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1 Introduction
Let E be a Banach space andC a nonempty bounded closed convex subset of E. Amapping
T onC is said to be nonexpansive if ‖Tx–Ty‖ ≤ ‖x–y‖ for all x, y ∈ C. Awell-known result
of Browder [] asserts that if E is uniformly convex, then every nonexpansive mapping on
C has a fixed point. Kirk [], Belluce and Kirk [] extended this result to the case thatX has
a normal structure or Opial’s property. Goebel and Kirk [] proved that if E is a uniformly
convex Banach space, then every asymptotically nonexpansive mapping on C has a fixed
point.
As is well known, not every semigroup of nonexpansive mappings on a subset of a Ba-

nach space has a fixed point []. The existence and convergence of fixed points for semi-
groups of various mappings have been studied extensively [–]. Recently, Suzuki and
Takahashi [], Takahashi and Zembayashi [], Zhu and Li [] proved the existence the-
orems of fixed points for semigroups � = {T(t) : t ≥ } of nonexpansive, asymptotically
nonexpansive and asymptotically nonexpansive typemappings, respectively. For instance,
in [], Takahashi and Zembayashi proved the following theorem:

Theorem . [] Let C be a nonempty compact convex subset of a Banach space E and
� = {T(t) : t ≥ } be a semigroup of asymptotically nonexpansive mappings on C, then the
set of common fixed points F(�) of � is nonempty.

Many results are known in the case that the semigroup G is commutative, amenable or
reversible [–]. In the case of an amenable semigroup, the first result was established
by Takahashi [] where he proved:
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Theorem . [] Let C be a nonempty compact convex subset of a Banach space E. Let
� = {T(t) : t ∈ G} be an amenable semigroup of nonexpansive mappings on C. Then C
contains a common fixed point for �.

Theorem . was proved for a commutative semigroup by DeMarr []. Later in [],
Lau showed that the fixed point property is equivalent to the existence of a left invariant
mean on AP(�), the space of almost periodic functions on the semigroup �. It should be
pointed out that if � is left reversible, then AP(�) always has a left invariant mean [],
but the converse is false []. And in [], Lau, Miyake and Takahashi gave the following
existence theorem:

Theorem . [] Let C be a nonempty weakly compact convex subset of a Banach space
E. Let G be a left reversible semigroup (with identity) and � = {T(t) : t ∈G} be a semigroup
of nonexpansive mappings on C. Let X be a left invariant �-stable subspace of l∞(G) con-
taining , and μ be a left invariant mean on X. Then F(�) = F(Tμ)∩Ca, where Ca denotes
the set of almost periodic elements in C, i.e., all x ∈ C such that {T(s)x : s ∈ G} is relatively
compact in the norm topology of E. Further, if C is compact, then the set F(�) is nonempty.

In [], Saeidi extended Theorem . to the case for left reversible semigroups of asymp-
totically nonexpansive mappings. Inspired and motivated by [–, , , , ], we in-
vestigate the existence and convergence of fixed points for left amenable semigroups of
asymptotically nonexpansive type mappings in Banach spaces. We first provide the exis-
tence theorem of fixed points for left amenable semigroups of asymptotically nonexpan-
sive type mappings in Banach spaces. Utilizing this result, we obtain a strong convergence
theorem of iterative sequences for left amenable semigroups of asymptotically nonexpan-
sive type mappings. The results obtained in this paper extend and improve many recent
results in [–, , , ].

2 Preliminaries
LetC be a nonempty bounded subset of a Banach spaceE. LetG be a semitopological semi-
group, i.e., G is a semigroup with a Hausdorff topology such that for s ∈ G the mappings
s 	→ st and s 	→ ts fromG toG are continuous. Let � = {T(t) : t ∈G} be a continuous repre-
sentation of G on C, i.e., T(ts)x = T(t)T(s)x, t, s ∈G, x ∈ C and the mapping (t,x) 	→ T(t)x
from G × C into C is continuous when G × C has the product topology. Recall that � is
said to be
() nonexpansive if for all x, y ∈ C and t ∈G,

∥∥T(t)x – T(t)y
∥∥ ≤ ‖x – y‖;

() asymptotically nonexpansive [–] if there exists a function k :G 	→ [, +∞) with
infs∈G supt∈G k(ts)≤  such that for all x, y ∈ C and t ∈G,

∥∥T(t)x – T(t)y
∥∥ ≤ k(t)‖x – y‖;

() asymptotically nonexpansive type [–] if for each x ∈ C, there exists a function
r(·,x) :G 	→ [, +∞) with infs∈G supt∈G r(ts,x) =  such that for all x, y ∈ C and t ∈G,

∥∥T(t)x – T(t)y
∥∥ ≤ ‖x – y‖ + r(t,x).
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It is easily seen that ()⇒ ()⇒ () and that both inclusions are proper [–].
Let l∞(G) be the Banach space of all bounded real valued functions onGwith the supre-

mumnorm. Then, for each s ∈G and f ∈ l∞(G), we can define lsf in l∞(G) by (lsf )(t) = f (st)
for all t ∈ G. Let X be a subspace of l∞(G) containing  and X* be its dual space. An ele-
ment μ ∈ X* is called a mean on X if ‖μ‖ = μ() = . We always denote the value of μ at
f ∈ X by μt〈f (t)〉 = μ(f ). Let X be left invariant, i.e., ls(X) ⊂ X for all s ∈ G. A mean μ on
X is said to be left invariant if μ(lsf ) = μ(f ) for all s ∈G and f ∈ X. Further, X is called left
amenable if X has a left invariant mean. In this case, we also say that G is a left amenable
semigroup. Recall that a semigroup G is called left reversible if any two closed right ideals
of G have nonvoid intersection. In this case, (G,≤) is a directed system when the binary
relation ≤ on G is defined by s ≤ t if and only if {s} ∪ sG ⊇ {t} ∪ tG, s, t ∈ G. As is well
known, the class of left reversible semigroups includes all commutative semigroups and if
a semigroup G is left amenable, then G is left reversible. But the converse is false [].
Let � = {T(t) : t ∈G} be an asymptotically nonexpansive type semigroup on C. Let F(�)

denote the set of all fixed points of �, i.e., F(�) = {x ∈ C : T(s)x = x,∀s ∈ G}. A subspace
X of l∞(G) is called �-stable if functions s 	→ 〈T(s)x,x*〉 and s 	→ ‖T(s)x – y‖ on G are in
X for all x, y ∈ C and x* ∈ E*. We know that if μ is a mean on X and if for each x* ∈ E*

the function s 	→ 〈T(s)x,x*〉 is contained in X and C is weakly compact, then there exists
a unique point x of E such that μs〈T(s)x,x*〉 = 〈x,x*〉 for all x* ∈ E*. Such a point x is
always denoted by Tμx. Obviously, Tμx = x for each x ∈ F(�).

3 Main results
Lemma. Let C be a nonempty weakly compact convex subset of a Banach space E. Let G
be a left reversible semigroup and � = {T(t) : t ∈ G} be a continuous representation of G as
asymptotically nonexpansive type mappings on C, with the condition lim sups∈G r(s,x) = 
for all x ∈ C. Let X be a left invariant �-stable subspace of l∞(G) containing , and μ be a
left invariant mean on X. Then F(�) = F(Tμ)∩Ca.

Proof If F(Tμ)∩Ca is empty, then so is F(�) as F(�)⊂ F(Tμ)∩Ca. Let z ∈ F(Tμ)∩Ca and
define d = μs‖T(s)z – z‖, then for all t ∈G, we have

∥∥T(t)z – z
∥∥ =

∥∥T(t)z – Tμz
∥∥ = sup

{∣∣〈T(t)z – Tμz,x*
〉∣∣ : x* ∈ E*,

∥∥x*∥∥ = 
}

= sup
{∣∣μs

〈
T(t)z – T(s)z,x*

〉∣∣ : x* ∈ E*,
∥∥x*∥∥ = 

}

≤ sup
{
μs

∥∥T(t)z – T(s)z
∥∥ · ∥∥x*∥∥ : x* ∈ E*,

∥∥x*∥∥ = 
}

= μs
∥∥T(t)z – T(s)z

∥∥ = μs
∥∥T(t)z – T(ts)z

∥∥ (by μ-left invariant)

≤ μs
∥∥T(s)z – z

∥∥ + r(t, z) = d + r(t, z),

i.e., for all t ∈G,

∥∥T(t)z – z
∥∥ ≤ d + r(t, z). (.)

Next, we shall show d = . In fact, if d > , then for each t ∈ G,

d = μs
∥∥T(s)z – z

∥∥ = μs
∥∥T(ts)z – z

∥∥ ≤ sup
s∈G

∥∥T(ts)z – z
∥∥,
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i.e.,

sup
s∈G

∥∥T(ts)z – z
∥∥ ≥ d, ∀t ∈G. (.)

By lim sups∈G r(s, z) = , then for any n ∈N , there exists sn ∈ G such that

sup
t≥sn

r(t, z) <

n

. (.)

It follows from (.) that we can choose a cluster point u of the net {T(s)z : s ∈ G} in the
set C with ‖u – z‖ ≥ d and there exists t()n ∈G satisfying t()n ≥ sn and ‖T(t()n )z–u‖ < 

n .
Combining it with (.) and (.), we get

‖u – z‖ ≤ ∥∥u – T
(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – z

∥∥

≤ 
n

+ d + r
(
t()n , z

) ≤ d +

n

(by t()n ≥ sn).

Hence ‖u – z‖ ≤ d and so ‖u – z‖ = d. It follows from (.) and (.) that

∥∥T(
t()n sns

)
z – u

∥∥ ≤ ∥∥T(
t()n sns

)
z – T

(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – u

∥∥
≤ ∥∥T(sns)z – z

∥∥ + r
(
t()n , z

)
+

∥∥T(
t()n

)
z – u

∥∥

≤ d + r(sns, z) +

n

≤ d +

n

(.)

for all s ∈G. Noting

d = ‖u – z‖ = ‖u – Tμz‖
= sup

{∣∣〈u – Tμz,x*
〉∣∣ : x* ∈ E*,

∥∥x*∥∥ = 
}

= sup
{∣∣μs

〈
u – T(s)z,x*

〉∣∣ : x* ∈ E*,
∥∥x*∥∥ = 

}

≤ μs
∥∥u – T(s)z

∥∥, (.)

we obtain

μs
(∥∥T(

t()n sns
)
z – z

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥)

= μs
∥∥T(

t()n sns
)
z – z

∥∥ +μs
∥∥T(

t()n sns
)
z – u

∥∥
= μs

∥∥T(s)z – z
∥∥ +μs

∥∥T(s)z – u
∥∥ ≥ d.

This implies that

sup
s∈G

[∥∥T(
t()n sns

)
z – z

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥] ≥ d.

Thus there exists s()n ∈G such that

∥∥T(
t()n sns()n

)
z – z

∥∥ +
∥∥T(

t()n sns()n
)
z – u

∥∥ ≥ d –

n

. (.)
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Since {T(s)z : s ∈G} is a relatively compact set, {T(t()n sns()n )z}, as a subset of {T(s)z : s ∈ G},
has a strong convergent subsequence. Without loss of generality, we can assume that
T(t()n sns()n )z → u ∈ C. Setting t()n = t()n sns()n , then t()n ≥ t()n ≥ sn, T(t()n )z → u and
by (.),

‖u – z‖ + ‖u – u‖ ≥ d. (.)

On the other hand,

‖u – z‖ ≤ ∥∥u – T
(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – z

∥∥

≤ ∥∥u – T
(
t()n

)
z
∥∥ + d + r

(
t()n , z

)
(by (.))

≤ ∥∥u – T
(
t()n

)
z
∥∥ + d +


n

(by (.))

and

‖u – u‖ ≤ ∥∥u – T
(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – u

∥∥

=
∥∥u – T

(
t()n

)
z
∥∥ +

∥∥T(
t()n sns()n

)
z – u

∥∥

≤ ∥∥u – T
(
t()n

)
z
∥∥ + d +


n

(by (.)).

Thus we can conclude ‖u – z‖ ≤ d and ‖u – u‖ ≤ d. So by (.),

‖u – z‖ = ‖u – u‖ = d.

Similar to the proof of (.), we can prove μs‖u – T(s)z‖ ≥ d and

μs
(∥∥T(

t()n sns
)
z – z

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥)

= μs
∥∥T(

t()n sns
)
z – z

∥∥ +μs
∥∥T(

t()n sns
)
z – u

∥∥ +μs
∥∥T(

t()n sns
)
z – u

∥∥
= μs

∥∥T(s)z – z
∥∥ +μs

∥∥T(s)z – u
∥∥ +μs

∥∥T(s)z – u
∥∥ ≥ d.

This means

sup
s∈G

(∥∥T(
t()n sns

)
z – z

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥ +
∥∥T(

t()n sns
)
z – u

∥∥) ≥ d.

Thus there exists s()n ∈G such that

∥∥T(
t()n sns()n

)
z – z

∥∥ +
∥∥T(

t()n sns()n
)
z – u

∥∥ +
∥∥T(

t()n sns()n
)
z – u

∥∥ ≥ d –

n
.
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Therefore,

∥∥T(
t()n sns()n

)
z – z

∥∥ ≤ d + r
(
t()n sns()n , z

) ≤ d +

n

,
∥∥T(

t()n sns()n
)
z – u

∥∥ ≤ ∥∥T(
t()n sns()n

)
z – T

(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – u

∥∥
≤ ∥∥T(

sns()n
)
z – z

∥∥ + r
(
t()n , z

)
+

∥∥T(
t()n

)
z – u

∥∥
≤ d + r

(
sns()n , z

)
+ r

(
t()n , z

)
+

∥∥T(
t()n

)
z – u

∥∥

≤ d +

n

+
∥∥T(

t()n
)
z – u

∥∥

and

∥∥T(
t()n sns()n

)
z – u

∥∥ ≤ ∥∥T(
t()n sns()n

)
z – T

(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – u

∥∥
≤ ∥∥T(

t()n sns()n sns()n
)
z – T

(
t()n

)
z
∥∥ +

∥∥T(
t()n

)
z – u

∥∥
≤ ∥∥T(

sns()n sns()n
)
z – z

∥∥ + r
(
t()n , z

)
+

∥∥T(
t()n

)
z – u

∥∥
≤ d + r

(
sns()n sns()n , z

)
+ r

(
t()n , z

)
+

∥∥T(
t()n

)
z – u

∥∥

≤ d +

n

+
∥∥T(

t()n
)
z – u

∥∥.

Since {T(t()n sns()n )z} has a strong convergent subsequence, without loss of generality, we
can assume that T(t()n sns()n )z → u ∈ C. Setting t()n = t()n sns()n , then t()n ≥ t()n , T(t()n )z →
u,

‖u – z‖ ≤ d, ‖u – u‖ ≤ d, ‖u – u‖ ≤ d

and

‖u – z‖ + ‖u – u‖ + ‖u – u‖ ≥ d.

Thus we have found u ∈ C such that

‖u – u‖ = ‖u – u‖ = ‖u – z‖ = d.

Now, by mathematical induction, we can find a sequence {ui} ⊂ C satisfying

‖ui – z‖ = d, ‖ui – uj‖ = d (∀i, j ∈ N , i �= j).

Since T(t(i)n )z → ui, we can seek out t(i)ni ∈G with ‖T(t(i)ni )z – ui‖ ≤ d
 . Thus

∥∥T(
t(i)ni

)
z – T

(
t(j)nj

)
z
∥∥ ≥ d


(∀i, j ∈N , i �= j),

which is a contradiction with the relative compactness of {T(t(i)ni )z : i ∈ N}. Therefore, we
can conclude d = .
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In the following, we shall show z ∈ F(�). Indeed, for any h ∈G, T(h) : C → C is continu-
ous at z, then for all ε > , there exists a δ >  (δ < ε) such that for all x ∈ C with ‖x– z‖ < δ,

∥∥T(h)x – T(h)z
∥∥ < ε.

By (.) and the definition of r(·, z), we can get

inf
s∈G supt∈G

∥∥T(ts)z – z
∥∥ ≤ d + inf

s∈G supt∈G
r(ts, z) = 

and so we can find a sδ ∈G such that supt∈G ‖T(tsδ)z – z‖ < δ, i.e., for all t ∈ G,

∥∥T(tsδ)z – z
∥∥ < δ.

Hence

∥∥T(h)z – z
∥∥ ≤ ∥∥T(h)z – T(h)T(tsδ)z

∥∥ +
∥∥T(h)T(tsδ)z – z

∥∥

=
∥∥T(h)z – T(h)T(tsδ)z

∥∥ +
∥∥T(htsδ)z – z

∥∥

< ε + δ < ε.

Since ε >  is arbitrary, we get z ∈ F(�). This completes the proof. �

Now we can give the existence theorem of fixed points for left amenable semigroups of
non-Lipschitzian mappings in Banach spaces.

Theorem . Let C be a nonempty compact convex subset of a Banach space E. Let G be
a left reversible semigroup and � = {T(t) : t ∈ G} be a continuous representation of G as
asymptotically nonexpansive type mappings on C, with the condition lim sups∈G r(s,x) = 
for all x ∈ C. Let X be a left invariant �-stable subspace of l∞(G) containing , and μ be a
left invariant mean on X. Then the set F(�) is nonempty.

Proof For all x, y ∈ C and t ∈G, we have

‖Tμx – Tμy‖ = sup
{∣∣〈Tμx – Tμy,x*

〉∣∣ : x* ∈ E*,
∥∥x*∥∥ = 

}

= sup
{∣∣μs

〈
T(s)x – T(s)y,x*

〉∣∣ : x* ∈ E*,
∥∥x*∥∥ = 

}

≤ sup
{
μs

∥∥T(s)x – T(s)y
∥∥ · ∥∥x*∥∥ : x* ∈ E*,

∥∥x*∥∥ = 
}

= μs
∥∥T(s)x – T(s)y

∥∥ = μs
∥∥T(ts)x – T(ts)y

∥∥

≤ sup
s∈G

∥∥T(ts)x – T(ts)y
∥∥ ≤ ‖x – y‖ + sup

s∈G
r(ts, z),

and so by lim sups∈G r(s, z) = , we get ‖Tμx – Tμy‖ ≤ ‖x – y‖, i.e., Tμ is a nonexpansive
mapping from C into itself. Since a nonexpansive mapping of a compact convex subset
of a Banach space into itself has a fixed point [], Tμ has a fixed point z. By Lemma .,
z ∈ F(�). This completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/116
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Remark . Theorem . is an extension of themain results in [–, , , ] to the case
for left amenable semigroups of asymptotically nonexpansive type mappings in Banach
spaces.

Recall that for each s ∈ G, we define a point evaluation δs on X by δs(f ) = f (s) for every
f ∈ X. A convex combination of point evaluation is called a finite mean on G. If λ is a
finite mean on G, say λ = �n

i=aiδsi , where si ∈ G, ai ≥ , i = , , . . . ,n, and �n
i=ai = , then

λ(t)〈T(t)x,x*〉 = �n
i=ai〈T(si)x,x*〉 = 〈�n

i=aiT(si)x,x*〉 for all x* ∈ E*. For convenience, we
denote it by λ(t)〈T(t)x〉 = �n

i=aiT(si)x. A net {λα : α ∈ I} of finite means on G is said to be
strongly left regular if

lim
α∈I

∥∥λα – l*sλα

∥∥ = 

for all s ∈G, where A is a directed system and l*s is the conjugate operator of ls.

Corollary . Let C be a nonempty compact convex subset of a Banach space E. Let G be
a left reversible semigroup and � = {T(t) : t ∈ G} be a continuous representation of G as
asymptotically nonexpansive type mappings on C, with the condition lim sups∈G r(s,x) = 
for all x ∈ C. Let X be a left invariant �-stable subspace of l∞(G) containing  and {λα : α ∈
I} be a net of strongly left regular finite means on G. If z ∈ C satisfies

lim inf
α∈I

∥∥λα(t)
〈
T(t)z

〉
– z

∥∥ = ,

then z ∈ F(�).

Proof Since lim infα∈I ‖λα(t)〈T(t)z〉 – z‖ =  and {λα : α ∈ I} ⊂ D*, we can find a subnet
{λαβ

: β ∈ A} of {λα : α ∈ I} such that limβ∈A λαβ
(t)〈T(t)z〉 = z and ω* – limβ∈A λαβ

= μ,
where A is a directed system. Hence μ is a left invariant mean on X (see []) and Tμz = z,
which implies z ∈ F(�). This completes the proof. �

Remark . Corollary . is an extension of the main results in [–, ].

Next we shall prove the strong convergence theorem for the iterative sequences of left
reversible semigroups of asymptotically nonexpansive type mappings. We need a lemma
which plays a crucial role in the proof of Theorem ..

Lemma . [] Let zn and wn be bounded sequences in a Banach space X and let αn

be a sequence in (, ) with  < lim infn→∞ αn ≤ lim supn→∞ αn < . Suppose that zn+ =
αnwn + ( – αn)zn for all n ∈ N and

lim sup
n→∞

(‖wn –wn+k‖ – ‖zn – zn+k‖
) ≤ 

for all k ∈N. Then lim infn→∞ ‖wn – zn‖ = .

Theorem . Let C be a nonempty compact convex subset of a Banach space X and G be
a left reversible semigroup. Let � = {T(t) : t ∈ G} be a continuous representation of G as
asymptotically nonexpansive type mappings on C, with the condition lim sups∈G r(s,x) = 

http://www.fixedpointtheoryandapplications.com/content/2012/1/116
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for all x ∈ C. Let X be a left invariant �-stable subspace of l∞(G) containing , and μ be a
left invariant mean on X. Let x ∈ C and define a sequence {xn} in C by

xn+ = αnTμxn + ( – αn)xn,

for all n ∈ N, where αn ⊂ [, ] satisfies  < lim infn→∞ αn ≤ lim supn→∞ αn < . Then xn
converges strongly to a fixed point z ∈ F(�).

Proof It follows from

‖Tμxn+ – xn+‖ ≤ ‖Tμxn+ – Tμxn‖ + ‖Tμxn – xn+‖
= ‖Tμxn+ – Tμxn‖ + ( – αn)‖Tμxn – xn‖
= ‖Tμxn – xn‖ + ‖Tμxn+ – Tμxn‖ – ‖xn+ – xn‖
≤ ‖Tμxn – xn‖

that limn→∞ ‖Tμxn – xn‖ exists. By Lemma ., we get lim infn→∞ ‖Tμxn – xn‖ =  and so
limn→∞ ‖Tμxn – xn‖ = . Since C is compact, there exists a subsequence {xnk } ⊂ {xn} such
that xnk → z ∈ C. Hence, z is a fixed point of Tμ. By Lemma ., we have z ∈ F(�) and

‖xn+ – z‖ =
∥∥αnTμxn + ( – αn)xn – z

∥∥
≤ αn‖Tμxn – z‖ + ( – αn)‖xn – z‖
≤ ‖xn – z‖.

Hence limn→∞ ‖xn–z‖ exists. Thus limn→∞ ‖xn–z‖ = limk→∞ ‖xnk –z‖ = , which implies
that xn converges strongly to z ∈ F(�). This completes the proof. �

In the following, we shall give an example of a semigroup which is asymptotically non-
expansive type but not asymptotically nonexpansive on a compact set.

Example . [] Let 	 be the Cantor ternary set. Define the Cantor ternary function

τ (x) =

⎧⎨
⎩

∑+∞
n=

bn
n , x =

∑+∞
n=

bn
n ∈ 	 (bn = , ),

sup
{
τ (y), y ≤ x, y ∈ 	

}
, x ∈ [, ]\	

then τ : [, ] → [, ] is a continuous and increasing but not absolutely continuous func-
tion with τ () = , τ (  ) =


 (see []). Since a Lipschitzian function is absolutely continu-

ous, τ is non-Lipschitzian. For all t > , we define T(t) : [, ] → [, ] by

T(t)x =

⎧⎨
⎩

x
t , ≤ x ≤ 

 ,
τ (–x)
t , 

 < x ≤ .

Then T(t) is continuous but not Lipschitzian continuous (since τ is non-Lipschitzian) and
for all x, y ∈ [, ], |T(t)x| ≤ 

t+ ,

∣∣T(t)x – T(t)y
∣∣ ≤ 

t
≤ |x – y| + 

t
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/116
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Therefore, we can conclude that the semigroup � = {T(t) : t > } is asymptotically non-
expansive type but not an asymptotically nonexpansive on [, ]. Also,  is a fixed point
of �.
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