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Abstract

We introduce an iterative process which converges strongly to a common point of
solution of variational inequality problem for continuous monotone mapping,
solution of equilibrium problem and a common fixed point of finite family of
asymptotically regular uniformly continuous relatively asymptotically nonexpansive
mappings in Banach spaces. Our scheme does not involve computation of Cn+1 from
Cn for each n ≥ 1. Our theorems improve and unify most of the results that have
been proved for this important class of nonlinear operators.
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Introduction
Let E be a real Banach space with dual E*. A normalized duality mapping J: E ® 2E* is

defined by

Jx := {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 = || f ∗|| 2},

where 〈., .〉 denotes the generalized duality pairing. It is well known that E is smooth

if and only if J is single-valued and if E is uniformly smooth then J is uniformly contin-

uous on bounded subsets of E. Moreover, if E is a reflexive and strictly convex Banach

space with a strictly convex dual, then J -1 is single-valued, one-to-one, surjective, and

it is the duality mapping from E* into E and thus JJ-1 = IE* and J-1J = IE (see [1]).

Throughout this article, we denote by j: E × E ® ℝ the function defined by

φ(y, x) = ||y||2 − 2〈y, Jx〉 + ||x||2, for x, y ∈ E, (1:1)

which was studied by Alber [2], Kamimula and Takahashi [3], and Reich [4]. It is

obvious from the definition of the function j that

( ||x|| − || y||)2 ≤ φ(x, y) ≤ (|| x|| + || y||)2, for x, y ∈ E. (1:2)

where J is the normalized duality mapping. We remark that in a Hilbert space H,

(1.1) reduces to j(x, y) = ||x - y||2, for any x, y Î H.
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Let C be a nonempty closed and convex subset of a reflexive, strictly convex and

smooth Banach space E. The generalized projection mapping, introduced by Alber [2],

is a mapping ΠC: E ® C that assigns to an arbitrary point x Î E the minimum point

of the functional j(y, x), i.e.,
∏

Cx = x̄ , where x̄ is the solution to the minimization

problem

φ(x̄, x) = min{φ(y, x), y ∈ C}. (1:3)

A mapping A: D(A) ⊂ E ® E* is said to be monotone if for each x, y Î D(A), the fol-

lowing inequality holds:

〈x − y, Ax − Ay〉 ≥ 0. (1:4)

A is said to be g-inverse strongly monotone if there exists positive real number g such
that

〈x − y,Ax − Ay〉 ≥ γ ||Ax − Ay||2, for all x, y ∈ D(A). (1:5)

Suppose that A is monotone mapping from C ⊆ E into E*. The variational inequality

problem is formulated as finding

a point u ∈ C such that 〈v − u, Au〉 ≥ 0, for all v ∈ C. (1:6)

The set of solutions of the variational inequality problem is denoted by VI(C, A).

Variational inequalities were initially studied by Stampacchia [5] and ever since have

been widely studied. Such a problem is connected with the convex minimization pro-

blem, the complementarity problem, the problem of finding a point u Î C satisfying

0 Î Au. If E = H, a Hilbert space, one method of solving a point u Î VI(C, A) is the

projection algorithm which starts with any point x0 = x Î C and updates iteratively as

xn+1 according to the formula

xn+1 = PC(xn − αnAxn), for any n ≥ 0, (1:7)

where PC is the metric projection from H onto C and {an} is a sequence of positive

real numbers. In the case that A is g-inverse strongly monotone, Iiduka, Takahashi and

Toyoda [6] proved that the sequence {xn} generated by (1.7) converges weakly to some

element of VI(C, A).

When the space E is more general than a Hilbert spaces, Iduka and Takahashi [7]

introduced the following iteration scheme for finding a solution of the variational

inequality problem for an g-inverse strongly monotone operator A in 2-uniformly con-

vex and uniformly smooth spaces

xn+1 = �CJ
−1(Jxn − αnAxn), for any n ≥ 0, (1:8)

where ΠC is the generalized projection from E onto C, J is the normalized duality map-

ping from E into E* and {an} is a sequence of positive real numbers. They proved that

the sequence {xn} generated by (1.8) converges weakly to some element of VI(C, A).

Our concern now is the following: Is it possible to construct a sequence {xn} which

converges strongly to some point of VI(C, A)?

In this connection, when E = H, a Hilbert space and A is g-inverse strongly mono-

tone, Iiduka, Takahashi and Toyoda [6] studied the following iterative scheme:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C, chosen arbitrary,
yn = PC(xn − αnAxn),
Cn = {z ∈ C : ||yn − z|| ≤ || xn − z||},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0), n ≥ 0,

(1:9)

where {an} is a sequence in [0, 2g]. They proved that the sequence {xn} generated by

(1.9) converges strongly to PVI(C, A)(x0), where PVI(C, A) is the metric projection from H

onto VI(C, A).

In the case that E is 2-uniformly convex and uniformly smooth Banach space, Iiduka

and Takahashi [8] studied the following iterative scheme for a variational inequality

problem for g-inverse strongly monotone mapping A:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C, chosen arbitrary,
yn = �CJ−1(Jxn − αnAxn),
Cn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ E : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qn(x0), n ≥ 0,

(1:10)

where �Cn∩Qn is the generalized projection from E onto Cn ∩ Qn, J is the duality map-

ping from E into E* and {an} is a positive real sequence satisfying certain condition.

Then, they proved that the sequence {xn} converges strongly to an element of VI(C, A)

provided that VI(C, A) ≠ ∅ and A satisfies ||Ay|| ≤ ||Ay - Au||, for all y Î C, = and u Î
VI(C, A).

Remark 1.1. We remark that the computation of xn+1 in their algorithms is not simple

because of the involvement of computation of Cn+1 from Cn and Qn, for each n ≥ 0.

Let C be a nonempty, closed and convex subset of a real Banach space E with dual

E*. Let T be a mapping from C into itself. An element p Î C is called a fixed point of

T if T (p) = p. The set of fixed points of T is denoted by F(T). A point p in C is said

to be an asymptotic fixed point of T (see [4]) if C contains a sequence {xn} which con-

verges weakly to p such that lim
n→∞ ||xn − Txn|| = 0 . The set of asymptotic fixed points

of T will be denoted by
�

F(T) . A mapping T from C into itself is said to be nonexpan-

sive if ||Tx - Ty|| ≤ ||x - y||, for each x, y Î C, and is called relatively nonexpansive if

(R1) F (T) ≠ ∅ (R2) j(p, Tx) ≤ j(p, x), for x Î C and (R3) F(T) =
�

F(T) . T is called

relatively quasi-nonxpansive if F(T) = ∅ and j(p, Tx) ≤ j(p, x), for all x Î C, and p Î
F(T).

A mapping T from C into itself is said to be asymptotically nonexpansive if there exists

{kn}⊂ [1, ∞) such that kn ® 1 and ||Tnx-Tny|| ≤ kn||x - y||, for each x, y Î C, and is

called relatively asymptotically nonexpansive if there exists {kn} ⊂ [1, ∞) such that (N1)

F (T) ≠ ∅ (N2) j(p, Tnx) ≤ knj(p, x), for x Î C, and (N3) F(T) =
�

F(T) , where kn ® 1, as

n ® ∞. T is called relatively asymptotically quasinonxpansive if there exist {kn} ⊂ [1, ∞)

and F(T) = ∅ such that j(p, Tnx) ≤ knj(p, x), for x Î C, and p Î F(T), where kn ® 1, as

n ® ∞. A mapping T from C into itself is said to be j-nonexpansive (nonextensive [9])
if j(Tx, Ty) ≤ j(x, y) for all x, y Î C and it is called j-asymptotically nonexpansive if

there exists {kn} ⊂ [1, ∞) such that j(Tnx, Tny) ≤ knj(x, y), for all x, y Î C, where kn ® 1,

as ®∞. A self-mapping on C is called asymptotically regular on C, if for any bounded

subset C̄ of C, there holds the following equality:
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lim sup
n→∞

{||Tn+1x − Tnx|| : x ∈ C̄} = 0.

T is called closed if xn ® x and Txn ® y, then Tx = y.

Clearly, the class of relatively asymptotically nonexpansive mappings contains the

class of relatively nonexpansive mappings.

It is well known that, in an infinite-dimensional Hilbert space, the normal Mann’s itera-

tive [10] algorithm has only weak convergence, in general, even for nonexpansive map-

pings. Consequently, to obtain strong convergence, some modifications of the normal

Mann’s iteration algorithm has been introduced. The so-called hybrid projection iteration

algorithm (HPIA) is one of such modifications, which was introduced by Haugazeau [11]

in 1968. Since then, there has been a lot of activity in this area and several modifications

appeared. For details, the readers are referred to papers [12-18] and the references therein.

In 2003, Nakajo and Takahashi [17] proposed the following modification of the

Mann iteration method for a nonexpansive mapping T in a Hilbert space H:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C, chosen arbitrary,
yn = αnxn + (1 − αn)Txn,
Cn = {z ∈ C : || yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = �Cn∩Qn(x0), n ≥ 0,

(1:11)

where C is a closed convex subset of H, ΠC is the generalized metric projection from

E onto C. They proved that if the sequence {an} is bounded above from one then the

sequence {xn} generated by (1.11) converges strongly to PF(T)(x0), where F(T) denote

the fixed points set of T.

In spaces more general than Hilbert spaces, Matsushita and Takahashi [16] proposed

the following hybrid iteration method with generalized projection for relatively nonex-

pansive mapping T in a Banach space E:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C, chosen arbitrary,
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) < φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qn(x0), n ≥ 0,

(1:12)

They proved the following convergence theorem.

Theorem MT. Let E be a uniformly convex and uniformly smooth Banach space, let C

be a nonempty closed convex subset of E, let T be a relatively nonexpansive mapping

from C into itself, and let {an} be a sequence of real numbers such that 0 ≤ an < 1 and

lim supn an < 1. Suppose that {xn} is given by (1.12), where J is the duality mapping on

E. If F(T) is nonempty, then {xn} converges strongly to ΠF(T)x0, where ΠF(T)(.) is the

generalized projection from E onto F(T).

Let f: C × C ® ℝ be a bifunction, where ℝ is the set of real numbers. The equili-

brium problem for f is

findmg x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C. (1:13)

The solution set of (1.13) is denoted by EP(f).
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Numerous problems in physics, optimization and economics reduce to find a solu-

tion of (1.13) (see, e.g., [19,20]). For studying the equilibrium problem (1.13),

we assume that f satisfies the following conditions:

(A1) f(x, x) = 0, for all x Î C,

(A2) f is monotone, i.e., f(x, y)+ f(y, x) ≤ 0, for all x, y Î C,

(A3) for each x, y, z Î C, lim
t→0

f (tz + (1 − t)x, y) ≤ f (x, y) ,

(A4) for each x Î C, y ® f(x, y) is convex and lower semicontinuous.

Recently, many authors have considered the problem of finding a common element

of the fixed points set of relatively nonexpansive mapping, the solution set of equili-

brium problem and solution set of variational inequality problem for g-inverse mono-

tone mapping (see, e.g., [21-26]). If E is uniformly convex and smooth Banach space,

then Aoyama, Kohsaka and Takahashi [27] constructed a sequence which converges

strongly to a common solution of variational inequality problems for two monotone

mappings.

Recently, Qin et al. [22] proved the following result:

Theorem QCK. Let E be a uniformly convex and uniformly smooth Banach space

and C be a nonempty closed and convex subset of E.

Let f: C × C ® R be a bifunction satisfying (A1)-(A4) and let T, S: C ® C be two

closed relatively quasi- nonexpansive mappings such that F = F(T) ∩ F(S) ∩ EP(f) ≠ ∅.

Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1 = C, and x0 ∈ C, chosen arbitrary,
yn = J−1(αnJxn + βnJTxn + γnJSxn),
un ∈ C : f (un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1 (x0), n ≥ 0,

(1:14)

where ΠC is the generalized metric projection from E onto C, J is the normalized

duality mapping on E, {rn} is a positive sequence and {an}, {bn} and {gn} are sequences

in 0[1] satisfying certain conditions. Then {xn} converges strongly to ΠF(x0).

Furthermore, Zegeye and Shahzad [28] studied the following iterative scheme for

common point of solution of a variational inequality problem for g-inverse strongly

monotone mapping A and fixed point of a continuous j-asymptotically nonexpansive

mapping S in a 2-uniformly convex and uniformly smooth Banach space E

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C0 = C, and x0 ∈ C, chosen arbitrary,

zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αnJxn + (1 − αn)JSnzn),
un ∈ C : f (un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1 (x0), n ≥ 0,

(1:15)

where C is closed, convex and bounded subset of E, θn = (1 − αn)(k2n − 1)(diam(C))2

and {an}, {ln} are sequences satisfying certain condition. Then, they proved that

the sequence {xn} converges strongly to an element of F: = F(S) ∩ VI(C, A) provided that
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F ≠ Ø and A satisfies ||Ay|| ≤ ||Ay - Ap||, for all y Î C and p Î F. As it is mentioned in

[29], we remark that the computation of xn+1 in Algorithms (1.11), (1.12), (1.14) and

(1.15) is not simple because of the involvement of computation of Cn+1 from Cn, for

each n ≥ 0.

It is our purpose in this article to introduce an iterative scheme {xn} which converges

strongly to a common point of solution of variational inequality problem for continu-

ous monotone mapping, solution of equilibrium problem and a common fixed point of

finite family of asymptotically regular uniformly continuous relatively asymptotically

nonexpansive mappings in Banach spaces. Our scheme does not involve computation

of Cn+1 from Cn for each n ≥1. Our theorems improve and unify most of the results

that have been proved for this important class of nonlinear operators.

Preliminaries
In the sequel, we shall use of the following lemmas.

Lemma 2.1. [2]Let C be a nonempty closed and convex subset of a real reflexive,

strictly convex, and smooth Banach space E and let x Î E. Then ∀y Î C,

φ(y,�Cx) + φ (�Cx, x) ≤ φ(y, x).

Lemma 2.2. [3]Let E be a real smooth and uniformly convex Banach space and let

{xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded and j(xn, yn) ® 0,

as n ® ∞, then xn - yn ® 0, as n ® ∞.

Lemma 2.3. [2]Let C be a convex subset of a real smooth Banach space E. Let x Î E.

Then x0 = ΠCx if and only if

〈z − x0, Jx − Jx0〉 ≤ 0, ∀z ∈ C.

We make use of the function V: E × E* ® ℝ defined by

V(x, x∗) = ||x||2 − 2〈x, x∗〉 + ||x∗||2, for all x ∈ E and x∗ ∈ E∗,

studied by Alber [2], i.e., V(x, x*) = j(x, J-1x*), for all x Î E and x* Î E*.

We know the following lemma related to the function V.

Lemma 2.4. [2]Let E be reflexive strictly convex and smooth Banach space with E* as

its dual. Then

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗),

for all x Î E and x*, y* Î E*.

Lemma 2.5. [24]Let E be a uniformly convex Banach space and BR(0) be a closed ball of

E. Then, there exists a continuous strictly increasing convex function g: [0, ∞) ® [0, ∞) with

g(0) = 0 such that ||α0x0 + α1x1 + α2x2 + . . . + αkxk||2 ≤
k∑
i=0

αi||xi||2 − αiαjg(||xi − xj||) ,

for 0 ≤ i ≤ j ≤ k, and each ai Î (0, 1), where xi Î BR(0): = {x Î E: ||x|| ≤ R}, i = 0, 1, 2, . . . ,

k with
k∑
i=0

αi = 1 .
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Proposition 2.6. [30]Let E be uniformly convex and uniformly smooth Banach space,

let C be closed convex subset of E, and let S be closed relatively asymptotically nonex-

pansive mapping from C into itself. Then F(S) is closed and convex.

Lemma 2.7. [23]Let C be a nonempty, closed and convex subset of a uniformly smooth,

strictly convex and reflexive real Banach space E. Let f be a bifunction from C × C to ℝ

which satisfies conditions (A1)-(A4). For r > 0 and x Î E, define the mapping Tr: E ® C

as follows:

Trx :=
{
z ∈ C : f (z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C

}
.

Then the following statements hold:

(1) Tr is single-valued;

(2) F(Tr) = EP(f);

(3) j(q, Trx) + j(Trx, x) ≤ j(q, x), for q Î F(Tr).

(4) EP(f) is closed and convex;

Lemma 2.8. [29]Let C be a nonempty, closed and convex subset of a smooth, strictly

convex and reflexive real Banach space E. Let A: C ® E* be a continuous monotone

mapping. For r >0 and x Î E, define the mapping Fr: E ® C as follows:

Frx =
{
z ∈ C : 〈y − z,Az〉 + 1

r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C

}
.

Then conclusions (1)-(4) of Lemma 2.7 hold.

Lemma 2.9 [31]. Let {an} be a sequence of nonnegative real numbers satisfying the

following relation:

an+1 ≤ (1 − βn)an + βnδn,n ≥ n0, for some n0 ∈ N,

where {bn} ⊂ (0,1) and {δn} ⊂ R satisfying the following conditions:

lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞ an = 0.

Lemma 2.10 [32]. Let {an} be sequences of real numbers such that there exists a sub-

sequence {ni} of {n} such that ani < ani+1for all i Î N. Then there exists a nondecreasing

sequence {mk} ⊂ N such that mk ® ∞ and the following properties are satisfied by all

(sufficiently large) numbers k Î N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k: aj <aj+1}.

Main result
Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflex-

ive real Banach space E with dual E*. Let f: C × C ® ℝ be a bifunction and A: C ®E* be

a continuous monotone mapping. For the rest of this article, Trnx and Frnx are mappings

defined as follows: For x Î E, let Frn , Trn : E → C be given by
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Frnx := {z ∈ C : f 〈y − z,Az〉 + 1
rn

〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C},

and

Trnx :
{
z ∈ C : f (z, y) +

1
rn

〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C
}
,

where {rn}nÎN ⊂ [c1,∞) for some c1 > 0.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly

smooth and uniformly convex real Banach space E. Let f: C × C ® ℝ be a bifunction

which satisfies conditions (A1)-(A4). Let A: C ®E* be a continuously monotone map-

ping. Let Ti: C ® C be a asymptotically regular uniformly continuous relatively

asymptotically nonexpansive mapping with sequence {kn, i} for i = 1, 2, . . . , N.

Assume that F := ∩N
i=1F(Ti) ∩ VI(C,A) ∩ EP(f ) is nonempty. Let {xn} be a sequence

generated by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 = w ∈ C, chosen arbitrarity,
un = Frnxn,
wn = Trnun,
yn = �CJ−1(αnJw + (1-αn)Jwn),
xn+1 = J−1(βn,0Jwn +

∑N
i=1 βn,iJTn

i yn), n ≥ 0,

(3:1)

where an Î (0,1) such that limn®∞ an = 0, limn→∞
(kn,i−1)

αn
= 0 ,

∑∞
n=1 αn = ∞ , {bn, i} ⊂

[a, b] ⊂ (0, 1), for i = 1, 2, . . . , N, satisfying bn,0 + bn,1 + · · · + bn, N = 1, for each n ≥ 0.

Then {xn} converges strongly to an element of F.

Proof. Since F is nonempty closed and convex, put x*: = ΠFw. Now, from (3.1), Lem-

mas 2.1, 2.7(3), 2.8(3) and property of j we get that

φ(x∗, yn) = φ(x∗,�CJ−1(αnJw + (1 − αn)Jwn)

≤ φ(x∗, J−1(αnJw + (1 − αn)Jwn)

= ||x∗||2 − 2〈x∗,αnJw + (1 − αn)Jwn〉
+ ||αnJw + (1 − αn)Jwn||2

≤ ||x∗||2 − 2αn〈x∗, Jw〉 − 2(1 − αn)〈x∗, Jwn〉
+ αn||Jw||2 + (1 − αn)||JWn||2,

≤ αnφ(x∗,w) + (1 − αn)φ(x∗,wn)

= αnφ(x∗,w) + (1 − αn)φ(x∗,Trnun)
≤ αnφ(x∗,w) + (1 − αn)φ(x∗, un)
= αnφ(x∗,w) + (1 − αn)φ(x∗, Frn xn)
≤ αnφ(x∗,w) + (1 − αn)φ(x∗, xn).

(3:2)

Let kn: = max{kn, i: i = 1, 2, . . . , N}. Then, from (3.1), Lemma 2.7(3), Lemma 2.8(3),

relatively asymptotic nonexpansiveness of Ti, property of j and (3.2) we have that
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φ(x∗, xn+1) = φ

(
x∗, J−1

(
βn,0Jwn +

N∑
i=1

βn,iJTn
i yn

)

≤ βn,0φ(x∗,wn) +
N∑
i=1

βn,iφ(x∗,Tn
i yn)

)

= βn,0φ(x∗,Trnun) +
N∑
i=1

βn,iφ(x∗,Tn
i yn)

≤ βn,0φ(x∗, un) + (1 − βn,0)knφ(x∗, yn)
= βn,0φ(x∗, Frn xn) + (1 − βn,0)knφ(x∗, yn)
≤ βn,0φ(x∗, xn) + (1 − βn,0)φ(x∗, yn)
+ (1 − βn,0)(kn − 1)φ(x∗, yn),

≤ βn,0φ(x∗, xn) + (1 − βn,0)[αnφ(x∗,w) + (1 − αn)φ(x∗, xn)]
+ (1 − βn,0)(kn − 1)[αnφ(x∗,w) + (1 − αn)φ(x∗, xn)]

≤ [αn(1 − βn,0) + (1 − βn,0)(kn − 1)αn]φ(x∗,w)
+ [(1 − αn(1 − βn,0)) + (1 − βn,0)(kn − 1)(1 − αn)]

× φ(x∗, xn)
≤ δnφ(x∗,w) + [1 − (1 − ε)δn]φ(x∗, xn),

(3:3)

where δn = (1 - bn ,0)knan, since for some � > 0, there exists N0 > 0 such that
(kn−1)

αn
≤ εkn and (1 - �)δn ≤ 1, for all n ≥ N0. Thus, by induction

φ(x∗, xn+1) ≤ max{φ(x∗, xN0 ), (1 − ε)−1φ(x∗,w)}, ∀n ≥ N0.

which implies that {xn} is bounded and hence {yn}, {un} and {wn} are bounded. Now

let zn = J-1(anJw + (1 - an)Jwn). Then we have that yn = ΠCzn. Using Lemmas 2.1, 2.4,

and property of j we obtain that

φ(x∗, yn) ≤ φ(x∗, zn) = V(x∗, Jzn)
≤ V(x∗, Jzn − αn(Jw − Jx∗)) − 2〈zn − x∗,αn(Jw − Jx∗)〉
= φ(x∗, J−1(αnJx∗ + (1 − αn)Jwn)) + 2αn〈zn − x∗, Jw − Jx∗〉
≤ αnφ(x∗, x∗) + (1 − αn)φ(x∗,wn) + 2αn〈zn − x∗, Jw − Jx∗〉
= (1 − αn)φ(x∗,wn) + 2αn〈zn − x∗, Jw − Jx∗〉
≤ (1 − αn)φ(x∗, un) + 2αn〈zn − x∗, Jw − Jx∗〉
≤ (1 − αn)φ(x∗, xn) + 2αn〈zn − x∗, Jw − Jx∗〉.

(3:4)

Furthermore, from (3.1), Lemma 2.5, relatively asymptotic nonexpansiveness of Ti,

for each i = 1, 2, . . . , N, Lemmas 2.7(3), (3.4), and 2.8(3) we have that

φ(x∗, xn+1) = φ

(
x∗, J−1

(
βn,0Jwn +

N∑
k=1

βn,iJTn
i yn

))

≤ βn,0φ(x∗,wn) +
N∑
i=1

βn,iφ(x∗, JTn
i yn)

− βn,0βn,ig (||Jwn JTn
i yn||),
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for each i = 1, 2, . . . , N. This implies that

φ(x∗, xn+1)
≤ βn,0φ(x∗,wn) + (1 − βn,0)knφ(x∗, yn)

− βn,0βn,ig(||Jwn − JTn
i yn||)

≤ βn,0
(
φ(x∗, un) − φ(un,wn)

)
+ (1 + βn,0)φ(x∗, yn)

+ (1 − βn,0)(kn − 1)φ(x∗, yn) − βn,0βn,ig(||Jwn − JTn
i yn||)

≤ βn,0(φ(x∗, xn) − φ(un, xn)) − βn,0φ(un,wn) + (1 − βn,0)φ(x∗, yn)
+ (1 − βn,0)(kn − 1)φ(x∗, yn) − βn,0βn,ig(||Jwn − JTn

i yn||),
≤ βn,0φ(x∗, xn) − βn,0

(
φ(un, xn) + φ(un,wn)

)
+ (1 − βn,0)

[
(1 − αn)φ(x∗, xn) + 2αn〈zn − x∗, Jw − Jx∗〉]

+ (1 − βn,0)(kn − 1)φ(x∗, yn) − βn,0βn,ig(||Jwn − JTn
i yn||),

and hence

φ(x∗, xn+1)
≤ (1 − θn)φ(x∗, xn) + 2θn〈zn − x∗, Jw − Jx∗〉 + (kn − 1)M

−βn,0(φ(un, xn) + φ(un,wn)) − βn,0βn,ig(||Jwn − JTn
i yn||)

(3:5)

≤ (1 − θn)φ(x∗, xn) + 2θn〈zn − x∗, Jw − Jx∗〉 + (kn − 1)M, (3:6)

for some M > 0, where θn: = an(1 - bn,0), for all n Î N. Note that θn satisfies

lim
n

θn = 0 and
∑∞

n=1 θn = ∞ .

Now, the rest of the proof is divided into two parts:

Case 1. Suppose that there exists n0 Î N such that {j(x*, xn)} is nonincreasing for all

n ≥ n0. In this situation, {{j(x*, xn)} is then convergent. Then from (3.5) we have that j
(un, xn), j(wn, un) ® 0 and hence Lemma 2.2 implies that

un − xn → 0, un − wn → 0, as n → ∞. (3:7)

Moreover, from (3.5) we have that βn,0βn,ig(||Jwn − JTn
i yn|| → 0 , for i = 1, 2, . . . ,

N, which implies by the property of g that Jwn − JTn
i yn → 0 , as n ® ∞, and hence,

since J-1 uniformly continuous on bounded sets, we obtain that

wn − Tn
i yn → 0, as n → ∞, for each i ∈ {1, 2, . . . ,N}. (3:8)

Furthermore, Lemma 2.1, property of j and the fact that an ® 0, as n ® ∞, imply

that

φ(wn, yn) = φ(wn, �Czn) ≤ φ(wn, zn)

= φ(wn, J−1(αnJw + (1 − αn)Jwn)

≤ αnφ(wn,w) + (1 − αn)φ(wn,wn)

= αnφ(wn,w) → 0, as n → ∞,

(3:9)

and that

wn − yn → 0 and wn − zn → 0, as n → ∞. (3:10)
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Therefore, from (3.7), (3.8), and (3.10) we obtain that

xn − zn → 0, yn − xn → 0 and yn − Tn
i yn → 0, as n → ∞, (3:11)

for each i Î {1, 2, . . . , N}. Therefore, since

||yn − Tiyn|| ≤ ||yn − Tn
i yn|| + ||Tn

i yn − Tn+1
i yn|| + ||Tn+1

i yn − Tiyn||,
= ||yn − Tn

i yn|| + ||Tn
i yn − Tn+1

i yn|| + ||Ti(Tn
i yn) − Tiyn||,

(3:12)

we have from (3.11), asymptotic regularity and uniform continuity of Ti that

||yn − Tiyn|| → 0, as n → ∞, for each i = 1, 2, . . . ,N. (3:13)

Since {zn} is bounded and E is reflexive, we choose a subsequence {zni} of {zn} such

that zni ⇀ z and lim sup
n→∞

〈zn − x∗, Jw − Jx∗〉 = lim
i→∞

〈zni − x∗, Jw − Jx∗〉 . Then, from (3.7),

(3.11) and the uniform continuity of J we get that

uniwni ⇀ z and Jun − Jxn, Jun − Jwn → 0, as n → ∞. (3:14)

Now, we show that z Î VI(C, A). But from the definition of un we have that

〈y − un,Aun〉 +
〈
y − un,

Jun − Jxn
rn

〉
≥ 0, ∀y ∈ C. (3:15)

and hence

〈y − uni ,Auni〉 +
〈
y − uni ,

Juni − Jxni
rni

〉
≥ 0, ∀y ∈ C. (3:16)

Set vt = ty + (1 - t)z for all t Î (0, 1] and y Î C. Consequently, we get that vt Î C.

Now, from (3.16) it follows that

〈vt − uni ,Avt〉 ≥ 〈vt − uni ,Avt〉 − 〈vt − uni ,Auni 〉

−
〈
vt − uni ,

Juni − Jxni
rni

〉

= 〈vt − uni ,Avt − Auni〉 −
〈
vt − uni ,

Juni − Jxni
rni

〉
.

But, from (3.14) we have that
Juni − Jxni

rni
→ 0 , as i ® ∞ and the monotonicity of A

implies that (vt − uni ,Avt − Auni) ≥ 0 . Thus, it follows that

0 ≤ lim
i→∞

〈vt − uni ,Avt〉 = 〈vt − z,Avt〉,

and hence

〈y − z,Avt〉 ≥ 0, ∀y ∈ C.

If t ® 0, the continuity of A implies that

〈y − z,Az〉 ≥ 0, ∀y ∈ C.

This implies that z Î VI(C, A).
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Next, we show that z Î EP(f). From the definition of wn and (A2) we note that

1
rni

〈y − wni , Jwni − Juni 〉 ≥ −f (wni , y) ≥ f (y,wni), ∀y ∈ C. (3:17)

Letting i ® ∞, we have from (3.14) and (A4) that f(y, z) ≤ 0, for all y Î C. Now, for 0

<t ≤ 1 and y Î C, let yt = ty + (1 - t)z. Since y Î C and z Î C, we have yt Î C and

hence f(yt, z) ≤ 0. So, from the convexity of the equilibrium bifunction f(x, y) on the

second variable y, we have

0 = f (yt, yt) ≤ tf (yt, y) + (1 − t)f (yt, z) ≤ tf (yt, y),

and hence f(yt, y) ≥ 0. Now, letting t ® 0, and condition (A3), we obtain that f(z, y) ≥

0, for all y Î C, and hence z Î EP(f).

Finally, we show that z ∈ ∩N
i=1F(Ti) . But, since each Ti satisfies condition (N3) we

obtain from (3.13) that z Î F(Ti) for each i = 1, 2, . . . , N and hence z ∈ ∩N
i=1F(Ti) .

Thus, from the above discussions we obtain that z ∈ F := ∩N
i=1F(Ti) ∩ VI(C,A) ∩ EP(f ) .

Therefore, by Lemma 2.3, we immediately obtain that

lim sup
n→∞

〈zn − x∗, Jw − Jx∗〉 = lim
i→∞

〈zni − x∗, Jw − Jx∗〉 = 〈z − x∗, Jw − Jx∗〉 ≤ 0 . It follows

from Lemma 2.9 and (3.6) that j(x*, xn) ® 0, as n ® ∞. Consequently, xn ® x* by

Lemma 2.2.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

φ(x∗, xni) < φ(x∗, xni+1) , for all i Î N. Then, by Lemma 2.10, there exist a nondecreas-

ing sequence {mk} ⊂ N such that mk ® ∞, φ(x∗, xmk) ≤ φ(x∗, xmk+1) and

φ(x∗, xk) ≤ φ(x∗, xmk+1) , for all k Î N. Then from (3.5) and the fact that θn ® 0 we

have that

βmk,0
(
φ(umk , xmk) + φ(umk ,wmk)

)
+ βmk ,0βmk,ig(||Jwmk − JTmk

i ymk ||)
≤ (φ(x∗, xmk) − φ(x∗, xmk+1)) − θmkφ(x

∗, xmk)

+2θmk〈zmk − x∗, Jw − Jx∗〉 + (kmk − 1)M → 0, as k → ∞.

Thus, using the same proof of Case 1, we obtain that umk − xmk → 0 ,

umk − wmk → 0 and ymk − Tiymk → 0, as k ® ∞, for each i = 1, 2, . . . , N and hence

lim sup
n→∞

〈zmk − x∗, Jw − Jx∗〉 ≤ 0. (3:18)

Then from (3.6) we have that

φ(x∗xmk+1) ≤ (1 − θmk)φ(x
∗, xmk) + 2θmk〈zmk − x∗, Jw − Jx∗〉

+ (kmk − 1)M.
(3:19)

Since φ(x∗, xmk) ≤ φ(x∗, xmk+1) , (3.19) implies that

θmkφ(x
∗, xmk) ≤ φ(x∗, xmk) − φ(x∗, xmk+1)

+ 2θmk〈zmk − x∗, Jw − Jx∗〉 + (kmk − 1)M

≤ 2θmk〈zmk − x∗, Jw − Jx∗〉 + (kmk − 1)M.
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In particular, since θmk > 0 , we get

φ(x∗, xmk) ≤ 2〈zmk − x∗, Jw − Jx∗〉 + (kmk − 1)
θmk

M.

Then, from (3.18) and the fact that
(kmk

−1)
θmk

→ 0 , we obtain that φ(x∗, xmk) → 0 , as k

® ∞. This together with (3.19) gives φ(x∗, xmk+1) → 0 , as k ® ∞. But

φ(x∗, xk) ≤ φ(x∗, xmk+1) , for all k Î N, thus we obtain that xk ® x*. Therefore, from

the above two cases, we can conclude that {xn} converges strongly to x* and the proof

is complete. □
Now, we give an example of asymptotically regular uniformly continuous relatively

asymptotically nonexpansive mapping which is not uniformly Lipschitzian.

Example 3.2. Let C := [−1
π
, 1

π
] and define T: C ® C by

T(x) =
{ x

2 sin(
1
x ), x �= 0,

x, x = 0.

Then clearly, T is continuous and F(T) = {0}. Moreover, following the method in [33]

we obtain that Tnx ® 0, uniformly, for each x Î C, but T is not a Lipschitz function.

We now show that it is relatively asymptotically nonexpansive, asymptotically regular

and uniformly continuous mapping. But for any x Î C we have that

|Tnx − Tn0| ≤ |( 12)nx| = |( 12)nx − 0| ≤ kn|x − 0| , for kn := max{( 12)n, 1} = 1, for

each n ≥ 1 and |Tn+1x - Tnx| ≤ |Tn+1x| + |Tnx| ® 0, as n ® ∞. Moreover, since T: C

® C is continuous, it follows that it is uniformly continuous. Therefore, T is relatively

asymptotically nonexpansive, asymptotically regular and uniformly continuous

mapping.

Next, we give an example of uniformly Lipschitzian relatively asymptotically nonex-

pansive mapping which is not relatively nonexpansive.

Example 3.3 [34]. Let X = lp, where 1 <p < ∞, and C = {x = (x1, x2, . . .) Î X; xn ≥ 0}.

Then C is closed and convex subset of X. Note that C is not bounded. Obviously, X is

uniformly convex and uniformly smooth. Let {ln} and {λ̄n} be sequences of real num-

bers satisfying the following properties:

(i) 0 <ln < 1, λ̄n > 1 , ln ↑ 1 and λ̄n ↓ 1 ,

(ii) λn+1λ̄n = 1 and λj+1λ̄n+j < 1 , for all n and j (for example: λn = 1 − 1
n+1 ,

λ̄n = 1 − 1
n+1).

Then the map T: C ® C defined by

Tx := (0, λ̄1| sin x1|,λ2x2, λ̄2x3,λ3x4, λ̄3x5, . . .),

for all x = (x1, x2, . . .) Î C is uniformly Lipschitzian which is relatively asymptoti-

cally nonexpansive but not relatively nonexpansive (see [34] for the details). Note also

that F(T) = {0}.
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Remark 3.4. We note that the asymptotic regularity assumption on Ti in Theorem 3.1 can

be weakened to the assumption that Tn+1
i yn − Tn

i yn → 0 , as n ® ∞, for i = 1, 2, . . . , N.

Recall that T is uniformly L-Lipschitzian if there exists some L > 0 such that

||Tnx − Tny|| ≤ L||x − y||, for all n ≥ 1 and x, y ∈ C. (3:20)

We also note that the assumption Tn+1
i yn − Tn

i yn → 0 , as n ® ∞ and uniform conti-

nuity of Ti can be replaced by the unform Lipschitz continuity of Ti.

With the above observation we have the following convergence result.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a uniformly smooth and

uniformly convex real Banach space E. Let f: C × C ® ℝ, be a bifunction which satisfies

conditions (A1)-(A4). Let A: C ® E* be a continuously monotone mapping. Let Ti: C ® C

be uniformly Li-Lipschtzian relatively asymptotically nonexpansive mapping with sequence

{kn, i}, for i = 1, 2, . . . , N. Assume that F := ∩N
i=1F(Ti) ∩ VI(C,A) ∩ EP(f ) is nonempty.

Then the sequence {xn} generated by (3.1) converges strongly to an element of F.

Proof. Clearly, Ti for each i = 1, 2, . . . , N is uniformly continuous. Now we show

that Tn+1
i yn − Tn

i yn → 0 , as n ® ∞. But observe that from (3.1) and (3.8) we have

||Jxn+1 − Jwn|| ≤ βn,1||Tn
1yn − wn|| + βn,2||Tn

2yn − wn||
+ · · · + βn,N||Tn

2yn − wn|| → 0,
(3:21)

as n ® ∞. Thus, as J-1 is uniformly continuous on bounded sets we have that xn+1 -

wn ® 0 which implies from (3.10) that xn+1 - yn ® 0, as n ® ∞. Thus, this with (3.11)

implies that

||yn+1 − yn|| ≤ ||yn+1 − xn+1|| + ||xn+1 − yn|| → 0, as n → ∞. (3:22)

and hence (3.22) and (3.11) imply that

||Tn
i yn − Tn+1

i yn|| ≤ ||Tn+1
i yn − Tn+1

i yn+1|| + ||Tn+1
i yn+1 − yn+1||

+ ||yn+1 − yn|| + ||yn − Tn
i yn||

≤ (1 + L)||yn+1 − yn|| + ||Tn+1
i yn+1 − yn+1||

+ ||Tn
i yn − yn|| → 0, as n → ∞,

(3:23)

for each i = 1, 2, . . . , N, where L := max
1≤i≤N

{Li} . Therefore, Remark 3.4 with Theorem

3.1 imply the desired conclusion. □
If in Theorem 3.1 we have N = 1 we get the following corollary.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a uniformly smooth

and uniformly convex real Banach space E. Let f: C × C ® ℝ, be a bifunction which

satisfies conditions (A1)-(A4). Let A: C ® E* be a continuously monotone mapping. Let

T: C ® C be a asymptotically regular uniformly continuous relatively asymptotically

nonexpansive mapping with sequence {kn}. Assume that F: = F(T) ∩ VI(C, A) ∩ EP(f) is

nonempty. Let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 = w ∈ C, chosen arbitrary,

un = Frnxn,

wn = Trnun,

yn = �CJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1(βnJwn + (1 − βn)JTnyn), n ≥ 0,

(3:24)
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where an Î (0, 1) such that limn®∞ an = 0, limn→∞
(kn−1)

αn
= 0 ,

∑∞
n=1 αn = ∞ , {bn} ⊂

[a, b] ⊂ (0, 1), for each n ≥ 0. Then {xn} converges strongly to an element of F.

If in Theorem 3.1 we assume that each Ti is relatively nonexpansive we get the fol-

lowing theorem.

Theorem 3.7. Let C be a nonempty, closed and convex subset of a uniformly smooth

and uniformly convex real Banach space E. Let f: C × C ® ℝ, be a bifunction which

satisfies conditions (A1)-(A4). Let A: C ® E* be a continuously monotone mapping. Let

Ti: C ® C be a relatively nonexpansive mapping for each i = 1, 2, . . . , N. Assume that

F := ∩N
i=1F(Ti) ∩ VI(C,A) ∩ EP(f ) is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 = w ∈ C, chosen arbitrarily,

un = Frnxn,

wn = Trnun,

yn = �CJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1(βn,0Jwn +
∑N

i=1
βn,iJTiyn), n ≥ 0,

(3:25)

where an Î (0,1) such that limn®∞ an = 0,
∑∞

n=1 αn = ∞ , {bn, i} ⊂ [a, b] ⊂ (0, 1), for

i = 1, 2, . . . , N satisfying bn,0 + bn,1 + · · · + bn, N = 1, for each n ≥ 0. Then {xn} con-

verges strongly to an element of F.

Proof. Following the methods of proof of Theorem 3.1 we obtain the required asser-

tion. □
If in Theorem 3.1 we assume that f ≡ 0 and A ≡ 0 we get the following corollary.

Corollary 3.8. Let C be a nonempty, closed and convex subset of a uniformly smooth

and uniformly convex real Banach space E. Let Ti: C ® C be a asymptotically regular

uniformly continuous relatively asymptotically nonexpansive mapping with sequence

{kn, i}, for i = 1, 2, . . . , N. Assume that F := ∩N
i=1F(Ti)is nonempty. Let {xn} be a

sequence generated by⎧⎪⎪⎨
⎪⎪⎩
x0 = w ∈ C, chosen arbitrarily,

yn = �CJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1(βn,0Jxn +
∑N

i=1
βn,iJTn

i yn), n ≥ 0,

(3:26)

where an Î (0, 1) such that limn®∞ an = 0, limn→∞
(kn,i−1)

αn
= 0 ,

∑∞
n=1 αn = ∞ , {bn, i}

⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . , N satisfying bn,0 + bn,1 + · · · + bn, N = 1, for each n

≥ 0. Then {xn} converges strongly to an element of F.

If in Theorem 3.1 we assume that f ≡ 0 and T ≡ I we get the following corollary.

Corollary 3.9. Let C be a nonempty, closed and convex subset of a uniformly smooth

and uniformly convex real Banach space E. Let A: C ® E* be a continuously monotone

mapping. Assume that F: = VI(C, A) is nonempty. Let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 = w ∈ C, chosen arbitrarily,

wn = Frnxn,

yn = �CJ−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1(βn,Jwn + (1 − βn)Jyn), n ≥ 0,

(3:27)
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where an Î (0, 1) such that limn®∞ an = 0,
∑∞

n=1 αn = ∞ , {bn} ⊂ [a, b] ⊂ (0, 1), for

each n ≥ 0. Then {xn} converges strongly to an element of F.

Remark 3.10. Theorem 3.1 improves and extends the corresponding results of

Nakajo and Takahashi [17], Kim and Xu [35] in the sense that the space is extended

from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces. More-

over, Corollary 3.8 improves and extends Theorem MT of Matsushita and Takahashi

[16] and Theorem 3.4 of Nilsrakoo and Saejung [36] from a relatively nonexpansive

mappings to a finite family of asymptotically regular uniformly continuous relatively

asymptotically nonexpansive mappings. Corollary 3.9 extends the corresponding results

of Iiduka, Takahashi and Toyoda [6] and Iiduka and Takahashi [8] in the sense that

either the space is extended from Hilbert space to uniformly smooth and uniformly

convex Banach space or our scheme is used for approximating solutions of variational

problems for a more general class of monotone mappings. Moreover, our scheme does

not involve computation of Cn+1 from sets Cn and Qn for each n ≥ 1.
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