## RESEARCH

## **Open Access**

# A fixed point theorem for cyclic generalized contractions in metric spaces

Maryam A Alghamdi<sup>1</sup>, Adrian Petruşel<sup>2</sup> and Naseer Shahzad<sup>3\*</sup>

\*Correspondence: nshahzad@kau.edu.sa <sup>3</sup>Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21859, Saudi Arabia Full list of author information is available at the end of the article

### Abstract

In this paper, we extend a recent result of V. Pata (J. Fixed Point Theory Appl. 10:299-305, 2011) in the frame of a cyclic representation of a complete metric space.

## 1 Introduction

One of the fundamental result in fixed point theory is the Banach contraction principle. It has various non-trivial applications in many branches of pure and applied sciences (see, for instance, [2, 7, 14] and references cited therein).

Let (X, d) be a metric space and  $f : X \to X$  be an operator. We say that f is a contraction if there exists  $\lambda \in [0, 1)$  such that, for all  $x, y \in X$ ,

$$d(f(x), f(y)) \le \lambda d(x, y). \tag{1.1}$$

In terms of Picard operator theory (see [13]), Banach contraction principle asserts that if f is a contraction and (X, d) is complete, then f is a Picard operator. This result has been extended to other important classes of maps. Recently, Pata [8] proved that if (X, d) is a complete metric space and  $f : X \to X$  is an operator such that there exists fixed constants  $\gamma \ge 0, \alpha \ge 1$  and  $\beta \in [0, \alpha]$  such that, for every  $\varepsilon \in [0, 1]$  and every  $x, y \in X$ ,

$$d(f(x), f(y)) \le (1 - \varepsilon)d(x, y) + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x|| + ||y||]^{\beta}$$

$$(1.2)$$

(where  $\psi : [0,1] \to [0,\infty)$  is an increasing function vanishing with continuity at zero and  $||x|| := d(x, x_0)$ , with arbitrary  $x_0 \in X$ ), then *f* has a unique fixed point in *X*.

**Remark 1.1** (see [8]) The condition (1.2) is weaker than the contraction condition (1.1). In fact, if

 $d(f(x), f(y)) \le \lambda d(x, y)$ , for every  $x, y \in X$  and some  $\lambda \in [0, 1)$ ,

then it can be verified that, for every  $x, y \in X$ , we have

$$d(f(x), f(y)) \le (1 - \varepsilon)d(x, y) + \gamma \varepsilon^{1+\theta} [1 + ||x|| + ||y||], \quad \text{for every } \theta > 0,$$

© 2012 Alghamdi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



where

$$\gamma = \gamma( heta, \lambda) = rac{ heta^ heta}{(1+ heta)^{1+ heta}} rac{1}{(1-\lambda)^ heta}.$$

**Remark 1.2** (see [8]) The function  $f : [1, \infty) \to [1, \infty)$  defined as

$$f(x) = -2 + x - 2\sqrt{x} + 4\sqrt[4]{x}$$

has a unique fixed point  $x^* = 1$ , but fails to be a contraction on any neighborhood both of 1 and of  $\infty$ .

Kirk, Srinivasan and Veeramani [6] obtained an extension of Banach's fixed point theorem for mappings satisfying cyclical contractive conditions. Some generalizations of the results given in [6], using the setting of so-called fixed point structures, are presented in I. A. Rus [12]. In [10], Păcurar and Rus established a fixed point theorem for cyclic  $\varphi$ contractions and they further discussed fixed point theory in metric spaces. In [3], Karapinar proved a fixed point theorem for cyclic weak  $\varphi$ -contraction mappings. Some other recent results concerning this topic are given in [1, 4, 5, 9, 11].

In the present paper, we obtain a fixed point theorem for a generalized contraction in the sense of the assumption (1.2), defined on a cyclic representation of a complete metric space.

#### 2 Main results

We need first to recall a known concept.

**Definition 2.1** ([3]) Let *X* be a nonempty set, *m* be a positive integer and  $f : X \to X$  an operator. Then, we say that  $\bigcup_{i=1}^{m} A_i$  is a cyclic representation of *X* with respect to *f* if:

- (i)  $X = \bigcup_{i=1}^{m} A_i$ , where  $A_i$  are nonempty sets for each  $i \in \{1, ..., m\}$ ;
- (ii)  $f(A_1) \subset A_2, \dots, f(A_{m-1}) \subset A_m, f(A_m) \subset A_1.$

Let (X, d) be a complete metric space. Selecting an arbitrary  $x_1 \in X$ , we denote

 $||x|| := d(x, x_1)$ , for all  $x \in X$ .

Our main result is as follows.

**Theorem 2.2** Let (X, d) be a complete metric space, m be a positive integer,  $A_1, \ldots, A_m$  be closed nonempty subsets of  $X, Y := \bigcup_{i=1}^m A_i, \psi : [0,1] \to [0,\infty)$  be an increasing function vanishing with continuity at zero, and  $f : Y \to Y$  be an operator. Assume that:

- 1.  $\bigcup_{i=1}^{m} A_i$  is a cyclic representation of Y with respect to f;
- 2. For every  $\varepsilon \in [0,1]$ ,  $x \in A_i$ , and  $y \in A_{i+1}$  ( $i \in \{1,...,m\}$ , where  $A_{m+1} = A_1$ ), we have

$$d(f(x), f(y)) \le (1 - \varepsilon)d(x, y) + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x|| + ||y||]^{\beta},$$

$$(2.1)$$

where  $\gamma \ge 0$ ,  $\alpha \ge 1$  and  $\beta \in [0, \alpha]$  are fixed constants.

Then, we have the following conclusions:

- (*i*) f is a Picard operator, i.e., f has a unique fixed point  $x^* \in \bigcap_{i=1}^m A_i$  and the Picard iteration sequence  $\{f^n(x)\}_{n\in\mathbb{N}}$  converges to  $x^*$ , for any initial point  $x \in Y$ ;
- (ii) the following estimates hold:

$$d(x_n, x^*) \le ||x^*||, \quad n \ge 2;$$
  
 $d(x_n, x_1) \le 2 ||x^*||, \quad n \ge 2.$ 

*Proof* (i) For convenience of notation, if j > m, define  $A_j = A_i$  where  $i = j \mod m$  and  $1 \le i \le m$ . Let  $x_1 \in A_1$ . Starting from  $x_1$ , let  $\{x_n\}_{n \ge 1}$  be the Picard iteration defined by the sequence

$$x_n = f(x_{n-1}) = f^{n-1}(x_1), \quad n \ge 2$$

and set  $c_n = ||x_n||$ . Assume  $x_n \neq x_{n+1}$  for all *n*. By (2.1), we have

$$d(x_n, x_{n+1}) \le d(x_{n-1}, x_n) \le \dots \le d(x_1, x_2) = c_2.$$
(2.2)

First, we prove that the sequence  $(c_n)_{n \in \mathbb{N}^*}$  is bounded. By (2.2) we get that

$$c_n \le d(x_n, x_{n+1}) + d(x_{n+1}, x_2) + d(x_2, x_1) \le d(x_{n+1}, x_2) + 2c_2$$
  
=  $d(f(x_n), f(x_1)) + 2c_2.$ 

Since  $x_1 \in A_1$  and  $x_n \in A_n$ , from (2.1), we obtain that

$$c_n \leq (1-\varepsilon)d(x_n, x_1) + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x_n|| + ||x_1||]^{\beta} + 2c_2$$
  
=  $(1-\varepsilon)c_n + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1+c_n]^{\beta} + 2c_2$   
 $\leq (1-\varepsilon)c_n + a\varepsilon^{\alpha} \psi(\varepsilon)c_n^{\alpha} + b,$ 

where  $c_1 = ||x_1|| = d(x_1, x_1) = 0$ ,  $\beta \le \alpha$ , and for some *a*, *b* > 0. Thus,

$$\varepsilon c_n \leq a \varepsilon^{\alpha} \psi(\varepsilon) c_n^{\alpha} + b.$$

If there is a subsequence  $(c_{n_k})_{k \in \mathbb{N}^*} \to \infty$ , the choice  $\varepsilon = \varepsilon_k = \frac{(1+b)}{c_{n_k}}$  leads to the contradiction

$$1 \le a(1+b)^{\alpha} \psi(\varepsilon_k) \to 0.$$

Therefore, the sequence  $(c_n)$  is bounded.

From (2.2) we obtain that the sequence  $\{d(x_n, x_{n+1})\}$  is nonincreasing and then it is convergent to the real number

$$\lim_{n\to\infty} d(x_n, x_{n+1}) = r = \inf \{ d(x_{n-1}, x_n) : n = 2, 3, \ldots \}.$$

Now we show that r = 0. Assume that r > 0. Let  $x_n \in A_n$  and  $x_{n+1} \in A_{n+1}$ . By (2.1), we have

$$r \leq d(x_n, x_{n+1}) = d(f(x_{n-1}), f(x_n))$$
  
$$\leq (1 - \varepsilon)d(x_{n-1}, x_n) + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x_{n-1}|| + ||x_n||]^{\beta}$$
  
$$\leq (1 - \varepsilon)d(x_{n-1}, x_n) + K\varepsilon\psi(\varepsilon),$$

for some K > 0. Letting  $n \to \infty$ , we obtain

$$r \leq K\psi(\varepsilon)$$
, for every  $\varepsilon \in [0,1]$ ,

which implies r = 0. This leads to a contradiction, therefore

$$\lim_{n\to\infty}d(x_n,x_{n+1})=0.$$

For  $p \ge 1$ , suppose there exists j,  $0 \le j \le m - 1$ , such that  $(n + p) - n + j = 1 \mod m$ , *i.e.*,  $p + j = 1 \mod m$ . Now, let p be fixed, j = 0 and let

$$q_n = n^{\alpha} d(x_n, x_{n+p}).$$

So, we have

$$q_{n+1} = (n+1)^{\alpha} d(x_{n+1}, x_{n+1+p}) = (n+1)^{\alpha} d(f(x_n), f(x_{n+p})).$$

Since  $p = 1 \mod m$ ,  $x_n$  and  $x_{n+p}$  lie in different sets  $A_i$  and  $A_{i+1}$ , for some  $1 \le i \le m$ . Then by (2.1) we have

$$q_{n+1} = (n+1)^{\alpha} (1-\varepsilon) d(x_n, x_{n+p}) + C(n+1)^{\alpha} \varepsilon^{\alpha} \psi(\varepsilon),$$
(2.3)

where  $C = \sup \gamma (1 + 2c_n)^{\beta} < \infty$ . Choosing for each *n* 

$$\varepsilon = 1 - \left(\frac{n}{n+1}\right)^{\alpha} \le \frac{\alpha}{n+1},$$

the relation (2.3) becomes

$$q_{n+1} \leq n^{\alpha} d(x_n, x_{n+p}) + C \alpha^{\alpha} \psi\left(\frac{\alpha}{n+1}\right) = q_n + C \alpha^{\alpha} \psi\left(\frac{\alpha}{n+1}\right).$$

Since  $q_0 = 0$ , it follows that

$$q_n = \sum_{k=1}^n (q_k - q_{k-1}) \le \sum_{k=1}^n C \alpha^{\alpha} \psi\left(\frac{\alpha}{k}\right) = C \alpha^{\alpha} \sum_{k=1}^n \psi\left(\frac{\alpha}{k}\right).$$

Consequently,

$$d(x_n, x_{n+p}) \leq C\left(\frac{\alpha}{n}\right)^{\alpha} \sum_{k=1}^n \psi\left(\frac{\alpha}{k}\right).$$

This shows that  $\{x_n\}$  is a Cauchy sequence in the complete metric space (Y, d) and, thus, it is convergent to a point  $y \in Y = \bigcup_{i=1}^{m} A_i$ . The case  $j \neq 0$  similar.

On the other hand, the sequence  $\{x_n\}$  has an infinite number of terms in each  $A_i$ , for every  $i \in \{1, ..., m\}$ . Since (Y, d) is complete, in each  $A_i$ ,  $i \in \{1, ..., m\}$  we can construct a subsequence of  $\{x_n\}$  which converges to y. Since each  $A_i$  is closed for  $i \in \{1, ..., m\}$ , we get that  $y \in \bigcap_{i=1}^m A_i$ . Then  $\bigcap_{i=1}^m A_i \neq \emptyset$  and we can consider the restriction

$$g:=f_{|\bigcap_{i=1}^{m}A_{i}}:\bigcap_{i=1}^{m}A_{i}\to\bigcap_{i=1}^{m}A_{i},$$

which satisfies the conditions of Theorem 1 in [8], since  $\bigcap_{i=1}^{m} A_i$  is also closed and complete. From this result, it follows that *g* has a unique fixed point, say  $x^* \in \bigcap_{i=1}^{m} A_i$ .

We claim now that for any initial value  $x \in Y$ , we get the same limit point  $x^* \in \bigcap_{i=1}^m A_i$ . Indeed, for  $x \in Y = \bigcup_{i=1}^m A_i$ , by repeating the above process, the corresponding iterative sequence yields that g has a unique fixed point, say  $z \in \bigcap_{i=1}^m A_i$ . Since  $x^*$ ,  $z \in \bigcap_{i=1}^m A_i$ , we have  $x^*$ ,  $z \in A_i$  for all  $i \in \{1, ..., m\}$  and, hence,  $d(x^*, z)$  and  $d(f(x^*), f(z))$  are well defined. We can write (2.1) in the form

$$d(x^*,z) = d(f(x^*),f(z)) \le (1-\varepsilon)d(x^*,z) + K\varepsilon\psi(\varepsilon),$$

for some K > 0. Suppose that  $\varepsilon = 0$ . Then we have

$$d(f(x^*),f(z)) \leq d(x^*,z).$$

If equality occurs, the relation

$$d(x^*, z) \leq K\psi(\varepsilon)$$

is valid for every  $\varepsilon \in [0, 1]$ , which implies  $d(x^*, z) = 0$ . Thus,  $x^*$  is the unique fixed point of f for any initial value  $x \in Y$ .

To prove that the Picard iteration converges to  $x^*$ , let us consider  $x_1 \in Y = \bigcup_{i=1}^m A_i$ . Then there exists  $i_0 \in \{1, ..., m\}$  such that  $x_n \in A_{i_0}$ . As  $x^* \in \bigcap_{i=1}^m A_i$  it follows that  $x^* \in A_{i_0+1}$  as well. By the continuity of f, we obtain

$$d(f^{n-1}(x_1),x^*)=d(f(x_{n-1}),x^*)=d(x_n,x^*)=\lim_{p\to\infty}d(x_n,x_{n+p})\leq C\left(\frac{\alpha}{n}\right)^{\alpha}\sum_{k=1}n\psi\left(\frac{\alpha}{k}\right).$$

Letting  $n \to \infty$ , it follows that  $(x_n) \to x^*$ , *i.e.*, the Picard iteration converges to the unique fixed point of f for any initial point  $x_1 \in Y$ .

(ii) Since  $x^*$  is a fixed point and  $x^* \in \bigcap_{i=1}^m A_i$ , we obtain that

$$d(x_{n}, x^{*}) = d(f(x_{n-1}), f(x^{*})) \leq d(x_{n-1}, x^{*}) \leq \cdots \leq d(x_{1}, x^{*}) = ||x^{*}||.$$
(2.4)

By (2.4), it follows that

$$d(x_n, x_1) \le d(x_n, x^*) + d(x^*, x_1) \le ||x^*|| + d(x^*, x_1) \le 2||x^*||.$$

In view of Remark 1.1, we immediately obtain the following corollary.

**Corollary 2.3** (Kirk, Srinivasan, Veeramani [2, Theorem 1.3]) Let (X,d) be a complete metric space, m be a positive integer,  $A_1, \ldots, A_m$  be closed nonempty subsets of X,  $Y := \bigcup_{i=1}^{m} A_i$  and  $f: Y \to Y$  be an operator. Assume that:

- (i)  $\bigcup_{i=1}^{m} A_i$  is a cyclic representation of Y with respect to f;
- (*ii*) there exists  $\lambda \in [0,1)$  such that, for any  $x \in A_i$ ,  $y \in A_{i+1}$ , where  $A_{m+1} = A_1$ , we have

 $d(f(x), f(y)) \leq \lambda d(x, y).$ 

Then f has a unique fixed point  $x^* \in \bigcap_{i=1}^m A_i$ .

Finally, we will prove a periodic point theorem. For this purpose, notice first that if f satisfies (1.2) with constants  $\alpha$ ,  $\beta$ ,  $\gamma$  and function  $\psi$ , and if  $||f(x)|| \le ||x||$  for each  $x \in X$ , then its *m*-iterate  $f^m$  also satisfies the condition (1.2) with constants  $\alpha$ ,  $\beta$ ,  $m\gamma$  and function  $\psi$ . Indeed, let us suppose that f satisfies (1.2) with constants  $\alpha$ ,  $\beta$ ,  $\gamma$ . Then, for every  $\varepsilon \in [0, 1]$ , we have

$$\begin{split} d\big(f^2(x), f^2(y)\big) \\ &\leq (1-\varepsilon)d\big(f(x), f(y)\big) + \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big[1 + \left\|f(x)\right\| + \left\|f(y)\right\|\big]^{\beta} \\ &\leq (1-\varepsilon)\big[(1-\varepsilon)d(x,y) + \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big(1 + \left\|x\right\| + \left\|y\right\|\big)^{\beta}\big] \\ &+ \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big[1 + \left\|f(x)\right\| + \left\|f(y)\right\|\big]^{\beta} \\ &\leq (1-\varepsilon)\big[(1-\varepsilon)d(x,y) + \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big(1 + \left\|x\right\| + \left\|y\right\|\big)^{\beta}\big] \\ &+ \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big[1 + \left\|x\right\| + \left\|y\right\|\big]^{\beta} \\ &= (1-\varepsilon)^2 d(x,y) + (1-\varepsilon)\gamma \varepsilon^{\alpha} \psi(\varepsilon)\big(1 + \left\|x\right\| + \left\|y\right\|\big)^{\beta} \\ &+ \gamma \varepsilon^{\alpha} \psi(\varepsilon)\big[1 + \left\|x\right\| + \left\|y\right\|\big]^{\beta} \\ &= (1-\varepsilon)^2 d(x,y) + (2-\varepsilon)\gamma \varepsilon^{\alpha} \psi(\varepsilon)\big(1 + \left\|x\right\| + \left\|y\right\|\big)^{\beta} \\ &\leq (1-\varepsilon)d(x,y) + 2\gamma \varepsilon^{\alpha} \psi(\varepsilon)\big(1 + \left\|x\right\| + \left\|y\right\|\big)^{\beta}. \end{split}$$

Thus, we immediately get that, for  $m \in \mathbb{N}$  with  $m \ge 2$ , we have

$$d(f^{m}(x), f^{m}(y)) \leq (1 - \varepsilon)d(x, y) + m\gamma \varepsilon^{\alpha} \psi(\varepsilon)(1 + ||x|| + ||y||)^{\beta}.$$

Notice also that if  $\bigcup_{i=1}^{m} A_i$  is a cyclic representation of X with respect to f, then each  $A_i$   $(i \in \{1, 2, ..., m\})$  is an invariant set with respect to  $f^m$ . Using these two remarks, we get the following periodic point theorem.

**Theorem 2.4** Let (X,d) be a complete metric space, m be a positive integer,  $A_1, \ldots, A_m$  be nonempty subsets of X,  $Y := \bigcup_{i=1}^{m} A_i$ ,  $\psi : [0,1] \to [0,\infty)$  be an increasing function vanishing with continuity at zero and  $f : Y \to Y$  be an operator such that  $||f(x)|| \le ||x||$  for each  $x \in Y$ . Assume that:

- 1.  $\bigcup_{i=1}^{m} A_i$  is a cyclic representation of Y with respect to f.
- 2. There exists  $i_0 \in \{1, ..., m\}$  such that  $A_{i_0}$  is closed.

*3. For every*  $\varepsilon \in [0,1]$  *and each*  $x, y \in A_{i_0}$ *, we have* 

$$d(f(x), f(y)) \le (1 - \varepsilon)d(x, y) + \gamma \varepsilon^{\alpha} \psi(\varepsilon) [1 + ||x|| + ||y||]^{\beta},$$
(2.1)

where  $\gamma \ge 0$ ,  $\alpha \ge 1$  and  $\beta \in [0, \alpha]$  are fixed constants. Then,  $f^m$  has a fixed point.

*Proof* Notice that, by the above considerations,  $f^m$  is a self mapping on  $A_{i_0}$  and it satisfies the condition (1.2) with constants  $\alpha$ ,  $\beta$ ,  $m\gamma$  and function  $\psi$ . Thus, by Theorem 1 in [8] we get the conclusion.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

#### Author details

<sup>1</sup> Department of Mathematics, Sciences Faculty for Girls, King Abdulaziz University, P.O. Box 4087, Jeddah, 21491, Saudi Arabia. <sup>2</sup>Department of Mathematics, Babeş-Bolyai University, Kogălniceanu Street No. 1, Cluj-Napoca, 400084, Romania. <sup>3</sup>Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21859, Saudi Arabia.

#### Received: 13 March 2012 Accepted: 4 July 2012 Published: 23 July 2012

#### References

- 1. Agarwal, RP, Alghamdi, M, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 40 (2012)
- de Bakker, JW, de Vink, EP: Denotational models for programming languages: applications of Banach's fixed point theorem. Topol. Appl. 85(1-3), 35-52 (1998)
- 3. Karapinar, E: Fixed point theory for cyclic weak  $\phi$ -contraction. Appl. Math. Lett. 24, 822-825 (2011)
- 4. Karapinar, E, Erhan, IM, Ulus, AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 6, 239-244 (2012)
- Karapinar, E, Sadarangani, K: Fixed point theory for cyclic (φ ψ)-contractions. Fixed Point Theory Appl. 2011, 69 (2011)
- Kirk, WA, Srinivasan, PS, Veeramani, P: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4, 79-89 (2003)
- 7. Kunze, HE, La Torre, D: Solving inverse problems for differential equations by the collage method and application to an economic growth model. Int. J. Optim. Theory Methods Appl. 1(1), 26-35 (2009)
- 8. Pata, V: A fixed point theorem in metric spaces. J. Fixed Point Theory Appl. 10, 299-305 (2011)
- 9. Păcurar, M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory 12, 419-428 (2011)
- 10. Păcurar, M, Rus, IA: Fixed point theory for cyclic  $\varphi$ -contractions. Nonlinear Anal. **72**, 1181-1187 (2010)
- 11. Petrusel, G. Cyclic representations and periodic points. Stud. Univ. Babes-Bolyai, Math. 51, 107-112 (2005)
- 12. Rus, IA: Cyclic representations and fixed points. Ann. Tiberiu Popoviciu Semin. 3, 171-178 (2005)
- 13. Rus, IA: Picard operators and applications. Sci. Math. Jpn. 58, 191-219 (2003)
- 14. Serov, VS, Schüermann, HW, Svetogorova, E: Application of the Banach fixed-point theorem to the scattering problem at a nonlinear three-layer structure with absorption. Fixed Point Theory Appl. **2010**, Article ID 439682 (2010)

#### doi:10.1186/1687-1812-2012-122

Cite this article as: Alghamdi et al.: A fixed point theorem for cyclic generalized contractions in metric spaces. Fixed Point Theory and Applications 2012 2012:122.