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Abstract
In this article, we study the fixed point theorems for nonspreading mappings, defined
by Kohsaka and Takahashi, in Banach spaces but using the sense of norm instead of
using the function φ . Furthermore, we prove a weak convergence theorem for
finding a common fixed point of two quasi-nonexpansive mappings having
demiclosed property in a uniformly convex Banach space. Consequently, such
theorem can be deduced to the case of the nonspreading type mappings and some
generalized nonexpansive mappings.
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1 Introduction
Let T be a mapping on a nonempty subset E of a Banach space X. The mapping T is said
to be quasi-nonexpansive [] if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ E and for all
y ∈ F(T), where F(T) denoted the set of all fixed points of T .
In , Suzuki [] introduced a condition onT which is weaker than nonexpansiveness

and stronger than quasi-nonexpansiveness, called condition (C) and obtained some fixed
point theorems for such mappings.
Since then, Dhompongsa et al. [] extended Suzuki’s main theorems to a wider class of

Banach spaces. Furthermore, the fixedpoint theoremsof suchmappings have been studied
by the authors of [–], etc.
During the same period, Kohsaka and Takahashi [] introduced a nonlinear mapping

called nonspreading mapping in a smooth, strictly convex, and reflexive Banach space X
as follows:
Let E be a nonempty closed and convex subset of X. Then, a mapping S : E → E is said

to be nonspreading if

φ(Sx,Sy) + φ(Sy,Sx)≤ φ(Sx, y) + φ(Sy,x) (.)

for all x, y ∈ E, where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ X and J is the duality
mapping on E. When X is a Hilbert space, we know that φ(x, y) = ‖x – y‖ for all x, y ∈ X
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so a mapping S : E → E is said to be nonspreading if

‖Sx – Sy‖ ≤ ‖Sx – y‖ + ‖x – Sy‖ (.)

for all x, y ∈ E.
Since then, some fixed point theorems of such mapping has been studied by many re-

searchers such as [–].
To discuss about weak convergence theorems for two nonexpansive mappings T, T on

E to itself, Takahashi and Tamura [] constructed the following iterative scheme:

x = x ∈ E,

xn+ = ( – αn)xn + αnT
{
βnTxn + ( – βn)xn

}
.

In , Dhompongsa et al. [] showed, by giving examples, that the class of nonspread-
ing mappings is different from the class of mappings satisfying condition (C) and proved
weak convergence theorems for a common fixed point of such two mappings in Hilbert
spaces by using Takahashi and Tamura’s iterative scheme.
In this article, motivated by Dhompongsa et al. [], we prove some fixed point theo-

rems for nonspreading mappings for a general Banach space, i.e., nonspreading mappings
satisfying (.) instead of (.). Furthermore, we prove a weak convergence theorem for a
common fixed point of any two quasi-nonexpansive mappings having demiclosed prop-
erty in a uniformly convex Banach space. Consequently, such theorem can be deduced
to the case of the nonspreading type mappings and some generalized nonexpansive map-
pings.

2 Preliminaries
Let E be a nonempty closed and convex subset of a Banach space X and {xn} be a bounded
sequence in X. For x ∈ X, define the asymptotic radius of {xn} at x as the number

r
(
x, {xn}

)
= lim sup

n→∞
‖xn – x‖.

Let

r ≡ r
(
E, {xn}

)
:= inf

{
r
(
x, {xn}

)
: x ∈ E

}

and

A≡ A
(
E, {xn}

)
:=

{
x ∈ E : r

(
x, {xn}

)
= r

}
.

The number r and the set A are, respectively, called the asymptotic radius and asymptotic
center of {xn} relative to E. It is known that A(E, {xn}) is nonempty, weakly compact and
convex as E is [].

Definition . [] A Banach space X is said to have the Opial property if for each se-
quence {xn} ⊂ X weakly converging to a point x ∈ X (denote as xn ⇀ x) and for any y ∈ X
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such that y �= x there holds

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

or equivalently

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖.

Definition . Themodulus of convexity of a Banach spaceX is the function δX : [, ] →
[, ] defined by

δX(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
,

for all ε ∈ [, ]. A Banach space X is said to be uniformly convex if δX() =  and δX(ε) > 
for all  < ε ≤ .

In , the following condition was defined by Suzuki []:

Definition . [] Let T be a mapping on a subset E of Banach space X. Then T is said
to be a satisfy condition (C) if



‖x – Tx‖ ≤ ‖x – y‖ implies ‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ E.

We further have the following from [].

Theorem . [] Let E be a weakly compact convex subset of a uniformly convex Banach
space X. Let T be a mapping on E. Assume that T satisfies condition (C). Then T has a
fixed point.

Proposition. [] Assume that amapping T satisfies condition (C) and has a fixed point.
Then T is a quasi-nonexpansive mapping.

Lemma . [] Let T be a mapping on a closed subset E of a Banach space X. Assume
that T satisfies condition (C). Then F(T) is closed. Moreover, if X is strictly convex and E is
convex, then F(T) is also convex.

Proposition . [] Let T be a mapping on subset E of Banach space X with the
Opial property. Assume that T satisfies condition (C). If {xn} converges weakly to z and
limn→∞ ‖Txn – xn‖ = , then Tz = z. That is (I – T) is demiclosed at .

In , Kohsaka and Takahashi [] introduced the following nonlinear mapping.

Definition . [] Let X be a smooth, strictly convex, and reflexive Banach space, J be the
duality mapping of X and let E be a nonempty closed convex subset of X. Then, a mapping
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S : E → E is said to be nonspreading if

φ(Sx,Sy) + φ(Sy,Sx)≤ φ(Sx, y) + φ(Sy,x)

for all x, y ∈ E, where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ X. In the case when X is
a Hilbert space, S is said to be nonspreading if ‖Sx – Sy‖ ≤ ‖Sx – y‖ + ‖x – Sy‖ for all
x, y ∈ E.

Theorem . [] Let X be a smooth, strictly convex, and reflexive Banach space, E be a
nonempty closed convex subset of X and let S be a nonspreading mapping of E into itself.
Then the following are equivalent:
• there exists x ∈ E such that {Snx} is bounded;
• F(S) is nonempty.

In , Dhompongsa et al. [] proved that, by giving the following examples, in Banach
spaces, the class of nonspreading mappings for a general Banach space and the class of
mappings satisfying condition (C) are different. For the sake of completeness, we give the
proof.

Example  [] Define a mapping T on [, ] by

Tx =

⎧⎨
⎩
, if x �= ;

, if x = .

From [], T does not satisfy condition (C). But T is nonspreading. Indeed if x =  and
y �= , we have

‖Tx – Ty‖ =  <  = ‖Ty – x‖.

It is easy to see in the other cases that ‖Tx – Ty‖ ≤ ‖x – Ty‖ + ‖y – Tx‖.

Example  [] Define a mapping T on [, ] by

Tx =  – x for all x ∈ [, ].

Thus, T is nonexpansive mapping and hence it satisfies condition (C). But T is not non-
spreading. In fact, if x =  and y = , we have

‖Tx – Ty‖ =  >  = ‖x – Ty‖ + ‖y – Tx‖.

The authors also studied the iterative scheme of Takahashi and Tamura [] for approxi-
mation a commonfixed point of nonspreadingmappings and Suzuki’smappings inHilbert
spaces as follows:

Theorem . [] Let E be a nonempty closed convex subset of a Hilbert space H, let S
be a nonspreading mapping of E into itself and let T be a condition (C) mapping of E into

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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itself such that F(S)∩ F(T) �= ∅. Define a sequence {xn} and {zn} as follows:

(A)

⎧⎨
⎩
x = x ∈ E,

xn+ = αnS{βnTxn + ( – βn)xn} + ( – αn)xn,

(B)

⎧⎨
⎩
z = z ∈ E,

zn+ = αnT{βnSzn + ( – βn)zn} + ( – αn)zn

for all n ∈N, where {αn} ⊂ (, ] and {βn} ⊂ [, ]. Then, the following hold.
• if lim infn→∞ αn( – αn) >  and

∑∞
n= βn < ∞, then {xn} generated by (A) and {zn}

generated by (B) converge weakly to v ∈ F(S) and u ∈ F(T), respectively;
• if lim infn→∞ αn( – αn) >  and lim infn→∞ βn( – βn) > , then {xn} generated by (A)
and {zn} generated by (B) converge weakly to u ∈ F(S)∩ F(T) and v ∈ F(S)∩ F(T),
respectively, where u = limn→∞ PF(S)∩F(T)xn and v = limn→∞ PF(S)∩F(T)zn.

Since our purpose is to study fixed point theorems of mappings defined on uniformly
convex Banach spaces, we need the following result.

Lemma . [] Let E be a uniformly convex Banach space and r > . Then there exists a
strictly increasing, continuous, and convex function g : [, r]→R such that g() =  and

∥∥tx + ( – t)y
∥∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)

for all x, y ∈ Br and t ∈ [, ], where Br = {z ∈ E : ‖z‖ ≤ r}.

3 Fixed point theorems for nonspreadingmappings for a general Banach space
We recall that S : E → E is a nonspreading mapping for a general Banach space if

‖Sx – Sy‖ ≤ ‖Sx – y‖ + ‖x – Sy‖ for all x, y ∈ E.

First, we consider the existence of a fixed point for such mappings in Banach spaces.

Theorem. Let X be a Banach space and E be a nonempty weakly compact convex subset
of X such that A(E, {xn}) is singleton for all bounded sequence {xn} in X. If S : E → E is a
nonspreading mapping for a general Banach space, then F(S) is nonempty.

Proof Let x ∈ E. Since E is weakly compact, E is bounded and hence {Snx} is bounded
∀n ∈N. Let y ∈ A(E, {Snx}). By the definition of S, we have

∥∥Snx – Sy
∥∥ ≤ 


∥∥Snx – y

∥∥ +


∥∥Sn–x – Sy

∥∥.

Therefore,

lim sup
n→∞

∥∥Snx – Sy
∥∥ ≤ lim sup

n→∞

(


∥∥Snx – y

∥∥ +


∥∥Sn–x – Sy

∥∥
)
,

lim sup
n→∞



∥∥Snx – Sy

∥∥ ≤ lim sup
n→∞



∥∥Snx – y

∥∥
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thus, we have lim supn→∞ ‖Snx – Sy‖ ≤ lim supn→∞ ‖Snx – y‖. This implies that Sy ∈
A(E, {Snx}). By the uniqueness ofA(E, {Snx}), we have Sy = y and hence F(S) is nonempty.�

It follows from the fact that, in a uniformly convex Banach space, the asymptotic center
of a bounded sequence with respect to a bounded closed convex subset is singleton. So,
we have the following.

Theorem . Let X be a uniformly convex Banach space and E be a nonempty weakly
compact convex subset of X. If S : E → E is a nonspreading mapping for a general Banach
space, then F(S) is nonempty.

Proposition . Let X be a Banach space and E be a nonempty subset of X. If S : E → E
is a nonspreading mapping for a general Banach space and F(S) �= ∅. Then S is a quasi-
nonexpansive mapping.

Proof Let x ∈ E and y ∈ F(S). By the definition of S, we have

‖Sx – y‖ = ‖Sx – Sy‖ ≤ ‖Sx – y‖ + ‖x – Sy‖.

Therefore, ‖Sx – y‖ ≤ ‖x – Sy‖ = ‖x – y‖ and hence the proof is complete. �

Theorem . Let X be a uniformly convex Banach space and E be a nonempty weakly
compact convex subset of X. Assume that S : E → E is a nonspreadingmapping for a general
Banach space and T : E → E satisfies condition (C). If S and T are commutative, then
F(S)∩ F(T) �= ∅.

Proof By Theorem . and Lemma ., we have F(T) is nonempty, closed, and convex.
By the commutative of S and T , we have Sx = S(Tx) = T(Sx), and hence Sx ∈ F(T) for all
x ∈ F(T). Therefore, S : F(T) → F(T). Since E is weakly compact convex and F(T) is a
closed subset of E, F(T) is weakly compact convex. By Theorem ., we have F(S) �= ∅. So
there exists y ∈ F(S) such that y = Sy ∈ F(T) which implies that y ∈ F(S)∩ F(T). �

Open problem Can Theorem . be improved to a commutative familyF of nonspread-
ing mappings for a general Banach space when F generates a left reversible semigroup
(i.e., any two right ideals have nonvoid intersection) (see [, ])?

We show the demiclosedness of a nonspreading mapping for a general Banach space as
follows:

Theorem . Let X be a Banach space having Opial property and E be a nonempty closed
convex subset of X. Assume that S : E → E is a nonspreading mapping for a general Banach
space. If {xn} is a sequence in E such that xn ⇀ x and limn→∞ ‖Sxn – xn‖ = , then x ∈ F(S).

Proof Let xn ⇀ x and limn→∞ ‖Sxn – xn‖ = . Assume that Sx �= x. By Opial property of X,
we have

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – Sx‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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By the definition of S, we have

‖xn – Sx‖ ≤ (‖xn – Sxn‖ + ‖Sxn – Sx‖)
≤ ‖xn – Sxn‖ + ‖xn – Sxn‖‖Sxn – Sx‖ + 


‖Sxn – x‖ + 


‖xn – Sx‖.

Since xn ⇀ x, {xn} is bounded and hence {Sxn –Sx} is bounded. Thus limn→∞ ‖Sxn –xn‖ =
 implies that

lim sup
n→∞

‖xn – Sx‖ ≤ lim sup
n→∞

‖Sxn – x‖

≤ lim sup
n→∞

(‖Sxn – xn‖ + ‖xn – x‖).

By the boundedness of {xn – x} and limn→∞ ‖Sxn – xn‖ = , we have

lim sup
n→∞

‖xn – Sx‖ ≤ lim sup
n→∞

‖xn – x‖

which is a contradiction. Thus we have x ∈ F(S). �

Lemma . Let X be a Banach space. Let E be a nonempty closed convex subset of X. If
S : E → E and T : E → E are quasi-nonexpansive mappings such that F(S)∩ F(T) �= ∅. Let
{xn} be defined as

⎧⎨
⎩
x = x ∈ E,

xn+ = αnS{βnTxn + ( – βn)xn} + ( – αn)xn

for all n ∈N, where {αn} ⊂ (, ) and {βn} ⊂ (, ).
Then limn→∞ ‖xn –w‖ exists for all w ∈ F(T)∩ F(S) and {xn} is bounded.

Proof Let w ∈ F(S)∩ F(T) and yn = βnTxn + ( – βn)xn. By the quasi-nonexpansiveness of
S and T , we have

‖Syn –w‖ ≤ ‖yn –w‖
=

∥∥βnTxn + ( – βn)xn –w
∥∥

≤ βn‖xn –w‖ + ( – βn)‖xn –w‖
= ‖xn –w‖. (.)

By (.) we have,

‖xn+ –w‖ =
∥∥αnSyn + ( – αn)xn –w

∥∥
≤ αn‖Syn –w‖ + ( – αn)‖xn –w‖
≤ αn‖xn –w‖ + ( – αn)‖xn –w‖
= ‖xn –w‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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We can conclude by induction that ‖xn – w‖ ≤ ‖x – w‖ for all n ∈ N. This imply that
{‖xn –w‖} is a decreasing and bounded sequence and hence limn→∞ ‖xn –w‖ exists. Fur-
thermore, {xn} is bounded since ‖xn‖ ≤ ‖xn –w‖ + ‖w‖. �

Now, we are in a position to prove our main result.

Theorem . Let X be a uniformly convex Banach space having Opial property. Let E be
a nonempty closed convex subset of X. If S : E → E and T : E → E are quasi-nonexpansive
mappings having demiclosed property. Assume that F(S)∩ F(T) �= ∅. Let {xn} be defined as

⎧⎨
⎩
x = x ∈ E,

xn+ = αnS{βnTxn + ( – βn)xn} + ( – αn)xn

for all n ∈N, where {αn} ⊂ (, ) and βn ⊂ (, ).
Then lim infn→∞ αn( –αn) >  and lim infn→∞ βn( – βn) >  imply that xn ⇀ v ∈ F(S)∩

F(T).

Proof Let w ∈ F(S)∩ F(T). As in the proof in Lemma ., we have ‖xn –w‖ ≤ ‖x –w‖ for
all n ∈ N. Using Lemma ., we put r = ‖x – w‖ so that there exists a strictly increasing,
continuous, and convex function g : [, r]→ R such that g() =  and

‖yn –w‖ =
∥∥βn(Txn –w) + ( – βn)(xn –w)

∥∥

≤ βn‖Txn –w‖ + ( – βn)‖xn –w‖ – βn( – βn)g
(‖Txn – xn‖

)
.

Hence, by the quasi-nonexpansiveness of T , we obtain

‖yn –w‖ ≤ ‖xn –w‖ – βn( – βn)g
(‖Txn – xn‖

)
(.)

≤ ‖xn –w‖. (.)

From ‖xn+ – w‖ = ‖αn(Syn – w) + ( – αn)(xn – w)‖ and (.), we put r = ‖x – w‖ in
Lemma . again to get a strictly increasing, continuous, and convex function g : [, r] →
R such that g() =  and

‖xn+ –w‖ ≤ αn‖Syn –w‖ + ( – αn)‖xn –w‖ – αn( – αn)g
(‖Syn – xn‖

)
.

By the quasi-nonexpansiveness of S and from (.), we obtain

‖xn+ –w‖ ≤ αn‖yn –w‖ + ( – αn)‖xn –w‖ – αn( – αn)g
(‖Syn – xn‖

)
(.)

≤ αn‖xn –w‖ + ( – αn)‖xn –w‖ – αn( – αn)g
(‖Syn – xn‖

)
= ‖xn –w‖ – αn( – αn)g

(‖Syn – xn‖
)
. (.)

Hence

αn( – αn)g
(‖Syn – xn‖

) ≤ ‖xn –w‖ – ‖xn+ –w‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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Since lim infn→∞ αn( – αn) > , there exist k >  and N ∈N such that

αn( – αn) ≥ k, ∀n≥ N .

By Lemma ., we have

 = lim sup
n→∞

(‖xn –w‖ – ‖xn+ –w‖)

and hence

 ≥ lim sup
n→∞

αn( – αn)g
(‖Syn – xn‖

) ≥ k lim sup
n→∞

g
(‖Syn – xn‖

)
.

Since k > , we have lim supn→∞ g(‖Syn – xn‖) =  and hence limn→∞ g(‖Syn – xn‖) = .
Since ‖Syn – xn‖ ≤ ‖x–w‖ for all n ∈N, {‖Syn – xn‖} is bounded and hence we can put

M = lim supn→∞ ‖Syn – xn‖. So there exists {‖Synk – xnk‖} ⊂ {‖Syn – xn‖} such that

lim
k→∞

‖Synk – xnk‖ =M.

Since g is a continuous function, we have

 = lim
k→∞

g
(‖Synk – xnk‖

)
= g(M).

Since g() =  and g is strictly increasing,M = .
Therefore, lim supn→∞ ‖Syn – xn‖ =  and hence limn→∞ ‖Syn – xn‖ = .
From (.), we have

 ≤ αn( – αn)g
(‖Syn – xn‖

)
≤ ‖xn –w‖ – ‖xn+ –w‖ + αn

(‖yn –w‖ – ‖xn –w‖).
Hence,

αn
(‖xn –w‖ – ‖yn –w‖) ≤ ‖xn –w‖ – ‖xn+ –w‖. (.)

Since αn( – αn) < αn for all n ∈N,  < lim infn→∞ αn( – αn) < lim infn→∞ αn.
Therefore, there exist k >  and N ∈N such that

αn ≥ k, ∀n≥ N .

Then from (.) and limn→∞ ‖xn –w‖ exists, we have limn→∞(‖xn –w‖ – ‖yn –w‖) = .
On the other hand, we have from (.) that

βn( – βn)g
(‖Txn – xn‖

) ≤ ‖xn –w‖ – ‖yn –w‖.

Since lim infn→∞ βn( – βn) >  so there exist k >  and N ∈N such that

αn ≥ k, ∀n≥ N .

Therefore, we can conclude that limn→∞ g(‖Txn – xn‖) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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Similarly, the continuity and strictly convexity of g imply that limn→∞ ‖Txn – xn‖ = .
Since {xn} is bounded, there exists {xni} ⊂ {xn} such that xni ⇀ v. From demiclosedness

of T , we have v ∈ F(T). Since

lim sup
n→∞

‖yn – xn‖ = lim sup
n→∞

∥∥βnTxn + ( – βn)xn – xn
∥∥

= lim sup
n→∞

βn‖Txn – xn‖,

where {βn} ⊂ (, ) and limn→∞ ‖Txn – xn‖ = , we have limn→∞ ‖yn – xn‖ = .
Using limn→∞ ‖yn – xn‖ =  and xni ⇀ v, by passing through subsequences, if necessary,

we can assume that there exists a weakly convergent subsequence {yni} of {yn} such that
yni ⇀ v.
Furthermore, consider

‖Syn – yn‖ = ‖Syn – xn + xn – yn‖
≤ ‖Syn – xn‖ + ‖xn – yn‖.

Since limn→∞ ‖Syn – xn‖ =  and limn→∞ ‖yn – xn‖ = , limn→∞ ‖Syn – yn‖ = .
By the demiclosedness of S, we have v ∈ F(S) and hence v ∈ F(S)∩ F(T).
Finally, we show that xn ⇀ v. Let {xnk } be arbitrary subsequence of {xn}. Since {xnk } is

bounded, there exists {xnki } ⊂ {xnk } that xnki ⇀ u. The same proof as v above, there exists
{ynki } ⊂ {ynk } such that ynki ⇀ u and u ∈ F(S)∩ F(T).
Suppose that v �= u. Using Lemma . to guarantee that limn→∞ ‖xn – v‖ and

limn→∞ ‖xn – u‖ exist and hence we have from the Opial property that

lim
n→∞‖xn – v‖ = lim

i→∞‖xni – v‖
< lim

i→∞‖xni – u‖
= lim

n→∞‖xn – u‖
= lim

i→∞‖xnki – u‖
< lim

i→∞‖xnki – v‖
= lim

n→∞‖xn – v‖.

This is a contradiction. So xn ⇀ v ∈ F(T)∩ F(S). �

Since the class of nonspreading mappings for a general Banach space is different from
the class of mappings satisfying condition (C), we can apply Proposition . and Proposi-
tion . to deduce Theorem . as follows:

Corollary . Let X be a uniformly convex Banach space having Opial property. Let E be
a nonempty closed convex subset of X. Assume that S : E → E is a nonspreading mapping
for a general Banach space and T : E → E satisfies condition (C) such that F(S)∩ F(T) �= ∅.
Let {xn} and {zn} be defined as

(A)

⎧⎨
⎩
x = x ∈ E,

xn+ = αnS{βnTxn + ( – βn)xn} + ( – αn)xn,

http://www.fixedpointtheoryandapplications.com/content/2012/1/110
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(B)

⎧⎨
⎩
z = z ∈ E,

zn+ = αnT{βnSzn + ( – βn)zn} + ( – αn)zn

for all n ∈N, where {αn} ⊂ (, ) and βn ⊂ (, ).
If lim infn→∞ αn( –αn) >  and lim infn→∞ βn( –βn) > , then {xn} generated by (A) and

{zn} generated by (B) converge weakly to u ∈ F(S)∩ F(T) and v ∈ F(S)∩ F(T), respectively.
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