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Abstract
We prove some coincidence and common fixed point results for three mappings
satisfying a generalized weak contractive condition in ordered partial metric spaces.
As application of the presented results, we give a unique fixed point result for a
mapping satisfying a weak cyclical contractive condition. We also provide some
illustrative examples.
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1 Introduction and preliminaries
In the last decades, several authors have worked on domain theory in order to equip se-
mantics domainwith a notion of distance. In ,Matthews [] introduced the notion of
a partial metric space as a part of the study of denotational semantics of dataflow networks
and showed that the Banach contraction principle [] can be generalized to the partial
metric context for applications in program verification. Later on, many researchers stud-
ied fixed point theorems in partial metric spaces as well as ordered partial metric spaces.
For more details, see [, , –, , , , , ].
Recently, there have been somany exciting developments in the field of existence of fixed

points in partially ordered sets. For instance, Ran and Reurings [] extended the Banach
contraction principle in partially ordered sets with some applications tomatrix equations.
Formore details on fixed point theory in partially ordered sets, we refer the reader to [–,
, , , , , , –, , ] and the references cited therein.
In this paper, we establish some coincidence and common fixed point results for three

self-mappings on an ordered partialmetric space satisfying a generalizedweak contractive
condition. The presented theorems extend some recent results in the literature.Moreover,
as application, we give a unique fixed point theorem for a mapping satisfying a weak cycli-
cal contractive condition.
Throughout this paper,R+ will denote the set of all non-negative real numbers. First, we

start by recalling some known definitions and properties of partial metric spaces.

Definition . ([]) A partial metric on a nonempty set X is a function p : X × X → R+

such that for all x, y, z ∈ X:
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(p) x = y⇐⇒ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric
on X.

It is clear that, if p(x, y) = , then from (p) and (p), x = y; but if x = y, p(x, y) may not
be . A basic example of a partial metric space is the pair (R+,p), where p(x, y) =max{x, y}
for all x, y ∈ R+.
Other examples of partial metric spaces which are interesting from a computational

point of view may be found in [, ].
Each partial metric p on X generates a T topology τp on X which has as a base the

family of open p-balls {Bp(x, ε),x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > .
If p is a partial metric on X, then the function ps : X ×X →R+ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y) (.)

is a metric on X.

Definition . ([]) Let {xn} be a sequence in X. Then
(i) {xn} converges to a point x ∈ X if and only if p(x,x) = limn→+∞ p(x,xn). We may

write this as xn → x.
(ii) {xn} is called a Cauchy sequence if limn,m→+∞ p(xn,xm) exists and is finite.
(iii) (X,p) is said to be complete if every Cauchy sequence {xn} in X converges, with

respect to τp, to a point x ∈ X , such that p(x,x) = limn,m→+∞ p(xn,xm).

Lemma . ([]) Let (X,p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric

space (X,ps).
(b) A partial metric space (X,p) is complete if and only if the metric space (X,ps) is

complete. Furthermore, limn→+∞ ps(xn,x) =  if and only if

p(x,x) = lim
n→+∞p(xn,x) = lim

n,m→+∞p(xn,xm).

Definition . ([]) Let (X,p) be a partial metric space and T : X → X be a given map-
ping. We say that T is continuous at x ∈ X, if for every ε > , there exists η >  such that
T(Bp(x,η))⊆ Bp(Tx, ε).

Lemma . (Sequential characterization of continuity) Let (X,p) be a partial metric space
and T : X → X be a given mapping. T : X → X is continuous at x ∈ X if it is sequentially
continuous at x, that is, if and only if

∀{xn} ⊂ X : lim
n→+∞xn = x ⇒ lim

n→+∞Txn = Tx.

http://www.fixedpointtheoryandapplications.com/content/2012/1/124


Aydi et al. Fixed Point Theory and Applications 2012, 2012:124 Page 3 of 18
http://www.fixedpointtheoryandapplications.com/content/2012/1/124

Let X be a nonempty set and R : X → X be a given mapping. For every x ∈ X, we denote
by R–(x) the subset of X defined by

R–(x) := {u ∈ X|Ru = x}.

Definition . Let X be a nonempty set. Then (X,�,p) is called an ordered partial metric
space if and only if

(i) (X,p) is a partial metric space,
(ii) (X,�) is a partially ordered set.

Definition . Let (X,�) be a partially ordered set. Then x, y ∈ X are called comparable
if x � y or y� x holds.

Definition . ([]) Let (X,�) be a partially ordered set and T ,S,R : X → X be given
mappings such that TX ⊆ RX and SX ⊆ RX. We say that S and T are weakly increasing
with respect to R if and only if, for all x ∈ X, we have

Tx � Sy, ∀y ∈ R–(Tx)

and

Sx� Ty, ∀y ∈ R–(Sx).

Remark . If R : X → X is the identity mapping (Rx = x for all x ∈ X, shortly R = IX ),
then the fact that S and T are weakly increasing with respect to R implies that S and T
are weakly increasing mappings, that is, Sx � TSx and Tx � STx for all x ∈ X. Finally, a
mapping T : X → X is weakly increasing if and only if Tx � TTx for all x ∈ X.

Example . Consider X = R+ endowed with the usual ordering of real numbers and
define T ,S,R : X → X by

Tx =  for all x ∈ X, Sx =

⎧⎨
⎩
x if x ∈ [, ],

 if x > 
and Rx = x for all x ∈ X.

Now, R–(Tx) = {} and R–(Sx) = Sx, then S and T are weakly increasing with respect to R.

Definition . Let (X,�,p) be an ordered partial metric space. We say that X is regular
if and only if the following hypothesis holds: {zn} is a non-decreasing sequence in X with
respect to � such that zn → z as n→ +∞, then zn � z for all n ∈N.

Finally, we recall the following definition of partial-compatibility introduced by Samet
et al. [].

Definition . Let (X,p) be a partial metric space and T ,R : X → X be given mappings.
We say that the pair {T ,R} is partial-compatible if the following conditions hold:
(b) p(x,x) =  implies that p(Rx,Rx) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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(b) limn→+∞ p(TRxn,RTxn) = , whenever {xn} is a sequence in X such that Txn → t
and Rxn → t for some t ∈ X .

Note that Definition . extends and generalizes the notion of compatibility introduced
by Jungck [].

2 Main results
We start this section with some auxiliary results (see also []).

Lemma . Let (X,d) be a metric space and let {xn} be a sequence in X such that
{d(xn+,xn)} is non-increasing and

lim
n→+∞d(xn+,xn) = .

If {xn} is not a Cauchy sequence, then there exist ε >  and two sequences {mk} and {nk}
of positive integers such that mk > nk > k and the following four sequences tend to ε when
k → +∞:

{
d(xmk ,xnk )

}
,

{
d(xmk ,xnk+)

}
,

{
d(xmk–,xnk )

}
,

{
d(xmk–,xnk+)

}
.

As a corollary, applying Lemma . to the associated metric ps of a partial metric p, and
using Lemma ., we obtain the following lemma (see also []).

Lemma . Let (X,p) be a partial metric space and let {xn} be a sequence in X such that
{p(xn+,xn)} is non-increasing and

lim
n→+∞p(xn+,xn) = .

If {xn} is not a Cauchy sequence, then there exist ε >  and two sequences {mk} and {nk}
of positive integers such that mk > nk > k and the following four sequences tend to ε when
k → +∞:

{
p(xmk ,xnk )

}
,

{
p(xmk ,xnk+)

}
,

{
p(xmk–,xnk )

}
,

{
p(xmk–,xnk+)

}
.

In the sequel, let� be the set of functionsψ :R+ →R+ such thatψ is continuous, strictly
increasing and ψ(t) =  if and only if t = . Also, let � be the set of functions ϕ :R+ →R+

such that ϕ is lower semi-continuous and ϕ(t) =  if and only if t = . Such ψ and ϕ are
called control functions.
Our first main result is the following.

Theorem . Let (X,�) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that the partial metric space (X,p) is complete. Let T ,S,R : X → X be given
mappings satisfying
(a) T , S and R are continuous,
(b) the pairs {R,T} and {S,R} are partial-compatible,
(c) T and S are weakly increasing with respect to R.

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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Suppose that for every (x, y) ∈ X ×X such that Rx and Ry are comparable, we have

ψ
(
p(Tx,Sy)

) ≤ ψ

(
p(Tx,Rx) + p(Sy,Ry)



)
– ϕ

(
p(Rx,Ry)

)
, (.)

where ψ ∈ � and ϕ ∈ �. Then T, S and R have a coincidence point u ∈ X, that is, Tu =
Su = Ru.

Proof By Definition ., it follows that TX ∪ SX ⊆ RX. Let x be an arbitrary point in X.
SinceTX ⊆ RX, there exists x ∈ X such that Rx = Tx. Since SX ⊆ RX, there exists x ∈ X
such thatRx = Sx. Continuing this process, we can construct a sequence {xn} inX defined
by

Rxn+ = Txn, Rxn+ = Sxn+, ∀n ∈ N. (.)

By construction, we have x ∈ R–(Tx) and x ∈ R–(Sx). Then using the fact that S and
T are weakly increasing with respect to R, we obtain

Rx = Tx � Sx = Rx � Tx = Rx.

We continue this process to get

Rx � Rx � · · · � Rxn+ � Rxn+ � · · · . (.)

We claim that {Rxn} is a Cauchy sequence in the partial metric space (X,p). To this aim,
we distinguish the following two cases.
Case . We suppose that there exists k ∈ N such that p(Rxk ,Rxk+) = , so that Rxk =

Rxk+. By (.), applying (.) with x = xk and y = xk+, we get

ψ
(
p(Rxk+,Rxk+)

)
= ψ

(
p(Txk ,Sxk+)

)

≤ ψ

(
p(Txk ,Rxk) + p(Sxk+,Rxk+)



)
– ϕ

(
p(Rxk ,Rxk+)

)

= ψ

(
p(Rxk+,Rxk) + p(Rxk+,Rxk+)



)
– ϕ

(
p(Rxk ,Rxk+)

)

= ψ

(
p(Rxk+,Rxk+)



)
.

Since ψ is strictly increasing, we have

p(Rxk+,Rxk+) ≤ 

p(Rxk+,Rxk+).

This implies that p(Rxk+,Rxk+) = . Continuing this process, we obtain p(Rxn,Rxk) = 
for all n ≥ k. This implies that Rxn = Rxk , therefore {Rxn} is Cauchy in (X,p). The same
conclusion holds if Rxk+ = Rxk+ for some k ∈N.
Case . Now, we suppose that

Rxn �= Rxn+, ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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Here, we have p(Rxn,Rxn+) �=  for all n≥ . Thanks to (.), Rxn and Rxn+ are compa-
rable, then using (.) and taking x = xn+ and y = xn+ in (.), we get

ψ
(
p(Rxn+,Rxn+)

)
= ψ

(
p(Txn+,Sxn+)

)

≤ ψ

(
p(Txn+,Rxn+) + p(Sxn+,Rxn+)



)
– ϕ

(
p(Rxn+,Rxn+)

)

= ψ

(
p(Rxn+,Rxn+) + p(Rxn+,Rxn+)



)
– ϕ

(
p(Rxn+,Rxn+)

)

≤ ψ

(
p(Rxn+,Rxn+) + p(Rxn+,Rxn+)



)
.

Since ψ is strictly increasing, the above inequality implies that

p(Rxn+,Rxn+) ≤ p(Rxn+,Rxn+). (.)

Now, taking x = xn and y = xn+ in (.), we have

ψ
(
p(Rxn+,Rxn+)

)
= ψ

(
p(Txn,Sxn+)

)

≤ ψ

(
p(Txn,Rxn) + p(Sxn+,Rxn+)



)
– ϕ

(
p(Rxn,Rxn+)

)

= ψ

(
p(Rxn+,Rxn) + p(Rxn+,Rxn+)



)
– ϕ

(
p(Rxn,Rxn+)

)

≤ ψ

(
p(Rxn+,Rxn) + p(Rxn+,Rxn+)



)
, (.)

which implies that

p(Rxn+,Rxn+) ≤ p(Rxn+,Rxn). (.)

Combining (.) and (.), we get

p(Rxn+,Rxn+) ≤ p(Rxn,Rxn+) for all n≥ . (.)

It follows that the sequence {p(Rxn,Rxn+)} is non-increasing and bounded below by .
Hence, there exists r ≥  such that

p(Rxn,Rxn+) → r as n → +∞.

We claim that r = . Suppose that r > . Taking the lim sup as n → +∞ in (.) and using
the properties of the functions ψ and ϕ, we have

ψ(r)≤ ψ(r) – ϕ(r).

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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This implies that ϕ(r) = , and by a property of the function ϕ, we have r = , that is a
contradiction. We deduce that r = , i.e.,

p(Rxn,Rxn+) →  as n→ +∞. (.)

We shall show that {Rxn} is a Cauchy sequence in the partial metric space (X,p). For this,
it is sufficient to prove that {Rxn} is Cauchy in (X,p). Suppose to the contrary that {Rxn}
is not a Cauchy sequence. Then, having in mind that {p(Rxn,Rxn+)} is non-increasing and
(.), it follows by Lemma . that there exist ε >  and two sequences {mk} and {nk} of
positive integers such that mk > nk > k and the following four sequences tend to ε when
k → +∞:

{
p(Rxmk ,Rxnk )

}
,

{
p(Rxmk ,Rxnk+)

}
,

{
p(Rxmk–,Rxnk )

}
,

{
p(Rxmk–,Rxnk+)

}
.

Applying (.) with x = xnk and y = xmk–, we get

ψ
(
p(Rxnk+,Rxmk )

)
= ψ

(
p(Txnk ,Sxmk–)

)

≤ ψ

(
p(Txnk ,Rxnk ) + p(Sxmk–,Rxmk–)



)
– ϕ

(
p(Rxnk ,Rxmk–)

)

= ψ

(
p(Rxnk+,Rxn(k)) + p(Rxm(k),Rxmk–)



)
– ϕ

(
p(Rxnk ,Rxmk–)

)
.

Taking lim supk→+∞ in the above inequality and using the continuity of ψ and the lower
semi-continuity of ϕ, we obtain

ψ(ε) ≤ ψ

(
 + 


)
– ϕ(ε) = –ϕ(ε), (.)

from which a contradiction follows since ε > . Then, we deduce that {Rxn} is a Cauchy
sequence in the partial metric space (X,p), which is complete, so {Rxn} converges to some
u ∈ X, that is, from (p) and Definition .,

p(u,u) = lim
n→+∞p(Rxn,u) = lim

n→+∞p(Rxn,Rxn).

But from (.) and condition (p), we have

lim
n→+∞p(Rxn,Rxn) = ,

therefore, it follows that

p(u,u) = lim
n→+∞p(Rxn,u) = lim

n→+∞p(Rxn,Rxn) = . (.)

From (.) and the continuity of R, we get

lim
n→+∞p

(
R(Rxn),Ru

)
= p(Ru,Ru). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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The triangular inequality yields

p(Ru,Tu) ≤ p
(
Ru,R(Rxn+)

)
+ p

(
R(Txn),T(Rxn)

)
+ p

(
T(Rxn),Tu

)
. (.)

By (.) and (.), we have

Rxn → u, Txn = Rxn+ → u as n→ +∞. (.)

Having in mind that the pair {R,T} is partial-compatible, then

p
(
R(Txn),T(Rxn)

) →  as n → +∞. (.)

Also, since p(u,u) = , then we have p(Tu,Tu) = . The continuity of T together with (.)
give us

p
(
T(Rxn),Tu

) → p(Tu,Tu) = . (.)

Combining (.) and (.) together with (.) and letting n → +∞ in (.), we obtain

p(Ru,Tu) ≤ p(Ru,Ru). (.)

By condition (p) and (.), one can write

p(Ru,Ru) = p(Ru,Tu). (.)

Similarly, by triangular inequality, we get

p(Ru,Su) ≤ p
(
Ru,R(Rxn+)

)
+ p

(
R(Sxn+),S(Rxn+)

)
+ p

(
S(Rxn+),Su

)
. (.)

By (.) and (.), we have

Rxn+ → u, Sxn+ → u as n→ +∞. (.)

Since the pair {S,R} is partial-compatible, then

p
(
R(Sxn+),S(Rxn+)

) →  as n→ +∞. (.)

Also, since p(u,u) = , it follows p(Ru,Ru) = . Thus, from (.), p(Ru,Tu) = p(Ru,Ru) = 
and so Ru = Tu.
The continuity of S and (.) give us

p
(
S(Rxn+),Su

) → p(Su,Su) as n→ +∞. (.)

Combining (.) and (.) together with (.) and letting n→ +∞ in (.), we obtain

p(Ru,Su) ≤ p(Ru,Ru) + p(Su,Su) = p(Su,Su). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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By condition (p) and (.), we get

p(Ru,Su) = p(Su,Su). (.)

Applying (.) with x = y = u, we get

ψ
(
p(Tu,Su)

) ≤ ψ

(
p(Tu,Ru) + p(Su,Ru)



)
– ϕ

(
p(Ru,Ru)

)

= ψ

(
p(Su,Tu)



)
– ϕ()

= ψ

(
p(Tu,Su)



)
.

This implies that

p(Tu,Su) ≤ 

p(Tu,Su),

and so it follows p(Tu,Su) = , that is Tu = Su. Thus, we have obtained

Ru = Tu = Su,

that is, u is a coincidence point of T , S and R. �

Remark . We point out that the order in which the mappings in condition (b) of The-
orem . are considered is crucial. Trivially, Theorem . remains true if we assume that
the partial-compatible pairs are {T ,R} and {R,S}.

Example . Let X = [,  ] be endowed with the partial metric p(x, y) =max{x, y} and the
order given as follows:

x � y ⇐⇒ x≥ y.

Consider the mappings T ,S,R : X → X defined by Tx = Sx = x and Rx = x for all x ∈ X.
Also, define the functions ψ ,ϕ : R+ → R+ by ψ(t) = t and ϕ(t) = t

 , for all t ≥ . Clearly,
condition (.) is satisfied. In fact, for every (x, y) ∈ X ×X with x ≥ y, we get

ψ
(
p(Tx,Sy)

)
= x ≤ x


≤ x + y


–
x


= ψ

(
p(Tx,Rx) + p(Sy,Ry)



)
– ϕ

(
p(Rx,Ry)

)
.

All the other hypotheses of Theorem . are satisfied and T , S and R have a coincidence
point u = . (Moreover, u =  is the unique common fixed point of T , S and R.)
Note that Theorem . is not applicable in respect of the usual order of real numbers

because T is not weakly increasing. It follows that the partial order may be fundamental.

Under different hypotheses, the conclusion of Theorem . remains true without as-
suming the continuity of T , S and R, and the partial-compatibility of the pairs {T ,R} and
{R,S}. This is the purpose of the next theorem.

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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Theorem. Let (X,�) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that (X,p) is complete. Let T ,S,R : X → X be given mappings satisfying
(a) RX is a closed subspace of (X,p),
(b) T and S are weakly increasing with respect to R,
(c) X is regular.

Suppose that for every (x, y) ∈ X ×X such that Rx and Ry are comparable, we have

ψ
(
p(Tx,Sy)

) ≤ ψ

(
p(Tx,Rx) + p(Sy,Ry)



)
– ϕ

(
p(Rx,Ry)

)
, (.)

where ψ ∈ � and ϕ ∈ �. Then, T, S and R have a coincidence point u ∈ X, that is, Tu =
Su = Ru.

Proof Following the proof of Theorem ., we have that {Rxn} is a Cauchy sequence in the
closed subspace RX, then there exists v = Ru, with u ∈ X, such that

Rxn → v = Ru as n→ +∞. (.)

Thanks to (.), {Rxn} is a non-decreasing sequence, and so, since it converges to v = Ru,
from the regularity of X, we get

Rxn � Ru, ∀n ∈ N.

Therefore, Rxn and Ru are comparable. Putting x = xn and y = u in (.) and using (.),
we get

ψ
(
p(Rxn+,Su)

)
= ψ

(
p(Txn,Su)

)

≤ ψ

(
p(Txn,Rxn) + p(Su,Ru)



)
– ϕ

(
p(Rxn,Ru)

)

= ψ

(
p(Rxn+,Rxn) + p(Su,Ru)



)
– ϕ

(
p(Rxn,Ru)

)
.

Taking lim supn→+∞ in the above inequality, using (.) and the properties of ϕ and ψ ,
we obtain

ψ
(
p(Ru,Su)

) ≤ ψ

(
p(Su,Ru)



)
– ϕ

(
p(Ru,Ru)

)

≤ ψ

(
p(Su,Ru)



)
.

This implies that

p(Ru,Su) ≤ 

p(Su,Ru),

which is true if p(Su,Ru) = . This means that Su = Ru.

http://www.fixedpointtheoryandapplications.com/content/2012/1/124
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Analogously, putting x = u and y = xn+ in (.), we have

ψ(p(Tu,Rxn+) = ψ
(
p(Tu,Sxn+)

)

≤ ψ

(
p(Tu,Ru) + p(Sxn+,Rxn+)



)
– ϕ

(
p(Ru,Rxn+)

)

= ψ

(
p(Rxn+,Rxn+) + p(Tu,Ru)



)
– ϕ

(
p(Ru,Rxn+)

)
.

Taking lim supn→+∞ in the above inequality, using (.) and the properties of ϕ and ψ ,
we obtain

p(Tu,Ru) ≤ 

p(Tu,Ru),

which yields that

Tu = Ru.

We conclude that u is a coincidence point of T , S and R. �

If R : X → X is the identity mapping IX , by Theorem ., we obtain the following com-
mon fixed point result involving two mappings.

Corollary . Let (X,�) be a partially ordered set. Suppose that there exists a partial
metric p on X such that the partial metric space (X,p) is complete. Let X be regular and
T ,S : X → X be given mappings such that T and S are weakly increasing. Suppose that for
every (x, y) ∈ X ×X such that x and y are comparable, we have

ψ
(
p(Tx,Sy)

) ≤ ψ

(
p(Tx,x) + p(Sy, y)



)
– ϕ

(
p(x, y)

)
, (.)

where ψ ∈ � and ϕ ∈ �. Then, T and S have a common fixed point u ∈ X, that is, Tu =
Su = u.

The following example shows that the hypothesis ‘T and S are weakly increasing (with
respect to R)’ has a key role for the validity of our results.

Example . Let X = [, ] be endowed with the partial metric p(x, y) =max{x, y} and the
order � given as follows:

x � y ⇐⇒ x≥ y.

Consider the mappings T ,S : X → X defined by Tx = x
 and Sx = x

 , for all x ∈ X. Also,
define the functionsψ ,ϕ :R+ →R+ byψ(t) = t and ϕ(t) = t

 , for all t ≥ . It is easy to show
that Sx� TSx and Tx � STx, for all x ∈ X, that is, T and S are weakly increasing. Now, take
x and y comparable and, without loss of generality, assume y � x, so that x ≤ y. It is easy
to show that (.) holds and all the other hypotheses of Corollary . are satisfied. Then,
T and S have a unique common fixed point u = .
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Note that Corollary . is not applicable in respect of the usual order of real numbers
because T and S are not weakly increasing.

Now, we shall prove the existence and uniqueness of a common fixed point for three
mappings.

Theorem . In addition to the hypotheses of Theorem ., suppose that for any (x, y) ∈
X × X, there exists z ∈ X such that Tx � Tz and Ty � Tz. Then, T, S and R have a unique
common fixed point, that is, there exists a unique u ∈ X such that u = Ru = Tu = Su.

Proof Referring to Theorem ., the set of coincidence points of T , S and R is nonempty.
Now, we shall show that if x* and y* are coincidence points of T , S and R, that is, Rx* =
Tx* = Sx* and Ry* = Ty* = Sy*, then

p
(
Rx*,Ry*

)
= . (.)

For the coincidence points x* and y*, Theorem . gives us that

p
(
Rx*,Tx*

)
= p

(
Tx*,Sx*

)
=  = p

(
Ry*,Ty*

)
= p

(
Ty*,Sy*

)
.

By assumption, there exists z ∈ X such that

Tx* � Tz, Ty* � Tz. (.)

Now, proceeding similarly to the proof of Theorem ., we can immediately define a se-
quence {Rzn} as follows:

Rzn+ = Tzn, Rzn+ = Szn+, ∀n ∈ N. (.)

Since T and S are weakly increasing with respect to R, we have

Tx* = Rx* � Rzn, Ty* = Ry* � Rzn, ∀n ∈N. (.)

Putting x = zn and y = x* in (.) and using (.), we get

ψ
(
p
(
Rzn+,Rx*

))
= ψ

(
p
(
Tzn,Sx*

))

≤ ψ

(
p(Tzn,Rzn) + p(Sx*,Rx*)



)
– ϕ

(
p
(
Rzn,Rx*

))

= ψ

(
p(Rzn+,Rzn)



)
– ϕ

(
p
(
Rzn,Rx*

))

≤ ψ

(
p(Rzn+,Rzn)



)
.

Since ψ is strictly increasing, we have

p
(
Rzn+,Rx*

) ≤ 

p(Rzn+,Rzn) ≤ 


p
(
Rzn+,Rx*

)
+


p
(
Rx*,Rzn

)
.
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This gives us

p
(
Rzn+,Rx*

) ≤ p
(
Rzn,Rx*

)
. (.)

Putting x = x* and y = zn in (.), then similarly to the above, one can find

p
(
Rzn+,Rx*

) ≤ p
(
Rzn+,Rx*

)
. (.)

We combine (.) and (.) to remark that

p
(
Rzn+,Rx*

) ≤ p
(
Rzn,Rx*

)
, ∀n ∈ N. (.)

Then, the sequence {p(Rzn,Rx*)} is non-increasing and bounded below, so there exists
r ≥  such that

p
(
Rzn,Rx*

) → r as n→ +∞.

Adopting the strategy used in the proof of Theorem ., one can show that r = , i.e.,

p
(
Rzn,Rx*

) →  as n→ +∞. (.)

The same idea yields

p
(
Rzn,Ry*

) →  as n → +∞. (.)

Now, p(Rx*,Ry*) ≤ p(Rx*,Rzn) +p(Rzn,Ry*) and from (.), (.), we obtain p(Rx*,Ry*) =
, and so (.) holds.
Thanks to (.) and (.), one can write

Tzn → Rx* = Ry*, Szn+ → Rx* = Ry* as n→ +∞. (.)

From partial-compatibility of the pairs {R,T} and {S,R}, using (.) and (.), we obtain

p
(
R(Tzn),T(Rzn)

) → , p
(
R(Szn+),S(Rzn+)

) →  as n→ +∞. (.)

Denote

u = Rx*.

Since p(u,u) = p(Rx*,Ry*) = , so again by partial-compatibility of the pairs {R,T} and
{S,R}, we get

p(Tu,Tu) = p(Ru,Ru) = . (.)

By triangular inequality, we have

p(Ru,Tu) ≤ p
(
Ru,R(Tzn)

)
+ p

(
R(Tzn),T(Rzn)

)
+ p

(
T(Rzn),Tu

)
.
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Using (.), (.), (.), the continuity ofT and letting n→ +∞ in the above inequality,
we get

p(Ru,Tu) ≤ p(Ru,Ru) + p(Tu,Tu) = ,

that is, Ru = Tu and u is a coincidence point of T and R.
Analogously, the triangular inequality gives us

p(Ru,Su) ≤ p
(
Ru,R(Szn+)

)
+ p

(
R(Szn+),S(Rzn+)

)
+ p

(
S(Rzn+),Su

)
.

Using (.), (.), (.), the continuity of S and letting n→ +∞ in the above inequality,
we get

p(Ru,Su) ≤ p(Ru,Ru) + p(Su,Su) = p(Su,Su).

By condition (p), it follows immediately

p(Ru,Su) = p(Su,Su).

Now, applying (.) with x = y = u, we have

ψ
(
p(Tu,Su)

) ≤ ψ

(
p(Tu,Ru) + p(Su,Ru)



)
– ϕ

(
p(Ru,Ru)

)

= ψ

(
p(Su,Tu)



)
– ϕ()

= ψ

(
p(Tu,Su)



)
.

This implies that

p(Tu,Su) ≤ 

p(Tu,Su),

then we deduce that p(Tu,Su) = , and so Tu = Su. Until now, we have obtained

Ru = Tu = Su.

With y* = u and from (.), we have

u = Rx* = Ru = Tu = Su.

This proves that u is a common fixed point of the mappings T , S and R.
Now our purpose is to check that such a point is unique. Suppose to the contrary that

there is another common fixed point of T , S and R, say q. Then, applying (.) with x =
y = q, we obtain easily that p(q,Tq) = p(q,Sq) = p(q,Rq) = . It is immediate that q is a
coincidence point of T , S and R. From (.), this implies that

Rq = Ru.
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Hence, we get

q = Rq = Ru = u,

which yields the uniqueness of the common fixed point of T , S and R. This completes the
proof. �

Remark . We leave, as exercise for the reader, to verify that our results hold even if
we replace condition (.) by the following

ψ
(
p(Tx,Sy)

) ≤ ψ

(
p(Tx,Ry) + p(Sy,Rx)



)
– ϕ

(
p(Rx,Ry)

)

for all x, y ∈ X such that Rx and Ry are comparable.

3 Application to cyclical contractions
In this section we use the previous results to prove a fixed point theorem for a mapping
satisfying a weak cyclical contractive condition. In , Kirk et al. [] studied existence
and uniqueness of a fixed point for mappings satisfying cyclical contractive conditions in
complete metric spaces.

Definition . Let (X,d) be a metric space,m a positive integer and Y, . . . ,Ym nonempty
subsets of X. A mapping T on

⋃m
i= Yi is called a m-cyclic mapping if T(Yi) ⊂ Yi+, i =

, . . . ,m, where Ym+ = Y.

Later on, Pacurar and Rus [] introduced the following notion, suggested by the con-
siderations in [].

Definition . Let Y be a nonempty set,m a positive integer and T : Y → Y an operator.
By definition, Y =

⋃m
i= Yi is a cyclic representation of Y with respect to T if T is am-cyclic

mapping and Yi are nonempty sets.

Example . Let X = R. Assume Y = Y = [–, ] and Y = Y = [, ], so that Y =⋃
i= Yi = [–, ]. Define T : Y → Y such that Tx = – x

 , for all x ∈ Y . It is clear that
Y =

⋃
i= Yi is a cyclic representation of Y .

Inspired by Karapinar [] and Gopal et al. [], we present the notion of a cyclic weak
(ψ ,ϕ)-contraction in partial metric spaces.

Definition . Let (X,�,p) be an ordered partial metric space, Y,Y, . . . ,Ym be closed
subsets of X and Y =

⋃m
i= Yi. An operator T : Y → Y is called a cyclic weak (ψ ,ϕ)-

contraction if the following conditions hold:
(i) Y =

⋃m
i= Yi is a cyclic representation of Y with respect to T ,

(ii) there exist ψ ∈ � and ϕ ∈ � such that

ψ
(
p(Tx,Ty)

) ≤ ψ

(
p(Tx,x) + p(Ty, y)



)
– ϕ

(
p(x, y)

)
, (.)

for every comparable x ∈ Yi, y ∈ Yi+ (i = , , . . . ,m).
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Now, we state and prove the following result.

Theorem . Let (X,�) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that the partial metric space (X,p) is complete. Let T :

⋃m
i= Yi → ⋃m

i= Yi

be a given mapping satisfying
(a) T is a cyclic weak (ψ ,ϕ)-contraction,
(b) T is weakly increasing and continuous,
(c) the pair {Ix,T} is partial-compatible,
(d) for any (x, y) ∈ X ×X , there exists z ∈ X such that Tx � Tz and Ty� Tz.

Then, T has a unique fixed point u ∈ ⋂m
i= Yi, that is, Tu = u.

Proof Let x ∈ Y =
⋃m

i= Yi and set

xn+ = Txn, ∀n ∈N. (.)

For any n ∈ N, there is in ∈ {, . . . ,m} such that xn ∈ Yin and xn+ ∈ Yin+. Then, following
the lines of the proof of Theorem ., it is easy to show that {xn} is a Cauchy sequence in
the partial metric space (Y ,p), which is complete, so {xn} converges to some y ∈ Y . On the
other hand, by condition (i) of Definition ., it follows that the iterative sequence {xn} has
an infinite number of terms in Yi for each i = , , . . . ,m. Since (Y ,p) is complete, from each
Yi, i = , , . . . ,m, one can extract a subsequence of {xn} that converges to y. In virtue of the
fact that each Yi, i = , , . . . ,m, is closed, we conclude that y ∈ ⋂m

i= Yi and thus
⋂m

i= Yi �= ∅.
Obviously,

⋂m
i= Yi is closed and complete. Now, consider the restriction of T on

⋂m
i= Yi,

that is T |⋂m
i= Yi :

⋂m
i= Yi → ⋂m

i= Yi which satisfies the assumptions of Theorem . and
thus, T |⋂m

i= Yi has a unique fixed point in
⋂m

i= Yi, say u, which is obtained by iteration
from the starting point x ∈ Y . To conclude, we have to show that, for any initial value
x ∈ Y , we get the same limit point u ∈ ⋂m

i= Yi. Due to condition (c) and using the analogous
ideas of the proof ofTheorem., it can be obtained that, for any initial value x ∈ Y , xn → u
as n→ +∞. This completes the proof. �
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