Multi-valued ($\psi, \phi, \varepsilon, \lambda$)-contraction in probabilistic metric space

Arman Beitollahi ${ }^{1 *}$ and Parvin Azhdari ${ }^{2}$

* Correspondence: arman. beitollahi@gmail.com
${ }^{1}$ Department of Statistics, Roudehen Branch, Islamic Azad University, Roudehen, Iran Full list of author information is available at the end of the article

Abstract

In this article, we present a new definition of a class of contraction for multi-valued case. Also we prove some fixed point theorems for multivalued ($(\mu, \phi, \varepsilon, \lambda)$ contraction mappings in probabilistic metric space.

Keywords: probabilistic metric space, $(\psi, \varphi, \varepsilon, \lambda)$-contraction, fixed point

1 Introduction

The class of (ε, λ)-contraction as a subclass of B-contraction in probabilistic metric space was introduced by Mihet [1]. He and other researchers achieved to some interesting results about existence of fixed point in probabilistic and fuzzy metric spaces [2-4]. Mihet defined the class of ($\psi, \phi, \varepsilon, \lambda$)-contraction in fuzzy metric spaces [4]. On the other hand, Hadzic et al. extended the concept of contraction to the multi valued case [5]. They introduced multi valued ($\psi-C$)-contraction [6] and obtained fixed point theorem for multi valued contraction [7]. Also Žikić generalized multi valued case of Hick's contraction [8]. We extended $(\phi-k)-B$ contraction which introduced by Mihet [9] to multi valued case [10]. Now, we will define the class of $(\psi, \phi, \varepsilon, \lambda)$ contraction in the sense of multi valued and obtain fixed point theorem.

The structure of article is as follows: Section 2 recalls some notions and known results in probabilistic metric spaces and probabilistic contractions. In Section 3, we will prove three theorems for multi valued ($\psi, \phi, \varepsilon, \lambda$)- contraction.

2 Preliminaries

We recall some concepts from the books [11-13].
Definition 2.1. A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is called a triangular norm (a t-norm) if the following conditions are satisfied:
(1) $T(a, 1)=a$ for every $a \in[0,1]$;
(2) $T(a, b)=T(b, a)$ for every $a, b \in[0,1]$;
(3) $a \geq b, c \geq d \Rightarrow T(a, c) \geq T(b, d) a, b, c, d \in[0,1]$;
(4) $T(T(a, b), c)=T(a, T(b, c)), a, b, c \in[0,1]$.

Basic examples are, $T_{L}(a, b)=\max \{a+b-1,0\}, T_{P}(a, b)=a b$ and $T_{M}(a, b)=\min$ $\{a, b\}$.

Definition 2.2. If T is a t-norm and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}(n \geq 1), \top_{i=1}^{\infty} x_{i}$ is defined recurrently by $\top_{i=1}^{1} x_{i}=x_{1}$ and $\top_{i=1}^{n} x_{i}=T\left(\top_{i=1}^{n-1} x_{i}, x_{n}\right)$ for all $n \geq 2 . T$ can be
extended to a countable infinitary operation by defining $\top_{i=1}^{\infty} x_{i}$ for any sequence $\left(x_{i}\right)_{i \in N *}$ as $\lim _{n \rightarrow \infty} \top_{i=1}^{n} x_{i}$.
Definition 2.3. Let Δ_{+}be the class of all distribution of functions $F:[0, \infty] \rightarrow[0,1]$ such that:
(1) $F(0)=0$,
(2) F is a non-decreasing,
(3) F is left continuous mapping on $[0, \infty]$.
D_{+}is the subset of Δ_{+}which $\lim _{x \rightarrow \infty} F(x)=1$.
Definition 2.4. The ordered pair (S, F) is said to be a probabilistic metric space if S is a nonempty set and $F: S \times S \rightarrow D_{+}\left(F(p, q)\right.$ written by $F_{p q}$ for every $\left.(p, q) \in S \times S\right)$ satisfies the following conditions:
(1) $F_{u v}(x)=1$ for every $x>0 \Rightarrow u=v(u, v \in S)$,
(2) $F_{u v}=F_{v u}$ for every $u, v \in S$,
(3) $F_{u v}(x)=1$ and $F_{v w}(y)=1 \Rightarrow F_{u, w}(x+y)=1$ for every $u, v, w \in S$, and every $x, y \in$ R^{+}.

A Menger space is a triple (S, F, T) where (S, F) is a probabilistic metric space, T is a triangular norm (abbreviated t-norm) and the following inequality holds $F_{u v}(x+y) \geq T$ $\left(F_{u w}(x), F_{w v}(y)\right)$ for every $u, v, w \in S$, and every $x, y \in R^{+}$.
Definition 2.5. Let $\phi:(0,1) \rightarrow(0,1)$ be a mapping, we say that the t-norm T is ϕ-convergent if

$$
\forall \delta \in(0,1) \forall \lambda \in(0,1) \exists s=s(\delta, \lambda) \in \mathrm{N}_{i=1}^{n}\left(1-\varphi^{s+i}(\delta)\right)>1-\lambda, \forall n \geq 1 .
$$

Definition 2.6. A sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ is called a convergent sequence to $x \in S$ if for every $\varepsilon>0$ and $\lambda \in(0,1)$ there exists $N=N(\varepsilon, \lambda) \in \mathrm{N}$ such that $F_{x_{n} x}(\varepsilon)>1-\lambda, \forall n \geq N$.
Definition 2.7. A sequence $\left(x_{n}\right)_{n \in \mathrm{~N}}$ is called a Cauchy sequence if for every $\varepsilon>0$ and $\lambda \in(0,1)$ there exists $N=N(\varepsilon, \lambda) \in N$ such that $F_{x_{n} x_{n+m}}(\varepsilon)>1-\lambda, \forall n \geq N \forall m \in \mathbb{N}$.

We also have

$$
x_{n} \rightarrow{ }^{F} x \Leftrightarrow F_{x_{n} x}(t) \rightarrow 1 \forall t>0 .
$$

A probabilistic metric space (S, F, T) is called sequentially complete if every Cauchy sequence is convergent.
In the following, 2^{S} denotes the class of all nonempty subsets of the set S and $C(S)$ is the class of all nonempty closed (in the F-topology) subsets of S.
Definition 2.8 [14]. Let F be a probabilistic distance on S and $M \in 2^{S}$. A mapping f: $S \rightarrow 2^{S}$ is called continuous if for every $\varepsilon>0$ there exists $\delta>0$, such that

$$
F_{u v}(\delta)>1-\delta \Rightarrow \forall x \in f u \exists y \in f v: F_{x y}(\varepsilon)>1-\varepsilon
$$

Theorem 2.1 [14]. Let (S, F, T) be a complete Menger space, $\sup 0 \leq t<{ }_{1} T(t, t)=1$ and $f: S \rightarrow C(S)$ be a continuous mapping. If there exist a sequence $\left(t_{n}\right)_{n \in \mathrm{~N}} \subset(0, \infty)$ with $\sum_{1}^{\infty} t_{n}<\infty$ and a sequence $\left(x_{n}\right)_{n \in \mathrm{~N}} \subset S$ with the properties:

$$
x_{n+1} \in f x_{n} \text { for all } n \text { and } \lim _{n \rightarrow \infty} \top_{i=1}^{\infty} g_{n+i-1}=1,
$$

Where $g_{n}:=F_{x_{n} x_{n+1}}\left(t_{n}\right)$, then f has a fixed point.
The concept of ($\psi, \phi, \varepsilon, \lambda$) - B contraction has been introduced by Mihet [15]. We will consider comparison functions from the class φ of all mapping $\phi:(0,1) \rightarrow(0,1)$ with the properties:
(1) ϕ is an increasing bijection;
(2) $\phi(\lambda)<\lambda \forall \lambda \in(0,1)$.

Since every such a comparison mapping is continuous, it is easy to see that if $\phi \in \varphi$, then $\lim _{n \rightarrow \infty} \phi^{n}(\lambda)=0 \forall \lambda \in(0,1)$.

Definition 2.9[15]. Let $\left(X, M,{ }^{*}\right)$ be a fuzzy Metric space. ψ be a map from $(0, \infty)$ to $(0, \infty)$ and ϕ be a map from $(0,1)$ to $(0,1)$. A mapping f: $X \rightarrow X$ is called $(\psi, \phi, \varepsilon, \lambda)$ contraction if for any $x, y \in X, \varepsilon>0$ and $\lambda \in(0,1)$.

$$
M(x, y, \varepsilon)>1-\lambda \Rightarrow M(f(x), f(y), \psi(\varepsilon))>1-\varphi(\lambda)
$$

If ψ is of the form of $\psi(\varepsilon)=k \varepsilon(k \in(0,1))$, one obtains the contractive mapping considered in [3].

3 Main results

In this section we will generalize the Definition 2.9 to multi valued case in probabilistic metric spaces.
Definition 3.1. Let S be a nonempty set, $\phi \in \varphi, \psi$ be a map from ($0, \infty$) to ($0, \infty$) and F be a probabilistic distance on S. A mapping $f: S \rightarrow 2^{S}$ is called a multi-valued $(\psi, \phi, \varepsilon, \lambda)$-contraction if for every $x, y \in S, \varepsilon>0$ and for all $\lambda \in(0,1)$ the following implication holds:

$$
F_{x y}(\varepsilon)>1-\lambda \Rightarrow \forall p \in f x \exists q \in f y: F_{p q}(\psi(\varepsilon))>1-\varphi(\lambda) .
$$

Now, we need to define some conditions on the t-norm T or on the contraction mapping in order to be able to prove fixed point theorem. These two conditions are parallel. If one of them holds, Theorem 3.1 will obtain.
Definition 3.2[11]. Let (S, F) be a probabilistic metric space, M a nonempty subset of S and $f: M \rightarrow 2^{S}-\{\varnothing\}$, a mapping f is weakly demicompact if for every sequence $\left(p_{n}\right)_{n \in \mathrm{~N}}$ from M such that $p_{n+1} \in f p_{n}$, for every $n \in \mathrm{~N}$ and $\lim F_{p_{n+1}, p_{n}}(\varepsilon)=1$, for every $\varepsilon>0$, there exists a convergent subsequence $\left(p_{n_{j}}\right)_{j \in N}$.

The other condition is mentioned in the Theorem 3.1.
Theorem 3.1. Let (S, F, T) be a complete Menger space with sup $0 \leq a<1 T(a, a)=$ $1, M \in C(S)$ and $f: M \rightarrow C(M)$ be a multi-valued $(\psi, \phi, \varepsilon, \lambda)$-contraction, where the series $\Sigma \psi^{n}(\varepsilon)$ is convergent for every $\varepsilon>0$ and $\phi \in \varphi$. Let there exists $x_{0} \in M$ and x_{1} $\in f x_{0}$ such that $F_{x_{0} x_{1}} \in D_{+}$. If f is weakly demicompact or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\varepsilon)\right)=1 \text { for every } \varepsilon>0 \tag{1}
\end{equation*}
$$

then there exists at least one element $x \in M$ such that $x \in f x$.
Proof. Since there exists $x_{0} \in M$ and $x_{1} \in f x_{0}$ such that $F_{x_{0} x_{1}} \in D_{+}$, hence for every λ $\in(0,1)$ there exists $\varepsilon>0$ such that $F_{x_{0} x_{1}}>1-\lambda$. The mapping f is a $(\psi, \phi, \varepsilon, \lambda)$-contraction and therefore there exists $x_{2} \in f x_{1}$ such that

$$
F_{x_{2} x_{1}}(\psi(\varepsilon))>1-\varphi(\lambda)
$$

Continuing in this way we obtain a sequence $\left(x_{n}\right)_{n \in N}$ from M such that for every $n \geq 2$, $x_{n} \in f x_{n-1}$ and

$$
\begin{equation*}
F_{x_{n}, x_{n-1}}\left(\psi^{n-1}(\varepsilon)\right)>1-\varphi^{n-1}(\lambda) . \tag{2}
\end{equation*}
$$

Since the series $\Sigma \psi^{n}(\varepsilon)$ is convergent we have $\lim _{n \rightarrow \infty} \psi^{n}(\varepsilon)=0$ and by assumption ϕ $\in \varphi$, so $\lim _{n \rightarrow \infty} \phi^{n}(\lambda)=0$. We infer for every $\varepsilon_{0}>0$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{x_{n} x_{n-1}}\left(\varepsilon_{0}\right)=1 \tag{3}
\end{equation*}
$$

Indeed, if $\varepsilon_{0}>0$ and $\lambda_{0} \in(0,1)$ are given, and $n_{0}=n_{0}\left(\varepsilon_{0}, \lambda_{0}\right)$ is enough large such that for every $n \geq n_{0}, \psi^{n}(\varepsilon) \leq \varepsilon_{0}$ and $\phi^{n}(\lambda) \leq \lambda_{0}$ then

$$
F_{x_{n+1} x_{n}}\left(\varepsilon_{0}\right) \geq F_{x_{n+1} x_{n}}\left(\psi^{n}(\varepsilon)\right)>1-\varphi^{n}(\lambda)>1-\lambda_{0} \text { for every } n \geq n_{0}
$$

If f is weakly demicompact (3) implies that there exists a convergent subsequence $\left(x_{n_{k}}\right)_{k \in N}$.
Suppose that (1) holds and prove that $\left(x_{n}\right)_{n \in N}$ is a Cauchy sequence. This means that for every $\varepsilon_{1}>0$ and every $\lambda_{1} \in(0,1)$ there exists $n_{1}\left(\varepsilon_{1}, \lambda_{1}\right) \in N$ such that

$$
\begin{equation*}
F_{x_{n+p} x_{n}}\left(\varepsilon_{1}\right)>1-\lambda_{1} \tag{4}
\end{equation*}
$$

for every $n_{1} \geq n_{1}\left(\varepsilon_{1}, \lambda_{1}\right)$ and every $p \in N$.
Let $n_{2}\left(\varepsilon_{1}\right) \in N$ such that $\sum_{n \geq n_{2}\left(\varepsilon_{1}\right)} \psi^{n}(\varepsilon)<\varepsilon_{1}$. Since $\sum_{n=1}^{\infty} \psi^{n}(\varepsilon)$ is convergent series such a natural number $n_{2}\left(\varepsilon_{1}\right)$ exists. Hence for every $p \in N$ and every $n \geq n_{2}\left(\varepsilon_{1}\right)$ we have that

$$
F_{x_{n+p+1}, x_{n}}\left(\varepsilon_{1}\right) \geq \top_{i=1}^{p+1} F_{x_{n+i}, x_{n+i-1}}\left(\psi^{n+i-1}(\varepsilon)\right)
$$

and (2) implies that

$$
F_{x_{n+p+1}, x_{n}}\left(\varepsilon_{1}\right) \geq \top_{i=1}^{p+1}\left(1-\varphi^{n+i-1}(\lambda)\right)
$$

for every $n \geq n_{2}\left(\varepsilon_{1}\right)$ and every $p \in N$.
For every $p \in N$ and $n \geq n_{2}\left(\varepsilon_{1}\right)$

$$
\top_{i=1}^{p+1}\left(1-\varphi^{n+i-1}(\lambda)\right) \geq \top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\lambda)\right)
$$

and therefore for every $p \in N$ and $n \geq n_{2}\left(\varepsilon_{1}\right)$,

$$
\begin{equation*}
F_{x_{n+p+1}, x_{n}}\left(\varepsilon_{1}\right) \geq \top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\lambda)\right) \tag{5}
\end{equation*}
$$

From (1) it follows that there exists $n_{3}\left(\lambda_{1}\right) \in N$ such that

$$
\begin{equation*}
\top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\lambda)\right)>1-\lambda_{1} \tag{6}
\end{equation*}
$$

for every $n \geq n_{3}\left(\lambda_{1}\right)$. The conditions (5) and (6) imply that (4) holds for $n_{1}\left(\varepsilon_{1}, \lambda_{1}\right)=$ $\max \left(n_{2}\left(\varepsilon_{1}\right), n_{3}\left(\lambda_{1}\right)\right)$ and every $p \in N$. This means that $\left(x_{n}\right)_{n \in N}$ is a Cauchy sequence and since S is complete there exists $\lim _{n \rightarrow \infty} x_{n}$. Hence in both cases there exists $\left(x_{n_{k}}\right)_{k \in N}$ such that

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=x
$$

It remains to prove that $x \in f x$. Since $f x=\overline{f x}$ it is enough to prove that $x \in \overline{f x}$ i.e., for every $\varepsilon_{2}>0$ and $\lambda_{2} \in(0,1)$ there exists $b_{\varepsilon_{2}, \lambda_{2}} \in f x$ such that

$$
\begin{equation*}
F_{x, b_{\varepsilon_{2}, \lambda_{2}}}\left(\varepsilon_{2}\right)>1-\lambda_{2} \tag{7}
\end{equation*}
$$

Since $\sup _{x<} T(x, x)=1$ for $\lambda_{2} \in(0,1)$ there exists $\delta\left(\lambda_{2}\right) \in(0,1)$ such that $T(1-$ $\left.\delta\left(\lambda_{2}\right), 1-\delta\left(\lambda_{2}\right)\right)>1-\lambda_{2}$.

If $\delta^{\prime}\left(\lambda_{2}\right)$ is such that

$$
T\left(1-\delta^{\prime}\left(\lambda_{2}\right), 1-\delta^{\prime}\left(\lambda_{2}\right)\right)>1-\delta\left(\lambda_{2}\right)
$$

and $\delta^{\prime \prime}\left(\lambda_{2}\right)=\min \left(\delta\left(\lambda_{2}\right), \delta^{\prime}\left(\lambda_{2}\right)\right)$ we have that

$$
\begin{aligned}
T\left(1-\delta^{\prime \prime}\left(\lambda_{2}\right), T\left(\left(1-\delta^{\prime \prime}\left(\lambda_{2}\right), 1-\delta^{\prime \prime}\left(\lambda_{2}\right)\right)\right)\right. & \geq T\left(1-\delta\left(\lambda_{2}\right), T\left(\left(1-\delta^{\prime}\left(\lambda_{2}\right), 1-\delta\left(\lambda_{2}\right)\right)\right)\right. \\
& \geq T\left(1-\delta\left(\lambda_{2}\right), 1-\delta\left(\lambda_{2}\right)\right) \\
& >1-\lambda_{2} .
\end{aligned}
$$

Since $\lim _{k \rightarrow \infty} x_{n_{k}}=x$ there exists $k_{1} \in N$ such that $F_{x, x_{n_{k}}}\left(\frac{\varepsilon}{3}\right)>1-\delta^{\prime \prime}\left(\lambda_{2}\right)$ for every $k \geq k_{1}$. Let $k_{2} \in N$ such that

$$
F_{x_{n_{k}}, x_{n_{k}+1}}\left(\frac{\varepsilon_{2}}{3}\right)>1-\delta^{\prime \prime}\left(\lambda_{2}\right) \text { for every } k \geq k_{2}
$$

The existence of such a k_{2} follows by (3). Let $\varepsilon \in R_{+}$be such that $\psi(\varepsilon)<\frac{\varepsilon_{2}}{3}$ and k_{3} $\in N$ such that $F_{x_{n_{k}, x}, x}(\varepsilon)>1-\delta \prime \prime\left(\lambda_{2}\right)$ for every $k \geq k_{3}$. Since f is a $(\psi, \phi, \varepsilon, \lambda)$-contraction there exists $b_{\varepsilon_{2}, \lambda_{2}, k} \in f x$ such that

$$
F_{x_{n_{k+1}}, b_{\varepsilon_{2}, \lambda_{2}, k}}(\psi(\varepsilon))>1-\varphi\left(\delta^{\prime \prime}\left(\lambda_{2}\right)\right) \text { for every } k \geq k_{3}
$$

Therefore for every $k \geq k_{3}$

$$
\begin{aligned}
F_{x_{n_{k+1},}}, b_{\varepsilon_{2}, \lambda_{2}, k}\left(\frac{\varepsilon_{2}}{2}\right) & \geq F_{x_{n_{k}+1}, b_{\varepsilon_{2}, \lambda_{2}, k}}(\psi(\varepsilon)) \\
& >1-\varphi\left(\delta^{\prime \prime}\left(\lambda_{2}\right)\right) \\
& >1-\delta^{\prime \prime}\left(\lambda_{2}\right)
\end{aligned}
$$

If $k \geq \max \left(k_{1}, k_{2}, k_{3}\right)$ we have

$$
\begin{gathered}
F_{x, b_{\varepsilon_{2}, \lambda_{2}, k}}\left(\varepsilon_{2}\right) \geq T\left(F_{x, x_{n_{k}}}\left(\frac{\varepsilon_{2}}{3}\right), T\left(F_{x_{n_{k},}, x_{n_{k}+1}}\left(\frac{\varepsilon_{2}}{3}\right), F_{x_{n_{k}+1}, b_{\varepsilon_{2}, \lambda_{2}, k}}\left(\frac{\varepsilon_{2}}{3}\right)\right)\right) \\
T\left(1-\delta^{\prime \prime}\left(\lambda_{2}\right), T\left(1-\delta^{\prime \prime}\left(\lambda_{2}\right), 1-\delta^{\prime \prime}\left(\lambda_{2}\right)\right)\right) \\
>1-\lambda_{2}
\end{gathered}
$$

and (7) is proved for $b_{\varepsilon_{2}, \lambda_{2}}=b_{\varepsilon_{2}, \lambda_{2}, k}, k \geq \max \left(k_{1}, k_{2}, k_{3}\right)$. Hence $x \in \overline{f x}=f x$, which means x is a fixed point of the mapping f.

Now, suppose that instead of $\Sigma \psi^{n}(\varepsilon)$ be convergent series, ψ is increasing bijection.
Theorem 3.2. Let (S, F, T) be a complete Menger space with sup $0 \leq a<1 \mathrm{~T}(a, a)=$ 1 and $f: S \rightarrow C(S)$ be a multi-valued ($\psi, \phi, \varepsilon, \lambda)$ - contraction.
If there exist $p \in S$ and $q \in f p$ such that $F_{p q} \in D_{+}, \psi$ is increasing bijection and $\lim _{n \rightarrow \infty} \top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\lambda)\right)=1$, for every $\lambda \in(0,1)$, then, f has a fixed point.

Proof. Let $\varepsilon>0$ be given and $\delta \in(0,1)$ be such that $\delta<\min \left\{\varepsilon, \psi^{-1}(\varepsilon)\right\}$ or $\psi(\delta)<\varepsilon$ since ψ is increasing bijection. If $F_{u \nu}(\delta)>1-\delta$ then, due to $(\psi, \phi, \varepsilon, \lambda)$ - contraction for each $x \in f u$ we can find $y \in f v$ such that $F_{x y}(\psi(\delta))>1-\phi(\delta)$, from where we obtain that $F_{x y}(\varepsilon)>F_{x y}(\psi(\delta))>1-\phi(\delta)>1-\delta>1-\varepsilon$. So f is continuous. Next, let $p_{0}=p$ and $p_{1}=q$ be in $f p_{0}$. Since $F_{p q} \in D_{+}$, hence for every $\lambda \in(0,1)$ there exist $\varepsilon>0$ such that $F_{p q}(\varepsilon)>1-\lambda$, namely $F_{p_{0} p_{1}}(\varepsilon)>1-\lambda$.

Using the contraction relation we can find $p_{2} \in f p_{1}$ such that $F_{p_{1} p_{2}}(\psi(\varepsilon))>1-\varphi(\lambda)$, and by induction, p_{n} such that $p_{n} \in f p_{n-1}$ and $F_{p_{n-1} p_{n}}\left(\psi^{n-1}(\varepsilon)\right)>1-\varphi^{n-1}(\lambda)$ for all $n \geq 1$. Defining $t_{n}=\psi^{n}(\varepsilon)$, we have $g_{j}=F_{p_{j} p_{j+1}}\left(t_{j}\right) \geq 1-\varphi^{j}(\lambda), \forall j$, so $\lim _{n \rightarrow \infty} \top_{i=1}^{\infty} g_{n+i-1} \geq \lim _{n \rightarrow \infty} \top_{i=1}^{\infty}\left(1-\varphi^{n+i-1}(\lambda)\right)=1$.

On the other hand the sequence $\left(p_{n}\right)$ is a Cauchy sequense, that is:

$$
\forall \varepsilon>0 \exists n_{0}=n \quad 0(\varepsilon) \in N: F_{p_{n} p_{n+m}}(\varepsilon)>1-\epsilon, \forall n \geq n_{0}, \forall m \in N .
$$

Suppose that $\varepsilon>0$, then:

$$
\lim _{n \rightarrow \infty} \top_{i=1}^{\infty} g_{n+i+1}=1 \Rightarrow \exists n_{1}=n_{1}(\varepsilon) \in N: \top_{i=1}^{m} g_{n+i-1}>1-\varepsilon, \quad \forall n \geq n_{1}, \quad \forall m \in N .
$$

Since the series $\sum_{n=1}^{\infty} t_{n}$ is convergent, there exists $n_{2}\left(=n_{2}(\varepsilon)\right)$ such that $\sum_{n=n_{2}}^{\infty} t_{n}<\varepsilon$.
Let $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for all $n \geq n_{0}$ and $m \in N$ we have:

$$
\begin{gathered}
F_{p_{n} p_{n+m}}(\varepsilon) \geq F_{p_{n} p_{n+m}}\left(\sum_{i=n}^{n+m-1} t_{i}\right) \geq \top_{i=1}^{m} F_{p_{n+i-1} p_{n+1}}\left(t_{n+i-1}\right) \\
=\top_{i=1}^{m} g_{n+i-1}>1-\varepsilon,
\end{gathered}
$$

as desired.
Now we can apply Theorem 2.1 to find a fixed point of f. The theorem is proved. \square When ψ is increasing bijection and $\lim _{n \rightarrow \infty} \psi^{n}(\lambda)$ be zero, by using demicompact contraction we have another theorem.

Theorem 3.3. Let (S, F, T) be a complete Menger space, T a t-norm such that sup ${ }_{0}$ $\leq a<1 T(a, a)=1, M$ a non-empty and closed subset of $S, f: M \rightarrow C(M)$ be a multivalued ($\psi, \phi, \varepsilon, \lambda)$ - contraction and also weakly demicompact. If there exist $x_{0} \in M$ and $x_{1} \in f x_{0}$ such that $F_{x_{0} x_{1}} \in D_{+} \psi$ is increasing bijection and $\lim _{n \rightarrow \infty} \psi(\lambda)=0$ then, f has a fixed point.

Proof. We can construct a sequence $\left(p_{n}\right)_{n \in \mathrm{~N}}$ from M, such that $p_{1}=x_{1} \in f x_{0}, p_{n+1} \in$ $f p_{n}$. Given $t>0$ and $\lambda \in(0,1)$, we will show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{p_{n+1} p_{n}}(t)=1 . \tag{11}
\end{equation*}
$$

Indeed, since $F_{x_{0} x_{1}} \in D_{+}$, hence for every $\xi>0$ there exist $\eta>0$ such that $F_{x_{0} x_{1}}(\eta)>1-\xi$, and by induction $F_{p_{n-1} p_{n}}\left(\psi^{n}(\eta)\right)>1-\varphi^{n}(\xi)$ for all $n \in \mathrm{~N}$. By choosing n such that $\psi^{n}(\eta)<t$ and $\phi^{n}(\xi)<\lambda$, we obtain

$$
F_{p_{n+1} p_{n}}(t)>1-\lambda .
$$

Since t and λ are arbitrary, the proof of (1) is complete.

By Definition 3.2, there exists a subsequence $\left(p_{n_{j}}\right)_{j \in \mathrm{~N}}$ such that $\lim _{j \rightarrow \infty} p_{n_{j}}$ exists. We shall prove that $x=\lim _{j \rightarrow \infty} p_{n_{j}}$ is a fixed point of f. Since $f x$ is closed, $f x=\overline{f x}$, and therefore, it remains to prove that $x=\overline{f x}$, i.e., for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exist $b(\varepsilon, \lambda) \in f x$, such that $F_{x, b(\varepsilon, \lambda)}(\varepsilon)>1-\lambda$. From the condition $\sup _{0 \leq a<1} T(a, a)=1$ it follows that there exists $\eta(\lambda) \in(0,1)$ such that

$$
u>1-\eta(\lambda) \Rightarrow T(u, u)>1-\lambda .
$$

Let $j_{1}(\varepsilon, \lambda) \in \mathrm{N}$ be such that

$$
F_{p_{n j}, x}\left(\psi^{-1}\left(\frac{\varepsilon}{2}\right)\right)>1-\frac{\eta(\lambda)}{2} \text { for every } j \geq j_{1}(\varepsilon, \lambda)
$$

Since $x=\lim _{j \rightarrow \infty} p_{n_{j}}$, such a number $j_{1}(\varepsilon, \lambda)$ exists. Since f is $(\psi, \phi, \varepsilon, \lambda)$-contraction and ψ is increasing bijection, for $p_{n_{j}+1} \in f p_{n_{j}}$ there exists $b_{j}(\varepsilon) \in f x$ such that

$$
F_{p_{n_{j}+1}, b_{j(\varepsilon)}}\left(\frac{\varepsilon}{2}\right)>1-\varphi\left(\frac{\eta(\lambda)}{2}\right)>1-\frac{\eta(\lambda)}{2} \text { for every } j \geq j_{1}(\varepsilon, \lambda)
$$

From (1) it follows that $\lim _{j \rightarrow \infty} p_{n_{j}+1}=x$ and therefore, there exists $j_{2}(\varepsilon, \lambda) \in \mathrm{N}$ such that $F_{x, p_{\eta_{j}+1}}\left(\frac{\varepsilon}{2}\right)>1-\frac{\eta(\lambda)}{2}$ for every $j \geq j_{2}(\varepsilon, \lambda)$. Let $j_{3}(\varepsilon, \lambda)=\max \left\{j_{1}(\varepsilon, \lambda), j_{2}(\varepsilon, \lambda)\right\}$.
Then, for every $j \geq j_{3}(\varepsilon, \lambda)$ we have $F_{x, b_{j}(\varepsilon)}(\varepsilon) \geq T\left(F_{x, p_{n_{j}+1}}\left(\frac{\varepsilon}{2}\right), F_{p_{n_{j}+1}, b_{j(\varepsilon)}}\left(\frac{\varepsilon}{2}\right)\right)>1-\lambda$. Hence, if $j>j_{3}(\varepsilon, \lambda)$, then, we can choose $b(\varepsilon, \lambda)=b_{j}(\varepsilon) \in f x$. The proof is complete. \square

Author details

${ }^{1}$ Department of Statistics, Roudehen Branch, Islamic Azad University, Roudehen, Iran ${ }^{2}$ Department of Statistics, NorthTehran Branch, Islamic Azad University, Tehran, Iran

Authors' contributions

PA defined the definitions and wrote the introduction, preliminaries and abstract. $A B$ proved the theorems. $A B$ has approved the final manuscript. Also PA has verified the final manuscript

Competing interests

The authors declare that they have no competing interests.
Received: 28 October 2011 Accepted: 8 February 2012 Published: 8 February 2012

References

1. Mihet, D: A class of Sehgal's contractions in probabilistic metric spaces. An Univ Vest Timisoara Ser Mat Inf. 37, 105-110 (1999)
2. Hadžić, O, Pap, E: New classes of probabilistic contractions and applications to random operators. In: YJ, Cho, JK, Kim, SM, Kong (eds.) Fixed Point Theory and Application. pp. 97-119. Nova Science Publishers, Hauppauge, New York (2003)
3. Mihet, D: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431-439 (2004). doi:10.1016/ S0165-0114(03)00305-1
4. Mihet, D: A note on a paper of Hadzic and Pap. In: YJ, Cho, JK, Kim, SM, Kang (eds.) Fixed Point Theory and Applications, vol. 7, pp. 127-133. Nova Science Publishers, New York (2007)
5. Hadžić, O, Pap, E: Fixed point theorem for multi-valued probabilistic ψ-contractions. Indian J Pure Appl Math. 25(8), 825-835 (1994)
6. Pap, E, Hadžic, O, Mesiar, RA: Fixed point theorem in probabilistic metric space and an application. J Math Anal Appl. 202, 433-449 (1996). doi:10.1006/jmaa.1996.0325
7. Hadžić, O, Pap, E: A fixed point theorem for multivalued mapping in probabilistic Metric space and an application in fuzzy metric spaces. Fuzzy Sets Syst. 127, 333-344 (2002). doi:10.1016/S0165-0114(01)00144-0
8. Žikić-Došenović, T: A multivalued generalization of Hicks C-contraction. Fuzzy Sets Syst. 151, 549-562 (2005). doi:10.1016/j.fss.2004.08.011
9. Mihet, D: A fixed point theorem in probabilistic metric spaces. The Eighth International Conference on Applied Mathematics and Computer Science, Automat. Comput. Appl. Math 11(1), 79-81 (2002). Cluj-Napoca
10. Beitollahi, A, Azhdari, P: Multi-valued contractions theorems in probabilistic metric space. Int J Math Anal. 3(24), 1169-1175 (2009)
11. Hadžić, O, Pap, E: Fixed point theory in PM spaces. Kluwer Academic Publishers, Dordrecht (2001)
12. Klement, EP, Mesiar, R, Pap, E: Triangular Norm. In Trend in Logic, vol. 8,Kluwer Academic Publishers, Dordrecht (2000)
13. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holland, Amesterdam (1983)
14. Mihet, D: Multi-valued generalization of probabilistic contractions. J Math Anal Appl. 304, 464-472 (2005). doi:10.1016/j. jmaa.2004.09.034
15. Mihet, D: A class of contractions in fuzzy metric spaces. Fuzzy Sets Syst. 161, 1131-1137 (2010). doi:10.1016/j. fss.2009.09.018
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1687-1812-2012-10
 Cite this article as: Beitollahi and Azhdari: Multi-valued $(\psi, \phi, \varepsilon, \lambda)$-contraction in probabilistic metric space. Fixed Point Theory and Applications 2012 2012:10.

