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Abstract
In this manuscript, we investigate certain conditions that imply the existence of fixed
points for almost contraction mappings defined on compact metric spaces.
Furthermore we introduce a criteria establishing the uniqueness of fixed points for
the mentioned operators. As a result we obtain generalized results by unifying some
recent related fixed point theorems on the topic.

1 Introduction and Preliminaries
In nonlinear functional analysis, fixed point theory is being investigated increasingly by
reason of the fact that it has awide range of applications in fields such as economics (see e.g.
[, ]), computer science (see e.g. [–]), andmany others. One of the pioneering theorems
in this direction is the Banach contraction mapping principle [] which states that each
contraction defined on a completemetric spaceX has a unique fixed point. Banach’s result
is the origin and antecedents results by the fact that he not only proved the existence and
uniqueness of a fixed point of a contraction, but also showed how to evaluate this point.
After this celebrated result[], a number of authors have observed various other types of
contraction mappings and proved related fixed point theorems (see e.g. such as Kannan
[], Reich [], Hardy and Rogers [], Ćirić [–], Zamfirescu [], Arshad et al. []).
By following this trend Suzuki recently proved the following fixed point theorems:

Theorem  (Suzuki []) Let (X,d) be a compact metric space and let T be a mapping
on X. Assume that 

d(x,Tx) < d(x, y) implies d(Tx,Ty) < d(x, y) for all x, y ∈ X. Then T has
a unique fixed point.

Theorem  (Suzuki []) Define a non-increasing function θ from [,) onto (/,] by

θ (r) =

⎧⎪⎪⎨
⎪⎪⎩
 if  ≤ r ≤ (

√
 – )/,

( – r)r– if (
√
 – )/ ≤ r ≤ √

/,

( + r)– if
√
/ ≤ r < .

Then for a metric space (X,d), the followings are equivalent:
. X is complete;
. Every mapping T on X satisfying the following has a fixed point: There exists r ∈ [, )

such that θ (r)d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X .
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In the literature Theorem  and Theorem  attracted considerable attention frommany
authors (see e.g. [–]). Notice that these theorems are inspired by Edelstein’s Theorem
[]:

Theorem  Let (X,d) be a compact metric space and let T be a mapping on X. Assume
d(Tx,Ty) < d(x, y) for all x, y ∈ X with x �= y. Then T has a unique fixed point.

Motivated by these developments in this area, in this manuscript, we combine well-
known results of Suzuki [], Edelstein [] and Berinde [] to complement a multitude
of related results from the literature. For the sake of completeness we include the results
of Berinde as well:

Theorem  (See []) Let (X,d) be a complete metric space and T : X → X be an almost
contraction, that is, a mapping for which there exist a constant k ∈ [, ) and some L ≥ 
such that

d(Tx,Ty) ≤ kd(x, y) + Ld(y,Tx), ()

for all x, y ∈ X. Then Fix(T) = {x ∈ X : Tx = x} �= ∅.

Theorem  (See []) Let (X,d) be a complete metric space and T : X → X be an almost
contraction, that is, a mapping for which there exist a constant k ∈ (, ) and some L ≥ 
such that

d(Tx,Ty) ≤ kd(x, y) + Ld(x,Tx), ()

for all x, y ∈ X. Then has a unique fixed point.

Main Theorems
We start this section by proving the following theorem:

Theorem  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(Tx,x) + d(Ty, y)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
()

for all x, y ∈ X with x �= y and L > . Then, T has a fixed point z ∈ X, that is, Tz = z.

Proof Set θ = inf{d(x,Tx) : x ∈ X} and choose a sequence {xn} in X such that limn→∞ d(xn,
Txn) = θ . Regarding that X is compact, without loss of generality, assume that {xn} and
{Txn} converge to the points z and w in X, respectively.
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Weclaim that θ is equal to zero. To show this, assume to the contrary that θ > .Observe
that we have

lim
n→∞d(xn,w) = d(z,w) = lim

n→∞d(xn,Txn) = θ . ()

We can choose k ∈N in such a way that



θ < d(xn,w) and d(xn,Txn) <



θ , ()

for each n≥ k. As a consequence, we have 
d(xn,Txn) < d(xn,w) for each n≥ k. Due to (),

we get d(Txn,Tw) < 
 [d(Txn,xn) + d(Tw,w)] for each n≥ k. Accordingly, we obtain

d(w,Tw)

= lim
n→∞d(Txn,Tw)

≤ lim
n→∞

(


[
d(Txn,xn) + d(Tw,w)

]
+ Lmin

{
d(w,Txn),d(xn,Tw),d(xn,w)

})
()

which implies that

d(w,Tw) ≤ d(w, z) = θ . ()

By taking the definition of θ into account, we conclude that d(w,Tw) = θ . Notice that the
inequality 

d(w,Tw) < d(w,Tw) always holds. By applying the condition () again, we find

d
(
Tw,Tw

)
<


[
d(Tw,w) + d

(
Tw,Tw

)]
+ Lmin

{
d(Tw,Tw),d

(
w,Tw

)
,d(w,Tw)

}
()

which is equivalent to the inequality d(Tw,Tw) < d(Tw,w) = θ . This contradicts with the
definition of θ . Hence, we conclude that θ = .
We next assert that T has a fixed point. We use the method of Reductio ad absur-

dum to show this assertion. Suppose that T has no fixed points. Since the inequality
 < 

d(Txn,xn) < d(Txn,xn) holds for each n, we derive, for every n ∈N, that

d
(
Txn,Txn

)
<


[
d(Txn,xn) + d

(
Txn,Txn

)]
+ Lmin

{
d(Txn,Txn),d

(
xn,Txn

)
,d(xn,Txn)

}
<


[
d(Txn,xn) + d

(
Txn,Txn

)]
.

Hence, we find that

d
(
Txn,Txn

)
< d(Txn,xn) ()

for each n ∈ N and

lim
n→∞d(z,Txn) = d(z,w) = lim

n→∞d(Txn,xn) = θ = . ()
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Thus, we get z = w. In other words, {xn} and {Txn} converge to the same point. Due to the
triangular inequality and (), we obtain that

lim
n→∞d

(
z,Txn

) ≤ lim
n→∞

[
d(z,Txn) + d

(
Txn,Txn

)]
≤ lim

n→∞
[
d(z,Txn) + d(xn,Txn)

]
= d(z, z) = . ()

Hence, {Txn} too converges to z.
Assume that

d(xn, z) ≤ 

d(xn,Txn), and d(Txn, z) ≤ 


d
(
Txn,Txn

)
. ()

We use (), () and the triangular inequality, we find that

d(xn,Txn) ≤ d(xn, z) + d(Txn, z) ≤ 

d(xn,Txn) +



d
(
Txn,Txn

)
<



d(xn,Txn) +



d(xn,Txn) = d(xn,Txn). ()

This is a contradiction. Thus, either

d(xn, z) >


d(xn,Txn), or d(Txn, z) >



d
(
Txn,Txn

)
holds for each n ∈N. Then regarding (), one of the below holds:

d(Txn,Tz) <


[
d(Txn,xn) + d(Tz, z)

]
+ Lmin

{
d(z,Txn),d(xn,Tz),d(xn, z)

}
, ()

d
(
Txn,Tz

)
<


[
d
(
Txn,Txn

)
+ d(Tz, z)

]
+ Lmin

{
d
(
z,Txn

)
,d(Txn,Tz),d(Txn, z)

}
. ()

This is equivalent to stating that either
(i) there is an infinite subset I of N so that the inequality () holds for all n ∈ I , or,
(ii) there is an infinite subset J of N so that the inequality () holds for all n ∈ J .

We first consider the case (). The inequality

d(z,Tz) = lim
n∈I,n→∞d(Txn,Tz) ≤ lim

n∈I,n→∞


[
d(Txn,xn) + d(Tz, z)

]
=


d(z,Tz), ()

yields that

d(z,Tz) = .

Thus, we conclude that Tz = z. For the other case in () we get

d(z,Tz) = lim
n∈J ,n→∞d

(
Txn,Tz

) ≤ lim
n∈J ,n→∞



[
d
(
Txn,Txn

)
+ d(z,Tz)

]
=



[
d(z, z) + d(z,Tz)

]
()
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which implies that



d(z,Tz) <



d(z, z) = .

Thus, we reach the conclusion Tz = z again. This contradicts with the assumption that T
has no fixed point. Hence, T has a fixed point. �

Corollary  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(Tx,x) + d(Ty, y)

]
+ Lmin

{
d(x,Tx),d(y,Ty),d(x, y)

}
()

for all x, y ∈ X with x �= y and L > . Then, T has a unique fixed point z ∈ X, that is, Tz = z.

Proof The proof of Theorem  applies, mutatis mutandis, to show the existence of a fixed
point. Let z ∈ X be a fixed point of T .
We shall prove z is the unique fixed point ofT . Suppose, to the contrary that, there exists

y ∈ X so that y �= z and Ty = y. Then the inequalities d(y, z) >  and  = 
d(z,Tz) < d(z, y)

are satisfied. Due to (), we have

 ≤ d(z,Ty) = d(Tz,Ty) <


[
d(Tz, z) + d(Ty, y)

]
+ Lmin

{
d(z,Tz),d(y,Ty),d(z, y)

}
= 

which is a contradiction. Hence, z is the unique fixed point of T . �

Theorem  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
()

for all x, y ∈ X with x �= y and L > . Then, T has a fixed point z ∈ X, that is, Tz = z.

Proof The proof of Theorem  applies, mutatis mutandis, to prove Theorem . �

Corollary  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(x,Tx),d(y,Ty),d(x, y)

}
()

for all x, y ∈ X with x �= y and L > . Then, T has a unique fixed point z ∈ X, that is, Tz = z.

Proof The proof of Corollary  applies, mutatis mutandis, to prove Corollary . �

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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Theorem  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y) ⇒ d(Tx,Ty) <



[
d(x, y) + d(Tx,x) + d(Ty, y)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
, ()

for all x, y ∈ X with x �= y and L > . Then, T has a fixed point z ∈ X, that is, Tz = z.

Proof As in the proof of Theorem , we set θ = inf{d(x,Tx) : x ∈ X} and choose a sequence
{xn} in X such that limn→∞ d(xn,Txn) = θ . Since X is compact, without loss of generality,
we assume that {xn} and {Txn} converge to the points z and w in X, respectively.
We aim to show that θ is equal to zero. Let assume the contrary. Recall that

lim
n→∞d(xn,w) = d(z,w) = lim

n→∞d(xn,Txn) = θ . ()

It is possible to choose k ∈N in such a way that



θ < d(xn,w) and d(xn,Txn) <



θ , ()

for each n ≥ k. Consequently, we see that 
d(xn,Txn) < d(xn,w) for each n≥ k. By (), we

derive that

d(Txn,Tw) <


[
d(xn,w) + d(Txn,xn) + d(Tw,w)

]
+ Lmin

{
d(w,Txn),d(xn,Tw),d(xn,w)

}

for each n≥ k. Then it follows that

d(w,Tw) = lim
n→∞d(Txn,Tw) ≤ lim

n→∞

( 
 [d(xn,w) + d(Txn,xn) + d(Tw,w)]

+Lmin{d(w,Txn),d(xn,Tw),d(xn,w)}

)
()

which implies that

d(w,Tw) = lim
n→∞d(Txn,Tw) ≤ 


[
d(z,w) + d(w, z) + d(Tw,w)

]
. ()

Hence, we find that d(w,Tw) < d(z,w) = θ . As a result, we conclude that d(w,Tw) = θ when
we take the definition of θ into account. Since we always have the inequality 

d(w,Tw) <
d(w,Tw), we obtain

d
(
Tw,Tw

)
<


[
d(w,Tw) + d(Tw,w) + d

(
Tw,Tw

)]
+ Lmin

{
d(Tw,Tw),d

(
w,Tw

)
,d(w,Tw)

}
()

by applying (). But this is equivalent to stating that d(Tw,Tw) < d(Tw,w) = θ . This con-
tradicts with the definition of θ . So, we find θ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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We are ready to show that T has a fixed point. We shall use the method of Reductio ad
absurdum again. Suppose that T has no fixed point. Since the inequality  < 

d(Txn,xn) <
d(Txn,xn) is true for each n, the expression

d
(
Txn,Txn

)
<


[
d(xn,Txn) + d(Txn,xn) + d

(
Txn,Txn

)]
+ Lmin

{
d(Txn,Txn),d

(
xn,Txn

)
,d(xn,Txn)

}
holds for every n ∈N. In other words, we see that the inequality

d
(
Txn,Txn

)
< d(Txn,xn) ()

is satisfied for each n ∈N. Therefore, we infer that

lim
n→∞d(z,Txn) = d(z,w) = lim

n→∞d(Txn,xn) = θ = . ()

So, we also find z = w. Thus, the sequences {xn} and {Txn} converge to the same point. By
the triangular inequality, together with the inequality (), we derive

lim
n→∞d

(
z,Txn

) ≤ lim
n→∞

[
d(z,Txn) + d

(
Txn,Txn

)]
≤ lim

n→∞
[
d(z,Txn) + d(xn,Txn)

]
= d(z, z) = . ()

Hence, {Txn} also converges to z. Assume that

d(xn, z) ≤ 

d(xn,Txn), and d(Txn, z) ≤ 


d
(
Txn,Txn

)
. ()

Regarding (), () and the triangular inequality, we find

d(xn,Txn) ≤ d(xn, z) + d(Txn, z) ≤ 

d(xn,Txn) +



d
(
Txn,Txn

)
<



d(xn,Txn) +



d(xn,Txn) = d(xn,Txn). ()

This is a contradiction. Thus, we have either

d(xn, z) >


d(xn,Txn), or d(Txn, z) >



d
(
Txn,Txn

)
for each n ∈ N. By (), we conclude that one of the inequalities below

d(Txn,Tz) <


[
d(xn, z) + d(xn,Txn) + d(z,Tz)

]
+ Lmin

{
d(z,Txn),d(xn,Tz),d(xn, z)

}
, ()

d
(
Txn,Tz

)
<


[
d(Txn, z) + d

(
Txn,Txn

)
+ d(Tz, z)

]
+ Lmin

{
d
(
z,Txn

)
,d(Txn,Tz),d(Txn, z)

}
()

is satisfied. This is equivalent to phrasing that either

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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(a) there is an infinite subset I of N so that

d(Txn,Tz) <


[
d(xn, z) + d(xn,Txn) + d(z,Tz)

]
+ Lmin

{
d(z,Txn),d(xn,Tz),d(xn, z)

}
, for all n ∈ I or,

(b) there is an infinite subset J of N so that

d
(
Txn,Tz

)
<


[
d(Txn, z) + d

(
Txn,Txn

)
+ d(Tz, z)

]
+ Lmin

{
d
(
z,Txn

)
,d(Txn,Tz),d(Txn, z)

}
,

for all n ∈ J holds.
Considering the case (), we find

d(z,Tz) = lim
n∈I,n→∞d(Txn,Tz) < lim

n∈I,n→∞


[
d(xn, z) + d(xn,Txn) + d(z,Tz)

]
+ Lmin

{
d(z,Txn),d(xn,Tz),d(xn, z)

}
=



[
d(z, z) + d(z,Tz)

]
, ()

which yields that



d(z,Tz) ≤ 


d(z, z) = .

Thus, we conclude that Tz = z. For the other case (), we obtain

d(z,Tz) = lim
n∈J ,n→∞d

(
Txn,Tz

) ≤ lim
n∈J ,n→∞



[
d(Txn, z) + d

(
Txn,Txn

)
+ d(z,Tz)

]
+ Lmin

{
d
(
z,Txn

)
,d(Txn,Tz),d(Txn, z)

}
=



[
d(z, z) + d(z,Tz)

]
()

which implies



d(z,Tz) <



d(z, z) = .

Thus, we reach the same conclusion, that is, Tz = z. This contradicts with assumption that
T has no fixed point. Hence, T has a fixed point, say z ∈ X. �

Corollary  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y) ⇒ d(Tx,Ty) <



[
d(x, y) + d(Tx,x) + d(Ty, y)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
, ()

for all x, y ∈ X with x �= y and L > . Then, T has a unique fixed point z ∈ X, that is, Tz = z.

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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Proof The proof of Corollary  follows,mutatismutandis, from the proofs of Corollary ,
Corollary  and Corollary . Therefore T has a fixed point, say z ∈ X.
We need to prove z is the unique fixed point of T . Suppose, to the contrary that, there

exists y ∈ X such that y �= z and Ty = y. Then, we have d(y, z) >  and  = 
d(z,Tz) < d(z, y).

By (), we see that

d(z,Ty) = d(Tz,Ty) <


[
d(z, y) + d(Tz, z) + d(Ty, y)

]
+ Lmin

{
d(y,Tz),d(z,Ty),d(z, y)

}
=


[
d(z, y) + d(Ty, y)

]
≤ 


[
d(z, y) + d(Ty, z) + d(z, y)

]
which in turn implies that d(z,Ty) < d(z, y). So y is not a fixed point of T . Hence, z is the
unique. �

Combining Theorem , Theorem  and Theorem  yields the following:

Theorem  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y) ⇒ d(Tx,Ty) <



[
d(x, y) + d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
()

for all x, y ∈ X. Then, T has a fixed point z ∈ X, that is, Tz = z.

Combining Corollary , Corollary  and Corollary  yields the following:

Corollary  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y) ⇒ d(Tx,Ty) <



[
d(x, y) + d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
()

for all x, y ∈ X. Then, T has a unique fixed point z ∈ X, that is, Tz = z.

The result below is a corollary of Theorem -Theorem :

Theorem  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(x, y) + d(Tx,x) + d(Ty, y) + d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(y,Tx),d(x,Ty),d(x, y)

}
()

for all x, y ∈ X. Then, T has a fixed point z ∈ X, that is, Tz = z.

Proof The proof of Theorem  follows from the proofs of the previous theorems verba-
tim. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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Corollary  Let T be a self mapping on a compact metric space (X,d). Assume that



d(x,Tx) < d(x, y)

⇒ d(Tx,Ty) <


[
d(x, y) + d(Tx,x) + d(Ty, y) + d(Tx, y) + d(Ty,x)

]
+ Lmin

{
d(x,Tx),d(y,Ty),d(x, y)

}
()

for all x, y ∈ X. Then, T has a unique fixed point z ∈ X, that is, Tz = z.

Proof The proof of Corollary  follows from the proofs of the previous theorems verba-
tim. �

Example  (cf. []) Let X = Z and d be the discrete metric

d(x, y) =

⎧⎨
⎩ if x �= y,

 if x = y.

Each self-mapping T on X satisfying () has a unique fixed point. It is clear that (X,d) is
complete, but it is not a compact metric space. Let T be a self-mapping on X. If T has a
fixed point, it is sufficient to prove that it is unique.
To show that z ∈ X is the unique fixed point of T , we take y ∈ X where y �= z. Thus the

inequalities d(y, z) =  >  and  = 
d(z,Tz) < d(z, y) are satisfied. Due to (), we have

d(z,Ty) = d(Tz,Ty) <


[
d(Tz, z) + d(Ty, y)

]
+ Lmin

{
d(z,Tz),d(y,Ty),d(z, y)

}
=


d(Ty, y) ≤ 


[
d(Ty, z) + d(z, y)

]

which implies that d(z,Ty) < d(z, y). So y is not a fixed point of T . Hence, z is the unique
fixed point of T . Suppose T has no fixed point. Then, we have



d(x,Tx)≤ 


< d(x, y) = , for all x, y ∈ X, with x �= y.

Due to (), the inequality d(Tx,Ty) < 
 [d(Tx,x) + d(Ty, y)] + Lmin{d(x,Tx),d(y,Ty),

d(x, y)} =  holds. In other words, we get d(Tx,Ty) = . Thus the image of T on the domain
X consists of only one point which is clearly a unique fixed point. This is a contradiction.

Remark  Example  can be modified for Theorem -Theorem  just by replacing
the condition () with the relevant one. It is clear that proofs are obtained by apply the
necessary manipulations in Example .

The following theorem is a generalization of [, Theorem ].

http://www.fixedpointtheoryandapplications.com/content/2012/1/107
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Theorem  Let T be a self mapping on a metric space (X,d). Suppose that there exist
k ∈ [, ) and a T-invariant complete subset K of X such that

d(Tx,Ty) ≤ kd(x, y) and

d(Tz,Tw) <


[
d(Tz, z) + d(Tw,w)

]
+ Lmin

{
d(w,Tw),d(z,Tz),d(z,w)

} ()

for all x, y ∈ K with x �= y, and z,w ∈ X with z �= w and L > . Then, T has a unique fixed
point u ∈ X, that is, Tu = u.

Proof Due to Banach [], there exists a unique fixed point u ∈ K . Consider

d(Tz,u) = d(Tz,Tu) <


[
d(Tz, z) + d(Tu,u)

]
≤ 


[
d(Tz,u) + d(u, z)

]
+ Lmin

{
d(u,Tu),d(z,Tz),d(z,u)

}
,

for all z ∈ (X \K) which implies that

d(Tz,Tu) < d(u, z).

In other words, for all z ∈ (X \ K) is not a fixed point of T . Hence, u is the unique fixed
point of T on X. �

Remark  Theorem  holds also if we replace one of the conditions below instead of
the condition ():

d(Tx,Ty) ≤ kd(x, y) and

d(Tz,Tw) <


[
d(Tz,w) + d(Tw, z)

]
+ Lmin

{
d(w,Tw),d(z,Tz),d(z,w)

}
, ()

d(Tx,Ty) ≤ kd(x, y) and

d(Tz,Tw) <


[
d(z,w) + d(Tz, z) + d(Tw,w)

]
+ Lmin

{
d(w,Tw),d(z,Tz),d(z,w)

}
, ()

d(Tx,Ty) ≤ kd(x, y) and

d(Tz,Tw) <


[
d(z,w) + d(Tz,w) + d(Tw, z)

]
+ Lmin

{
d(w,Tw),d(z,Tz),d(z,w)

}
, ()

d(Tx,Ty) ≤ kd(x, y) and

d(Tz,Tw) <


[
d(z,w) + d(Tz, z) + d(Tw,w) + d(Tz,w) + d(Tw, z)

]
+ Lmin

{
d(w,Tw),d(z,Tz),d(z,w)

}
. ()
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