xn − x̄)〉) = 0.

By Lemma 5.4,

lim
n→∞〈y − x̄, J(xn − x̄)〉 ≤ 0 for all y ∈ C.

By Lemma 5.2,

||xn − x̄||2
= ||dn(x0 − x̄) + (1 − dn)(Syn − x̄)||2
≤ (1 − dn)2||Syn − x̄||2 + 2dn〈x0 − x̄, J(xn − x̄)〉
≤ (1 − dn)2||yn − x̄||2 + 2dn〈x0 − x̄, J(xn − x̄)〉
≤ (1 − dn)||xn−1 − x̄||2 + 2dn〈x0 − x̄, J(xn − x̄)〉.

By Lemma 5.5, limn→∞||xn − x̄|| = 0 . Furthermore, since T1 and T2 are nonexpan-

sive mappings, we know that x̄ is also a fixed point of T1 and T2. Therefore, the proof

is completed.

The following is a special case of Theorem 5.1 when T1 and T2 are identity

mappings.

Theorem 5.2. Let E be a uniformly convex and uniformly smooth Banach space with

Opial’s condition, C be a nonempty closed convex subset of E, and let S: C ® C be a

mapping with condition (C). Let {dn} be a sequence in (0,1). Suppose that F(S) �=� 0 .
Define a sequence {xn} by

{
x0 ∈ C chosen arbitrary,
xn = dnx0 + (1 − dn)Sxn−1,n ∈ N.

Assume that limn→∞dn = 0,
∑∞

n=1 dn = ∞ , and limn→∞
|dn+1 − dn|

dn
= 0. . Then,

limn→∞xn = limn→∞yn = x̄ for some x̄ ∈ F(S) .

6 Application
Let E be a reflexive, strictly convex, and smooth Banach space and let A ⊆ E × E* be a

set-valued mapping with range R(A): = {x* Î E*: x* Î Ax} and domain

D(A) = {x ∈ E : Ax �=� 0} . Then, the mapping A is said to be monotone if 〈x -y,x* - y*〉 ≥

0 whenever (x, x*), (y, y*) Î A. It is also said to be maximal monotone if A is mono-

tone and there is no monotone operator from E into E* whose graph properly contains

the graph of A. It is known that if A ⊆ E × E* is maximal monotone, then A-10 is

closed and convex.

Lemma 6.1. [30] Let E be a reflexive, strictly convex, and smooth Banach space and

let A ⊆ E × E* be a monotone operator. Then, A is maximal monotone if and only if R

(J + rA) = E* for all r > 0.

By Lemma 6.1, for every r > 0 and x Î E, there exists a unique xr Î D(A) such that

Jx Î Jxr + rAxr. Hence, define a single valued mapping Jr : E ® D(A) by Jrx = xr, that
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is, Jr = (J + rA)-1 J and such Jr is called the relative resolvent of A. We know that A-10

= F(Jr) for all r > 0 [8].

Lemma 6.2. [21] Let E be a uniformly convex and uniformly smooth Banach space

and let A ⊆ E × E* be a maximal monotone operator. Let Jr be the relative resolvent of

A, where r > 0. If A-10 is nonempty, then Jr is a relatively nonexpansive mapping on E.

By Theorem 4.1 and Lemma 6.2, it is easy to get the following result.

Theorem 6.1. Let E be a uniformly convex and uniformly smooth Banach space with

property (Q), and let C be a nonempty closed convex subset of E, and let T1, T2 : C ®
C be two nonexpansive mappings, and let A ⊆ E × E* be a maximal monotone opera-

tor. Let {an}, {bn}, {cn}, and {dn} be sequences in (0,1) with and an + bn + cn = 1. Sup-

pose that 	 := A−10 ∩ F(T1) ∩ F(T2) �=� 0 . Define a sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary and C0 = D0 = C,
yn = anxn−1 + bnT1yn + cnT2yn,
zn = J−1(dnJyn + (1 − dn)JJryn),
Cn = {z ∈ Cn−1 : φ(z, zn) ≤ φ(z, yn)},
Dn = {z ∈ Dn−1 : ||yn − z|| ≤ ||xn−1 − z||},
xn = �Cn∩Dnx0.

Assume that lim infn®∞ bn > 0, lim infn®∞ cn > 0, and lim infn®∞ dn(1 - dn) > 0.

Then, limn®∞ xn = limn®∞ yn = limn®∞ zn = ΠΩx0.
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