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Abstract
In this paper, we extend a recent result of V. Pata (J. Fixed Point Theory Appl.
10:299-305, 2011) in the frame of a cyclic representation of a complete metric space.

1 Introduction
One of the fundamental result in fixed point theory is the Banach contraction principle.
It has various non-trivial applications in many branches of pure and applied sciences (see,
for instance, [, , ] and references cited therein).
Let (X,d) be a metric space and f : X → X be an operator. We say that f is a contraction

if there exists λ ∈ [, ) such that, for all x, y ∈ X,

d
(
f (x), f (y)

) ≤ λd(x, y). (.)

In terms of Picard operator theory (see []), Banach contraction principle asserts that if
f is a contraction and (X,d) is complete, then f is a Picard operator. This result has been
extended to other important classes of maps. Recently, Pata [] proved that if (X,d) is a
complete metric space and f : X → X is an operator such that there exists fixed constants
γ ≥ , α ≥  and β ∈ [,α] such that, for every ε ∈ [, ] and every x, y ∈ X,

d
(
f (x), f (y)

) ≤ ( – ε)d(x, y) + γ εαψ(ε)
[
 + ‖x‖ + ‖y‖]β (.)

(where ψ : [, ] → [,∞) is an increasing function vanishing with continuity at zero and
‖x‖ := d(x,x), with arbitrary x ∈ X), then f has a unique fixed point in X.

Remark . (see []) The condition (.) is weaker than the contraction condition (.).
In fact, if

d
(
f (x), f (y)

) ≤ λd(x, y), for every x, y ∈ X and some λ ∈ [, ),

then it can be verified that, for every x, y ∈ X, we have

d
(
f (x), f (y)

) ≤ ( – ε)d(x, y) + γ ε+θ
[
 + ‖x‖ + ‖y‖], for every θ > ,
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where

γ = γ (θ ,λ) =
θθ

( + θ )+θ


( – λ)θ

.

Remark . (see []) The function f : [,∞)→ [,∞) defined as

f (x) = – + x – 
√
x +  √x

has a unique fixed point x∗ = , but fails to be a contraction on any neighborhood both of
 and of ∞.

Kirk, Srinivasan and Veeramani [] obtained an extension of Banach’s fixed point theo-
rem for mappings satisfying cyclical contractive conditions. Some generalizations of the
results given in [], using the setting of so-called fixed point structures, are presented in
I. A. Rus []. In [], Păcurar and Rus established a fixed point theorem for cyclic ϕ-
contractions and they further discussed fixed point theory in metric spaces. In [], Kara-
pinar proved a fixed point theorem for cyclic weak ϕ-contraction mappings. Some other
recent results concerning this topic are given in [, , , , ].
In the present paper, we obtain a fixed point theorem for a generalized contraction in

the sense of the assumption (.), defined on a cyclic representation of a complete metric
space.

2 Main results
We need first to recall a known concept.

Definition . ([]) Let X be a nonempty set, m be a positive integer and f : X → X an
operator. Then, we say that

⋃m
i=Ai is a cyclic representation of X with respect to f if:

(i) X =
⋃m

i=Ai, where Ai are nonempty sets for each i ∈ {, . . . ,m};
(ii) f (A) ⊂ A, . . . , f (Am–) ⊂ Am, f (Am) ⊂ A.

Let (X,d) be a complete metric space. Selecting an arbitrary x ∈ X, we denote

‖x‖ := d(x,x), for all x ∈ X.

Our main result is as follows.

Theorem . Let (X,d) be a complete metric space, m be a positive integer, A, . . . ,Am be
closed nonempty subsets of X, Y :=

⋃m
i=Ai, ψ : [, ] → [,∞) be an increasing function

vanishing with continuity at zero, and f : Y → Y be an operator. Assume that:
.

⋃m
i=Ai is a cyclic representation of Y with respect to f ;

. For every ε ∈ [, ], x ∈ Ai, and y ∈ Ai+ (i ∈ {, . . . ,m}, where Am+ = A), we have

d
(
f (x), f (y)

) ≤ ( – ε)d(x, y) + γ εαψ(ε)
[
 + ‖x‖ + ‖y‖]β , (.)

where γ ≥ , α ≥  and β ∈ [,α] are fixed constants.
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Then, we have the following conclusions:
(i) f is a Picard operator, i.e., f has a unique fixed point x∗ ∈ ⋂m

i=Ai and the Picard
iteration sequence {f n(x)}n∈N converges to x∗, for any initial point x ∈ Y ;

(ii) the following estimates hold:

d
(
xn,x∗) ≤ ∥∥x∗∥∥, n≥ ;

d(xn,x) ≤ 
∥∥x∗∥∥, n ≥ .

Proof (i) For convenience of notation, if j > m, define Aj = Ai where i = j mod m and
 ≤ i ≤ m. Let x ∈ A. Starting from x, let {xn}n≥ be the Picard iteration defined by the
sequence

xn = f (xn–) = f n–(x), n≥ ,

and set cn = ‖xn‖. Assume xn �= xn+ for all n. By (.), we have

d(xn,xn+) ≤ d(xn–,xn) ≤ · · · ≤ d(x,x) = c. (.)

First, we prove that the sequence (cn)n∈N* is bounded. By (.) we get that

cn ≤ d(xn,xn+) + d(xn+,x) + d(x,x) ≤ d(xn+,x) + c

= d
(
f (xn), f (x)

)
+ c.

Since x ∈ A and xn ∈ An, from (.), we obtain that

cn ≤ ( – ε)d(xn,x) + γ εαψ(ε)
[
 + ‖xn‖ + ‖x‖

]β + c

= ( – ε)cn + γ εαψ(ε)[ + cn]β + c

≤ ( – ε)cn + aεαψ(ε)cαn + b,

where c = ‖x‖ = d(x,x) = , β ≤ α, and for some a,b > . Thus,

εcn ≤ aεαψ(ε)cαn + b.

If there is a subsequence (cnk )k∈N* → ∞, the choice ε = εk = (+b)
cnk

leads to the contradic-
tion

 ≤ a( + b)αψ(εk) → .

Therefore, the sequence (cn) is bounded.
From (.) we obtain that the sequence {d(xn,xn+)} is nonincreasing and then it is con-

vergent to the real number

lim
n→∞d(xn,xn+) = r = inf

{
d(xn–,xn) : n = , , . . .

}
.
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Now we show that r = . Assume that r > . Let xn ∈ An and xn+ ∈ An+. By (.), we have

r ≤ d(xn,xn+) = d
(
f (xn–), f (xn)

)
≤ ( – ε)d(xn–,xn) + γ εαψ(ε)

[
 + ‖xn–‖ + ‖xn‖

]β

≤ ( – ε)d(xn–,xn) +Kεψ(ε),

for some K > . Letting n→ ∞, we obtain

r ≤ Kψ(ε), for every ε ∈ [, ],

which implies r = . This leads to a contradiction, therefore

lim
n→∞d(xn,xn+) = .

For p ≥ , suppose there exists j,  ≤ j ≤ m – , such that (n + p) – n + j =  mod m, i.e.,
p + j =  mod m. Now, let p be fixed, j =  and let

qn = nαd(xn,xn+p).

So, we have

qn+ = (n + )αd(xn+,xn++p) = (n + )αd
(
f (xn), f (xn+p)

)
.

Since p =  mod m, xn and xn+p lie in different sets Ai and Ai+, for some  ≤ i ≤ m. Then
by (.) we have

qn+ = (n + )α( – ε)d(xn,xn+p) +C(n + )αεαψ(ε), (.)

where C = supγ ( + cn)β < ∞. Choosing for each n

ε =  –
(

n
n + 

)α

≤ α

n + 
,

the relation (.) becomes

qn+ ≤ nαd(xn,xn+p) +Cααψ

(
α

n + 

)
= qn +Cααψ

(
α

n + 

)
.

Since q = , it follows that

qn =
n∑
k=

(qk – qk–)≤
n∑
k=

Cααψ

(
α

k

)
= Cαα

n∑
k=

ψ

(
α

k

)
.

Consequently,

d(xn,xn+p) ≤ C
(

α

n

)α n∑
k=

ψ

(
α

k

)
.
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This shows that {xn} is a Cauchy sequence in the complete metric space (Y ,d) and, thus,
it is convergent to a point y ∈ Y =

⋃m
i=Ai. The case j �=  similar.

On the other hand, the sequence {xn} has an infinite number of terms in each Ai, for
every i ∈ {, . . . ,m}. Since (Y ,d) is complete, in each Ai, i ∈ {, . . . ,m} we can construct a
subsequence of {xn} which converges to y. Since each Ai is closed for i ∈ {, . . . ,m}, we get
that y ∈ ⋂m

i=Ai. Then
⋂m

i=Ai �= ∅ and we can consider the restriction

g := f|⋂m
i= Ai

:
m⋂
i=

Ai →
m⋂
i=

Ai,

which satisfies the conditions of Theorem  in [], since
⋂m

i=Ai is also closed and com-
plete. From this result, it follows that g has a unique fixed point, say x∗ ∈ ⋂m

i=Ai.
We claim now that for any initial value x ∈ Y , we get the same limit point x∗ ∈ ⋂m

i=Ai.
Indeed, for x ∈ Y =

⋃m
i=Ai, by repeating the above process, the corresponding iterative

sequence yields that g has a unique fixed point, say z ∈ ⋂m
i=Ai. Since x∗, z ∈ ⋂m

i=Ai, we
have x∗, z ∈ Ai for all i ∈ {, . . . ,m} and, hence, d(x∗, z) and d(f (x∗), f (z)) are well defined.
We can write (.) in the form

d
(
x∗, z

)
= d

(
f
(
x∗), f (z)) ≤ ( – ε)d

(
x∗, z

)
+Kεψ(ε),

for some K > . Suppose that ε = . Then we have

d
(
f
(
x∗), f (z)) ≤ d

(
x∗, z

)
.

If equality occurs, the relation

d
(
x∗, z

) ≤ Kψ(ε)

is valid for every ε ∈ [, ], which implies d(x∗, z) = . Thus, x∗ is the unique fixed point of
f for any initial value x ∈ Y .
To prove that the Picard iteration converges to x∗, let us consider x ∈ Y =

⋃m
i=Ai. Then

there exists i ∈ {, . . . ,m} such that xn ∈ Ai . As x∗ ∈ ⋂m
i=Ai it follows that x∗ ∈ Ai+ as

well. By the continuity of f , we obtain

d
(
f n–(x),x∗) = d

(
f (xn–),x∗) = d

(
xn,x∗) = lim

p→∞d(xn,xn+p) ≤ C
(

α

n

)α ∑
k=

nψ

(
α

k

)
.

Letting n→ ∞, it follows that (xn) → x∗, i.e., the Picard iteration converges to the unique
fixed point of f for any initial point x ∈ Y .
(ii) Since x∗ is a fixed point and x∗ ∈ ⋂m

i=Ai, we obtain that

d
(
xn,x∗) = d

(
f (xn–), f

(
x∗)) ≤ d

(
xn–,x∗) ≤ · · · ≤ d

(
x,x∗) = ∥∥x∗∥∥. (.)

By (.), it follows that

d(xn,x)≤ d
(
xn,x∗) + d

(
x∗,x

) ≤ ∥∥x∗∥∥ + d
(
x∗,x

) ≤ 
∥∥x∗∥∥. �

In view of Remark ., we immediately obtain the following corollary.
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Corollary . (Kirk, Srinivasan, Veeramani [, Theorem .]) Let (X,d) be a complete
metric space, m be a positive integer, A, . . . ,Am be closed nonempty subsets of X, Y :=⋃m

i=Ai and f : Y → Y be an operator. Assume that:
(i)

⋃m
i=Ai is a cyclic representation of Y with respect to f ;

(ii) there exists λ ∈ [, ) such that, for any x ∈ Ai, y ∈ Ai+, where Am+ = A, we have

d
(
f (x), f (y)

) ≤ λd(x, y).

Then f has a unique fixed point x∗ ∈ ⋂m
i=Ai.

Finally, we will prove a periodic point theorem. For this purpose, notice first that if f
satisfies (.) with constants α, β , γ and function ψ , and if ‖f (x)‖ ≤ ‖x‖ for each x ∈ X,
then its m-iterate f m also satisfies the condition (.) with constants α, β , mγ and func-
tion ψ . Indeed, let us suppose that f satisfies (.) with constants α, β , γ . Then, for every
ε ∈ [, ], we have

d
(
f (x), f (y)

)
≤ ( – ε)d

(
f (x), f (y)

)
+ γ εαψ(ε)

[
 +

∥∥f (x)∥∥ +
∥∥f (y)∥∥]β

≤ ( – ε)
[
( – ε)d(x, y) + γ εαψ(ε)

(
 + ‖x‖ + ‖y‖)β]

+ γ εαψ(ε)
[
 +

∥∥f (x)∥∥ +
∥∥f (y)∥∥]β

≤ ( – ε)
[
( – ε)d(x, y) + γ εαψ(ε)

(
 + ‖x‖ + ‖y‖)β]

+ γ εαψ(ε)
[
 + ‖x‖ + ‖y‖]β

= ( – ε)d(x, y) + ( – ε)γ εαψ(ε)
(
 + ‖x‖ + ‖y‖)β

+ γ εαψ(ε)
[
 + ‖x‖ + ‖y‖]β

= ( – ε)d(x, y) + ( – ε)γ εαψ(ε)
(
 + ‖x‖ + ‖y‖)β

≤ ( – ε)d(x, y) + γ εαψ(ε)
(
 + ‖x‖ + ‖y‖)β .

Thus, we immediately get that, form ∈N with m≥ , we have

d
(
f m(x), f m(y)

) ≤ ( – ε)d(x, y) +mγ εαψ(ε)
(
 + ‖x‖ + ‖y‖)β .

Notice also that if
⋃m

i=Ai is a cyclic representation of X with respect to f , then each Ai

(i ∈ {, , . . . ,m}) is an invariant set with respect to f m. Using these two remarks, we get
the following periodic point theorem.

Theorem . Let (X,d) be a complete metric space, m be a positive integer, A, . . . ,Am be
nonempty subsets of X, Y :=

⋃m
i=Ai,ψ : [, ]→ [,∞) be an increasing function vanishing

with continuity at zero and f : Y → Y be an operator such that ‖f (x)‖ ≤ ‖x‖ for each x ∈ Y .
Assume that:
.

⋃m
i=Ai is a cyclic representation of Y with respect to f .

. There exists i ∈ {, . . . ,m} such that Ai is closed.
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. For every ε ∈ [, ] and each x, y ∈ Ai , we have

d
(
f (x), f (y)

) ≤ ( – ε)d(x, y) + γ εαψ(ε)
[
 + ‖x‖ + ‖y‖]β , (.)

where γ ≥ , α ≥  and β ∈ [,α] are fixed constants.
Then, f m has a fixed point.

Proof Notice that, by the above considerations, f m is a self mapping on Ai and it satisfies
the condition (.) with constants α, β ,mγ and function ψ . Thus, by Theorem  in [] we
get the conclusion. �
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Arabia. 2Department of Mathematics, Babeş-Bolyai University, Kogălniceanu Street No. 1, Cluj-Napoca, 400084, Romania.
3Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21859, Saudi Arabia.

Received: 13 March 2012 Accepted: 4 July 2012 Published: 23 July 2012

References
1. Agarwal, RP, Alghamdi, M, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric spaces.

Fixed Point Theory Appl. 2012, 40 (2012)
2. de Bakker, JW, de Vink, EP: Denotational models for programming languages: applications of Banach’s fixed point

theorem. Topol. Appl. 85(1-3), 35-52 (1998)
3. Karapinar, E: Fixed point theory for cyclic weak φ-contraction. Appl. Math. Lett. 24, 822-825 (2011)
4. Karapinar, E, Erhan, IM, Ulus, AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 6,

239-244 (2012)
5. Karapinar, E, Sadarangani, K: Fixed point theory for cyclic (φ –ψ )-contractions. Fixed Point Theory Appl. 2011, 69

(2011)
6. Kirk, WA, Srinivasan, PS, Veeramani, P: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point

Theory 4, 79-89 (2003)
7. Kunze, HE, La Torre, D: Solving inverse problems for differential equations by the collage method and application to

an economic growth model. Int. J. Optim. Theory Methods Appl. 1(1), 26-35 (2009)
8. Pata, V: A fixed point theorem in metric spaces. J. Fixed Point Theory Appl. 10, 299-305 (2011)
9. Păcurar, M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory 12, 419-428 (2011)
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