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1 Introduction
It is well known that many of the most important nonlinear problems of applied math-
ematics reduce to solving a given equation which in turn may be reduced to finding the
fixed points of a certain operator. It is important not only to know the fixed points exist,
but also to be able to construct that fixed points. Lau is a great mathematician who has
published many good papers concerning to the existence and the approximation of fixed
points for various types of mappings (see, e.g., [–]).
The existence of fixed points for nonexpansive mappings was studied independently

by three authors in  (see Browder [], Göhde [], and Kirk []). Since then the
iteration methods for approximating fixed points of nonexpansive mappings has rapidly
been developed and many of papers have appeared (see, e.g., [–]). One of the popular
classes of generalized nonexpansive mappings is the class of asymptotically nonexpansive
mappings which was introduced by Goebel and Kirk [] in . Later on, Kirk and Xu
[] introduced the concept of asymptotic pointwise nonexpansive mappings which gen-
eralizes the concept of asymptotically nonexpansive mappings and proved the existence
of fixed points for such maps in a uniformly convex Banach space. In , Kozlowski []
defined an iterative sequence for an asymptotic pointwise nonexpansive mapping T on a
convex subset C of a Banach space X by x ∈ C and

xk+ = ( – tk)xk + tkTnk yk , ()
yk = ( – sk)xk + skTnk xk , k ∈N,

where {tk} and {sk} are sequences in [, ] and {nk} is an increasing sequence of natural
numbers. He proved, under some suitable assumptions, that the sequence {xk} defined by
() converges weakly to a fixed point of T where X is a uniformly convex Banach space
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which satisfies the Opial condition and {xk} converges strongly to a fixed point of T pro-
vided Tr is a compact mapping for some r ∈ N. Recently, Pasom and Panyanak [] ex-
tended Kozlowski’s results to a finite family of asymptotic pointwise nonexpansive map-
pings T, . . . ,Tm. Precisely, they proved weak and strong convergence theorems of the it-
erative process defined by

xk+ = ( – tmk)xk + tmkTnk
m y(m–)k , ()

y(m–)k = ( – t(m–)k)xk + t(m–)kT
nk
m–y(m–)k ,

y(m–)k = ( – t(m–)k)xk + t(m–)kT
nk
m–y(m–)k ,

...
yk = ( – tk)xk + tkT

nk
 yk ,

yk = ( – tk)xk + tkT
nk
 yk ,

yk = xk , k ∈N,

where {tik}∞k= are sequences in [, ] for all i = , , . . . ,m, and {nk} be an increasing se-
quence of natural numbers. On the other hand, Kettapun et al. [] studied the iterative
process defined by

xk+ = ( – tmk)y(m–)k + tmkTn
my(m–)k , ()

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kTn
m–y(m–)k ,

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kTn
m–y(m–)k ,

...
yk = ( – tk)yk + tkTn

 yk ,
yk = ( – tk)yk + tkTn

 yk ,
yk = xk , k ∈N,

where T, . . . ,Tm are asymptotically quasi-nonexpansive mappings on C.
In this article, motivated by the results mentioned above, we obtain weak and strong

convergence theorems of the iterative process defined by

xk+ = ( – tmk)y(m–)k + tmkTnk
m y(m–)k , ()

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kT
nk
m–y(m–)k ,

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kT
nk
m–y(m–)k ,

...
yk = ( – tk)yk + tkT

nk
 yk ,

yk = ( – tk)yk + tkT
nk
 yk ,

yk = xk , k ∈N,

where T, . . . ,Tm are asymptotic pointwise nonexpansive mappings on C, {tik}∞k= are se-
quences in [, ] for all i = , , . . . ,m, and {nk} be an increasing sequence of natural num-
bers.

2 Preliminaries and lemmas
Let C be a nonempty subset of a metric space (X,d) and T be a mapping on C. A point x
in C is called a fixed point of T if x = Tx. We shall denote by F(T) the set of fixed points
of T . The mapping T : C → C is said to be

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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(i) nonexpansive if d(Tx,Ty) ≤ (x, y) for all x, y ∈ C,
(ii) asymptotically nonexpansive if there is a sequence {kn} of positive numbers with

the property limn→∞ kn =  and such that

d
(
Tnx,Tny

) ≤ knd(x, y), for all x, y ∈ C and n≥ ,

(iii) asymptotically quasi-nonexpansive if there is a sequence {kn} of positive numbers
with the property limn→∞ kn =  and such that

d
(
Tnx,p

) ≤ knd(x,p), for all x ∈ C,p ∈ F(T) and n ≥ ,

(iv) asymptotic pointwise nonexpansive if there exists a sequence of functions
αn : C → [,∞) such that lim supn→∞ αn(x)≤  and

d
(
Tnx,Tny

) ≤ αn(x)d(x, y), for all x, y ∈ C and n≥ .

The following implications hold.

T is nonexpansive ⇒ T is asymptotically nonexpansive ⇒ T is asymptotically quasi-nonexpansive

⇓
T is asymptotic pointwise nonexpansive

The existence of fixed points for asymptotic pointwise nonexpansive mappings in uni-
formly convex Banach spaces was proved by Kirk and Xu [] as the following result.

Theorem . Let C be a nonempty bounded closed and convex subset of a uniformly con-
vex Banach space X. Then every asymptotic pointwise nonexpansive mapping T : C → C
has a fixed point. Moreover, F(T) is closed and convex.

For common fixed points of a family of commutingmappings, Pasom and Panyanak []
obtained the following result.

Theorem . Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X. Then every commuting family S of asymptotic pointwise nonexpansive
mappings on C has a nonempty closed convex common fixed point set.

Let C be a nonempty subset of a metric space (X,d). We shall denote by T (C) the class
of all asymptotic pointwise nonexpansive mappings from C into C. Let T, . . . ,Tm ∈ T (C),
without loss of generality, we can assume that there exists a sequence of mappings αn :
C → [,∞) such that for all x, y ∈ C, i = , . . . ,m, and n ∈ N,

d
(
Tn
i x,T

n
i y

) ≤ αn(x)d(x, y) and lim sup
n→∞

αn(x)≤ . ()

Let an(x) = max{αn(x), }. Again, without loss of generality, we can assume that

d
(
Tn
i x,T

n
i y

) ≤ an(x)d(x, y), lim
n→∞an(x) =  and an(x) ≥ , ()

for all x, y ∈ C, i = , . . . ,m, and n ∈ N. We define bn(x) = an(x) – , then for each x ∈ C we
have limn→∞ bn(x) = .

Definition . [] Define Tr(C) as a class of all T ∈ T (C) such that
∞∑

n=

bn(x) < ∞ for every x ∈ C, and ()

an is a bounded function for every n ∈N. ()
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Let C be a nonempty subset of a Banach space X and T, . . . ,Tm ∈ Tr(C). Let {tik}∞k= ⊂
(, ) be bounded away from and  for all i = , , . . . ,m and {nk} be an increasing sequence
of natural numbers. Let x ∈ C and define a sequence {xk} in C as

xk+ = ( – tmk)y(m–)k + tmkTnk
m y(m–)k , ()

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kT
nk
m–y(m–)k ,

y(m–)k = ( – t(m–)k)y(m–)k + t(m–)kT
nk
m–y(m–)k ,

...
yk = ( – tk)yk + tkT

nk
 yk ,

yk = ( – tk)yk + tkT
nk
 yk ,

yk = xk , k ∈N.

We say that the sequence {xk} in () is well defined if lim supk→∞ank (xk) = . As in [], we
observe that limk→∞ ak(x) =  for every x ∈ C. Hence, we can always choose a subsequence
{ank } which makes {xk} well defined.

Definition . A strictly increasing sequence {nk} ⊂ N is called quasi-periodic if the se-
quence {nk+ –nk} is bounded, or equivalently if there exists a number p ∈N such that any
block of p consecutive natural numbers must contain a term of the sequence {nk}. The
smallest of such numbers p will be called a quasi-period of {nk}.
Recall that a mapping T : C → C is called semi-compact if for any sequence {xn} in C

such that

lim
n→∞d(xn,Txn) = ,

there exists a subsequence {xnj} of {xn} and q ∈ C such that limj→∞ xnj = q. A family of
mapping {Ti : i = , , . . . ,m} on C is said to satisfy Condition (A′′) if there exists a non-
decreasing function f : [,∞) → [,∞) with f () =  and f (r) >  for all r >  such that
d(x,Tjx)≥ f (dist(x,F)), for some j = , . . . ,m for all x ∈ C, where dist(x,F) = inf{d(x,p) : p ∈
F =

⋂m
i= F(Ti)}.

Lemma . [, Lemma .] Let {sn} and {un} be sequences of nonnegative real numbers
satisfy:

sn+ ≤ ( + un)sn, for all n ∈ N, and
∞∑

n=

un <∞.

Then (i) limn sn exists (ii) if lim infn sn = , then limn sn = .

Lemma . [, Lemma ] Suppose {rk} is a bounded sequence of real numbers and {dk,l}
is a doubly index sequence of real numbers which satisfy

lim sup
k→∞

lim sup
l→∞

dk,l ≤ , and rk+l ≤ rk + dk,l

for each k, l ∈N. Then limk→∞ rk = a for some a ∈R.

Lemma . [, ] Let X be a uniformly convex Banach space and let {tn} be a sequence
in [a,b] for some a,b ∈ (, ). Suppose that {un} and {vn} are sequences in X such that

lim sup
n→∞

‖un‖ ≤ r, lim sup
n→∞

‖vn‖ ≤ r, and lim
n→∞

∥∥tnun + ( – tn)vn
∥∥ = r,

for some r ≥ . Then limn→∞ ‖un – vn‖ = .
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Lemma . [, Lemma .] Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and let T ∈ Tr(C). If limn→∞ ‖xn – Txn‖ =  then for any m ∈ N,
limn→∞ ‖xn – Tmxn‖ = .

Lemma . [, Theorem .] Let X be a uniformly convex Banach space with the Opial
property and let C be a nonempty closed convex subset of X. Let T ∈ Tr(C) and let
ω ∈ X, {xn} ⊂ X be such that weak-limn→∞ xn = ω and limn→∞ ‖xn – Txn‖ = . Then
ω ∈ F(T).

3 Results in Banach spaces
3.1 Results for bounded domains
Recall that a subset C of a metric space (X,d) is said to be bounded if

diam(C) := sup
{
d(x, y) : x, y ∈ C

}
< ∞.

Lemma. Let C be a nonempty closed convex subset of a Banach space X andT, . . . ,Tm ∈
Tr(C). Let {tik}∞k= ⊂ [, ] and {nk} ⊂N be such that {xk} in () is well defined. Assume that
F :=

⋂m
i= F(Ti) �= ∅. Then for each p ∈ F, there are sequences of nonnegative real numbers

{γk} and {δk} (depending on p) such that∑∞
k= γk <∞,

∑∞
k= δk < ∞ and the following state-

ments hold:
(i) ‖Tnk

i y(i–)k – p‖ ≤ ( + γk)‖y(i–)k – p‖, for all i = , . . . ,m;
(ii) ‖yik – p‖ ≤ ( + γk)i‖xk – p‖, for all i = , . . . ,m – ;
(iii) ‖xk+ – p‖ ≤ ( + δk)‖xk – p‖;
(iv) if C is bounded, then limk→∞ ‖xk – p‖ exists.

Proof Let p ∈ F and γk = bnk (p) for all k ∈N. Then
∑∞

k= γk < ∞.
(i) For i = , , . . . ,m, we have

∥∥Tnk
i y(i–)k – p

∥∥ ≤ ( + γk)‖y(i–)k – p‖.
(ii) By (), we obtain

‖yk – p‖ =
∥∥( – tk)(xk – p) + tk

(
Tnk
 xk – p

)∥∥

≤ ( – tk)‖xk – p‖ + tk
∥∥Tnk

 xk – p
∥∥

≤ ( – tk)‖xk – p‖ + tk( + γk)‖xk – p‖
≤ ( + γk)‖xk – p‖.

We assume that ‖yjk – p‖ ≤ ( + γk)j‖xk – p‖ holds for some j = , . . . ,m – . From part (i),
we have

‖y(j+)k – p‖ =
∥∥( – t(j+)k)(yjk – p) + t(j+)k

(
Tnk
j+yjk – p

)∥∥

≤ ( – t(j+)k)‖yjk – p‖ + t(j+)k
∥∥Tnk

j+yjk – p
∥∥

≤ ( – t(j+)k)‖yjk – p‖ + t(j+)k( + γk)‖yjk – p‖
≤ ( + γk)‖yjk – p‖
≤ ( + γk)( + γk)j‖xk – p‖
= ( + γk)j+‖xk – p‖.

By mathematical induction, we obtain

‖yik – p‖ ≤ ( + γk)i‖xk – p‖, for all i = , . . . ,m – .

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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(iii) By part (ii), we get

‖xk+ – p‖ =
∥∥( – tmk)(y(m–)k – p) + tmk

(
Tnk
m y(m–)k – p

)∥∥

≤ ( – tmk)‖y(m–)k – p‖ + tmk
∥∥Tnk

m y(m–)k – p
∥∥

≤ ( – tmk)‖y(m–)k – p‖ + tmk( + γk)‖y(m–)k – p‖
≤ ( + γk)‖y(m–)k – p‖
≤ ( + γk)( + γk)m–‖xk – p‖
≤ ( + γk)m‖xk – p‖
≤ ( + δk)‖xk – p‖,

where δk =
(m

)
γk +

(m

)
γ 
k + · · · + (m

m
)
γm
k . Since

∑∞
k= γk < ∞, then

∑∞
k= δk < ∞.

(iv) By part (iii), we have ‖xk+ – p‖ ≤ ‖xk – p‖ + diam(C)δk for all k ∈ N. Thus, for each
l ∈ N,

‖xk+l – p‖ ≤ ‖xk – p‖ + diam(C)
k+l–∑

i=k

δi.

Since
∑∞

i= δi < ∞, lim supk→∞ lim supl→∞
∑k+l–

i=k δi = . The conclusion follows from
Lemma . by letting rk = ‖xk – p‖ and dk,l = diam(C)

∑k+l–
i=k δi. �

Lemma . Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X and T, . . . ,Tm ∈ Tr(C). Let {tik}∞k= ⊂ [a,b] ⊂ (, ) and {nk} ⊂ N be such
that {xk} in () is well defined. Assume that F :=

⋂m
i= F(Ti) �= ∅. Then

(i) limk→∞ ‖y(i–)k – Tnk
i y(i–)k‖ = , for all i = , , . . . ,m;

(ii) limk→∞ ‖xk – Tnk
i y(i–)k‖ = , for all i = , , . . . ,m;

(iii) If the set J = {k ∈N : nk+ =  + nk} is quasi-periodic, then limk→∞ ‖xk – Tixk‖ = ,
for all i = , , . . . ,m.

Proof (i) Let p ∈ F , then by Lemma .(iv) we have limk→∞ ‖xk – p‖ exists. Let

lim
k→∞

‖xk – p‖ = c. ()

By () and Lemma .(ii), we get that

lim sup
k→∞

‖yik – p‖ ≤ c, for all i = , . . . ,m – . ()

Note that

‖xk+ – p‖ ≤ ( – tmk)‖y(m–)k – p‖ + tmk
∥∥Tnk

m y(m–)k – p
∥∥

≤ ( – tmk)‖y(m–)k – p‖ + tmk( + γk)‖y(m–)k – p‖
≤ ( + γk)‖y(m–)k – p‖
= ( + γk)

∥∥( – t(m–)k)(y(m–)k – p) + t(m–)k
(
Tnk
m–y(m–)k – p

)∥∥

≤ ( + γk)
(
( – t(m–)k)‖y(m–)k – p‖ + t(m–)k( + rk)‖y(m–)k – p‖)

≤ ( + γk)‖y(m–)k – p‖
...
≤ ( + γk)m–i‖yik – p‖,

for all i = , . . . ,m – . So that

c ≤ lim inf
k→∞

‖yik – p‖, for all i = , . . . ,m – . ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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From () and (), we have

lim
k→∞

‖yik – p‖ = c, for all i = , , . . . ,m – . ()

That is,

lim
k→∞

∥∥( – tik)(y(i–)k – p) + tik
(
Tnk
i y(i–)k – p

)∥∥ = c, for all i = , , . . . ,m – . ()

By Lemma .(i) and (), we get that

lim sup
k→∞

∥∥Tnk
i y(i–)k – p

∥∥ ≤ c, for all j = , , . . . ,m – . ()

By (), (), (), and Lemma ., we obtain

lim
k→∞

∥∥y(i–)k – Tnk
i y(i–)k

∥∥ = , for all i = , , . . . ,m – . ()

For the case i =m, by Lemma .(i), we have
∥∥Tnk

m y(m–)k – p
∥∥ ≤ ( + γk)‖y(m–)k – p‖.

This implies by () that

lim sup
k→∞

∥∥Tnk
m y(m–)k – p

∥∥ ≤ c. ()

Moreover,

lim
k→∞

∥∥( – tmk)(y(m–)k – p) + tmk
(
Tnk
m y(m–)k – p

)∥∥ = lim
k→∞

‖xk+ – p‖ = c.

Again, by Lemma ., we get that

lim
k→∞

∥∥y(m–)k – Tnk
m y(m–)k

∥∥ = . ()

Thus, () and () imply that

lim
k→∞

∥∥y(i–)k – Tnk
i y(i–)k

∥∥ = , for all i = , . . . ,m. ()

(ii) From (), we have

‖yik – y(i–)k‖ = tik
∥∥Tnk

i y(i–)k – y(i–)k
∥∥, for all i = , . . . ,m – .

By (), we obtain

lim
k→∞

‖yik – y(i–)k‖ = , for i = , . . . ,m – . ()

From

‖xk – yik‖ ≤ ‖xk – yk‖ + ‖yk – yk‖ + · · · + ‖y(i–)k – yik‖, for all i = , . . . ,m – ,

it follows by () that

lim
k→∞

‖xk – yik‖ = , for all i = , . . . ,m – . ()

From
∥∥xk – Tnk

i y(i–)k
∥∥ ≤ ‖xk – y(i–)k‖ +

∥∥y(i–)k – Tnk
i y(i–)k

∥∥,

it implies by () and () that

lim
k→∞

∥∥xk – Tnk
i y(i–)k

∥∥ = , for all i = , , . . . ,m. ()

(iii) For i = , from (ii) we have

lim
k→∞

∥∥Tnk
 xk – xk

∥∥ = . ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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If i = , , . . . ,m, then
∥∥Tnk

i xk – xk
∥∥ ≤ ∥∥Tnk

i xk – Tnk
i y(i–)k

∥∥ +
∥∥Tnk

i y(i–)k – xk
∥∥

≤ ank (xk)‖xk – y(i–)k‖ +
∥∥Tnk

i y(i–)k – xk
∥∥.

By (), (), and lim supk→∞ ank (xk) = , we get

lim sup
k→∞

∥∥Tnk
i xk – xk

∥∥ =  for all i = , , . . . ,m. ()

By () and (), we have

lim
k→∞

∥∥Tnk
i xk – xk

∥∥ =  for all i = , , . . . ,m. ()

From (), we have

‖xk+ – xk‖ ≤ ( – tmk)‖y(m–)k – xk‖ + tmk
∥∥Tnk

m y(m–)k – xk
∥∥

≤ ( – tmk)‖y(m–)k – xk‖ + tmk
(∥∥Tnk

m y(m–)k – y(m–)k
∥∥ + ‖y(m–)k – xk‖

)

= ‖y(m–)k – xk‖ + tmk
∥∥Tnk

m y(m–)k – y(m–)k
∥∥.

From () and (),

lim
k→∞

‖xk+ – xk‖ = . ()

The proof of the remaining part is identical to the proof of [, Lemma .(iii)] upon
replacing d(·, ·) with ‖ · ‖. �

By using Lemma . and the argument in the proof of [, Theorem .], we can obtain
the following result.

Lemma . Let C be a nonempty bounded closed convex subset of a Banach space X and
T, . . . ,Tm ∈ Tr(C). Let {tik}∞k= ⊂ [, ] and {nk} ⊂N be such that {xk} in () is well defined.
Assume that F :=

⋂m
i= F(Ti) �= ∅. Then {xk} converges strongly to a point in F if and only if

lim infk→∞ dist(xk ,F) = .

Theorem . Let X be a uniformly convex Banach space with the Opial property and C
be a nonempty bounded closed convex subset of X. Let T, . . . ,Tm ∈ Tr(C) be such that F :=⋂m

i= F(Ti) �= ∅. {tik}∞k= ⊂ [a,b]⊂ (, ) and {nk} ⊂N be such that {xk} in () is well defined.
If the set J = {k ∈ N : nk+ =  + nk} is quasi-periodic, then the sequence {xk} converges
weakly to a common fixed point of the family {Ti : i = , . . . ,m}.

Proof We have by Lemma . that limn→∞ ‖xk – p‖ exists for every p ∈ F . We shall prove
that {xk} has a unique weak subsequential limit in F . For this, we suppose that there are
subsequences {xkl} and {xkj} of {xk} which converge weakly to u and v, respectively. By
Lemma .(iii), limk→∞ ‖Tixk – xk‖ =  for all i = , . . . ,m. It follows from Lemma . that
u, v ∈ F(Ti) for all i = , . . . ,m. That is u, v ∈ F . Finally, we prove that u = v. Suppose not,
then by the Opial property we get that

lim
k→∞

‖xk – u‖ = lim
l→∞

‖xkl – u‖
< lim

l→∞
‖xkl – v‖

= lim
k→∞

‖xk – v‖
= lim

j→∞‖xkj – v‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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< lim
j→∞‖xkj – u‖

= lim
k→∞

‖xk – u‖.
This is a contradiction. Therefore, the proof is complete. �

Theorem . Let X be a uniformly convex Banach space and C be a nonempty bounded
closed convex subset of X. Let T, . . . ,Tm ∈ Tr(C) be such that Tl

i is semi-compact for some
i ∈ {, . . . ,m} and l ∈ N. {tik}∞k= ⊂ [a,b] ⊂ (, ) and {nk} ⊂ N be such that {xk} in () is
well defined. Suppose that F :=

⋂m
i= F(Ti) �= ∅ and the set J = {k ∈ N : nk+ =  + nk} is

quasi-periodic. Then {xk} converges strongly to a common fixed point of the family {Ti : i =
, , . . . ,m}.

Proof By Lemma ., we have

lim
k→∞

‖xk – Tixk‖ = , for all i = , . . . ,m. ()

Let i ∈ {, . . . ,m} be such that Tl
i is semi-compact. Thus, by Lemma .,

lim
k→∞

∥∥xk – Tl
i xk

∥∥ = .

We can also find a subsequence {xnj} of {xk} such that limj→∞ xkj = q ∈ C. Hence, from
(), we have

‖q – Tiq‖ = lim
j→∞‖xkj – Tixkj‖ = , for all i = , . . . ,m.

Thus q ∈ F . Therefore, {xkj} converges strongly to q ∈ F . But since limk→∞ ‖xk – q‖ exists,
{xk} must itself converges to q. This completes the proof. �

Theorem . Let X be a uniformly convex Banach space and C be a nonempty bounded
closed convex subset of X. Let {T, . . . ,Tm} ⊂ Tr(C) be satisfy Condition (A′′). Let {tik}∞k= ⊂
[a,b] ⊂ (, ) and {nk} ⊂ N be such that {xk} in () is well defined. Suppose that F :=⋂m

i= F(Ti) �= ∅ and the set J = {k ∈N : nk+ =  + nk} is quasi-periodic. Then {xk} converges
strongly to a common fixed point of the family {Ti : i = , , . . . ,m}.

Proof ByLemma., limk→∞ ‖xk–Tixk‖ = , for all i = , , . . . ,m. By usingCondition (A′′),
there exists a nondecreasing function f : [,∞) → [,∞) with f () = , f (r) >  for r ∈
(,∞) such that

lim
k→∞

f
(
dist(xk ,F)

) ≤ lim
k→∞

‖xk – Tjxk‖ =  for some j = , . . . ,m.

This implies that limk→∞ dist(xk ,F) = . The conclusion follows from Lemma .. �

3.2 Results for unbounded domains
To relax the boundedness of the domains we have to add some condition on the sequence
{bnk }.

Lemma. Let C be a nonempty closed convex subset of a Banach space X andT, . . . ,Tm ∈
Tr(C) be such that F :=

⋂m
i= F(Ti) �= ∅. Let {tik}∞k= ⊂ [, ] and {nk} ⊂ N be such that

{xk} in () is well defined. Assume that
∑∞

k= supx∈C bnk (x) < ∞. Then for p ∈ F, we have
limk→∞ ‖xk – p‖ exists.

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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Proof Similar to the proof of Lemma ., we can show that ‖xk+ – p‖ ≤ ( + ηk)‖xk – p‖
for all k ∈ N, where ηk =

(m

)
sk +

(m

)
sk + · · · + (m

m
)
smk and sk = supx∈C bnk (x). By assumption,

we have
∑∞

k= sik <∞ for all i = , . . . ,m. It follows that
∑∞

k= ηk < ∞. By Lemma ., we get
that limk→∞ ‖xk – p‖ exists. �

By using Lemma . and the argument in Section . we can obtain the following results.

Lemma. Let C be a nonempty closed convex subset of a Banach space X andT, . . . ,Tm ∈
Tr(C) be such that F :=

⋂m
i= F(Ti) �= ∅. Let {tik}∞k= ⊂ [, ] and {nk} ⊂ N be such that {xk}

in () is well defined. Assume that
∑∞

k= supx∈C bnk (x) < ∞. Then
(i) limk→∞ ‖y(i–)k – Tnk

i y(i–)k‖ = , for all i = , , . . . ,m;
(ii) limk→∞ ‖xk – Tnk

i y(i–)k‖ = , for all i = , , . . . ,m;
(iii) If the set J = {k ∈N : nk+ =  + nk} is quasi-periodic, then limk→∞ ‖xk – Tixk‖ = ,

for all i = , , . . . ,m.

Lemma. Let C be a nonempty closed convex subset of a Banach space X andT, . . . ,Tm ∈
Tr(C) be such that F :=

⋂m
i= F(Ti) �= ∅. Let {tik}∞k= ⊂ [, ] and {nk} ⊂ N be such that {xk}

in () is well defined. Assume that
∑∞

k= supx∈C bnk (x) <∞. Then {xk} converges strongly to
a point in F if and only if lim infk→∞ dist(xk ,F) = .

Theorem . Let X be a uniformly convex Banach space with the Opial property and
C be a nonempty closed convex subset of X. Let T, . . . ,Tm ∈ Tr(C) be such that F :=⋂m

i= F(Ti) �= ∅. {tik}∞k= ⊂ [a,b] ⊂ (, ) and {nk} ⊂ N be such that {xk} in () is well de-
fined. Assume that

∑∞
k= supx∈C bnk (x) < ∞ and the set J = {k ∈ N : nk+ =  + nk} is quasi-

periodic. Then the sequence {xk} converges weakly to a common fixed point of the family
{Ti : i = , . . . ,m}.

Theorem . Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let T, . . . ,Tm ∈ Tr(C) be such that Tl

i is semi-compact for some i ∈
{, . . . ,m} and l ∈ N, {tik}∞k= ⊂ [a,b] ⊂ (, ) and {nk} ⊂ N be such that {xk} in () is well
defined. Suppose that

∑∞
k= supx∈C bnk (x) < ∞, F :=

⋂m
i= F(Ti) �= ∅ and the set J = {k ∈ N :

nk+ = +nk} is quasi-periodic. Then {xk} converges strongly to a common fixed point of the
family {Ti : i = , , . . . ,m}.

Theorem . Let X be a uniformly convex Banach space and C be a nonempty closed
convex subset of X. Let {T, . . . ,Tm} ⊂ Tr(C) be satisfy Condition (A′′). Let {tik}∞k= ⊂ [a,b]⊂
(, ) and {nk} ⊂N be such that {xk} in () is well defined. Suppose that∑∞

k= supx∈C bnk (x) <
∞, F :=

⋂m
i= F(Ti) �= ∅ and the set J = {k ∈ N : nk+ =  + nk} is quasi-periodic. Then {xk}

converges strongly to a common fixed point of the family {Ti : i = , , . . . ,m}.

4 Results in CAT(0) spaces
A metric space X is a CAT() space if it is geodesically connected, and if every geodesic
triangle in X is at least as thin as its comparison triangle in the Euclidean plane. It is well
known that any complete, simply connectedRiemannianmanifold having nonpositive sec-
tional curvature is a CAT() space. Other examples include Pre-Hilbert spaces (see []),
R-trees (see []), Euclidean buildings (see []), the complex Hilbert ball with a hyper-
bolic metric (see []), and many others. For a thorough discussion of these spaces and of
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the fundamental role they play in geometry, we refer the reader to Bridson and Haefliger
[].
Let x, y ∈ X, by Lemma .(iv) of [] for each t ∈ [, ], there exists a unique point z ∈

[x, y] such that

d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y). ()

From now on, we will use the notation ( – t)x⊕ ty for the unique point z satisfying ().
Let {xn} be a bounded sequence in a metric space (X,d). For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set
A

({xn}
)
=

{
x ∈ X : r

(
x, {xn}

)
= r

({xn}
)}
.

It is known from Proposition  of [] that in a CAT() space, A({xn}) consists of exactly
one point. We now give the definition of �-convergence.

Definition . [, ] A sequence {xn} in a metric space X is said to �-converge to x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case
we write � – limn xn = x and call x the �-limit of {xn}.

Let C be a nonempty closed convex subset of a CAT() space X and fix x ∈ C. Define a
sequence {xk} in C as

xk+ = ( – tmk)y(m–)k ⊕ tmkTnk
m y(m–)k , ()

y(m–)k = ( – t(m–)k)y(m–)k ⊕ t(m–)kT
nk
m–y(m–)k ,

y(m–)k = ( – t(m–)k)y(m–)k ⊕ t(m–)kT
nk
m–y(m–)k ,

...
yk = ( – tk)yk ⊕ tkT

nk
 yk ,

yk = ( – tk)yk ⊕ tkT
nk
 yk ,

yk = xk , k ∈N,

where T, . . . ,Tm ∈ T (C), {tik}∞k= are sequences in [, ] for all i = , , . . . ,m, and {nk} be an
increasing sequence of natural numbers.
By using the argument in Section  together with the results in [, , , ], we can

also obtain the analogous results for CAT() spaces.

Theorem . Let C be a nonempty closed convex subset of a complete CAT() space
X. Let T, . . . ,Tm ∈ Tr(C) be such that F :=

⋂m
i= F(Ti) �= ∅, {tik}∞k= ⊂ [a,b] ⊂ (, ) and

{nk} ⊂ N be such that {xk} in () is well defined. Suppose that either C is bounded or∑∞
k= supx∈C bnk (x) < ∞. If the set J = {k ∈ N : nk+ =  + nk} is quasi-periodic, then the

sequence {xk} �-converges to a common fixed point of the family {Ti : i = , . . . ,m}.

Theorem . Let C be a nonempty closed convex subset of a complete CAT() space X.
Let T, . . . ,Tm ∈ Tr(C) be such that F :=

⋂m
i= F(Ti) �= ∅ and Tl

i is semi-compact for some

http://www.fixedpointtheoryandapplications.com/content/2012/1/108
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i ∈ {, . . . ,m} and l ∈ N. Let {tik}∞k= ⊂ [a,b] ⊂ (, ) and {nk} ⊂ N be such that {xk} in ()
is well defined. Suppose that either C is bounded or

∑∞
k= supx∈C bnk (x) < ∞. If the set J =

{k ∈ N : nk+ =  + nk} is quasi-periodic, then {xk} converges strongly to a common fixed
point of the family {Ti : i = , , . . . ,m}.

Theorem . Let C be a nonempty closed convex subset of a complete CAT() space X.
Let {T, . . . ,Tm} ⊂ Tr(C) be satisfy Condition (A′′) and F :=

⋂m
i= F(Ti) �= ∅. Let {tik}∞k= ⊂

[a,b]⊂ (, ) and {nk} ⊂N be such that {xk} in () is well defined. Suppose that either C is
bounded or

∑∞
k= supx∈C bnk (x) < ∞. If the set J = {k ∈ N : nk+ =  + nk} is quasi-periodic,

then {xk} converges strongly to a common fixed point of the family {Ti : i = , , . . . ,m}.
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