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Abstract
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1 Introduction and preliminaries
In  Suzuki proved the following refinement of Banach’s fixed point principle.

Theorem  ([, Theorem ]) Let (X,d) be a complete metric space. Let T : X → X be a
selfmap and θ : [, ) → (/, ] be defined by

θ(r) =

⎧⎪⎪⎨
⎪⎪⎩
,  ≤ r ≤

√
–
 ,

–r
r ,

√
–
 ≤ r ≤ √

 ,


+r ,
√
 ≤ r < .

(.)

If there exists r ∈ [, ) such that for each x, y ∈ X,

θ(r)d(x,Tx)≤ d(x, y) =⇒ d(Tx,Ty) ≤ rd(x, y),

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z.

There were various extensions of Suzuki’s result, such as Kikkawa-Suzuki’s version of
Kannan’s theorem [] and Popescu’s version of Ćirić’s theorem [].
Suzuki proved also the following version of Edelstein’s fixed point theorem.

Theorem  ([, Theorem ]) Let (X,d) be a compact metric space. Let T : X → X be a
selfmap, satisfying for all x, y ∈ X, x �= y the condition



d(x,Tx) < d(x, y) =⇒ d(Tx,Ty) < d(x, y).

Then T has a unique fixed point in X.
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This theorem was generalized in [].
Let E be a real Banach space with the zero vector θ . A subset P of E is called a cone if:

(a) P is closed, non-empty and P �= {θ}; (b) a,b ∈ R, a,b≥ , x, y ∈ P imply that ax+by ∈ P;
(c) P ∩ (–P) = {θ}. Given a cone P, we define the partial ordering 
 with respect to P by
x 
 y if and only if y – x ∈ P. We shall write x � y for y – x ∈ intP, where intP stands for
the interior of P and use x ≺ y for x 
 y and x �= y. If intP �= ∅, then P is called a solid cone.
It is said to be normal if there is a number K >  such that for all x, y ∈ E, θ 
 x
 y implies
‖x‖ ≤ K‖y‖. Such a minimal constant K is called the normal constant of P.
Huang andZhang re-introduced conemetric spaces in [] (this notionwas known under

various names since the mid of the th century, see a survey in []), replacing the set
of real numbers by an ordered Banach space as the codomain for a metric. Cone metric
spaces over normal cones inspired another generalization ofmetric spaces that were called
metric type spaces byKhamsi [] (see also [–]; note that, in fact, spaces of this kindwere
used earlier under the name of b-spaces by Czerwik []). Cvetković et al. [] and Shah
et al. [] extended Khamsi’s definition and defined cone metric type spaces as follows:

Definition  ([, ]) Let X be a nonempty set, E a Banach space with the solid cone
P and let K ≥  be a real number. If the function D : X × X → P satisfies the following
properties:
(a) D(x, y) =  if and only if x = y;
(b) D(x, y) =D(y,x) for all x, y ∈ X ;
(c) D(x, z)
 K(D(x, y) +D(y, z)) for all x, y, z ∈ X ,

then D is called a cone metric type function and (X,D,K) is called a cone metric type space
(CMTS).

In particular, when E = R and P = [,+∞), CMTS (X,D,K) reduces to a metric type
space (MTS) of [, , ].
Of course, for K =  we get the cone metric space (CMS) of [], resp. the usual metric

space.

Example  ([]) Let B = {e, . . . , en} be an orthonormal basis of Rn with inner product
〈·, ·〉 and let p > . Define

Xp =
{
[f ]

∣∣∣ f : [, ]→R
n,

∫ 



∣∣〈f (t), ek 〉∣∣p dt < +∞,k = , . . . ,n
}
,

where [f ] is the class of functions being equal to the function f a.e. Further, let

PB =
{
y ∈R

n | 〈y, ek〉 ≥ ,k = , , . . . ,n
}
,

and let D : Xp ×Xp → PB be defined by

Dp(f , g) =
n∑
k=

ek
∫ 



∣∣〈f (t) – g(t), ek
〉∣∣p dt, f , g ∈ Xp.

It was shown in [] that PB is a solid cone in R
n and that (Xp,Dp, p–) is a CMTS. In

particular, for n =  we get an MTS and for p =  a CMS.
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Example  ([, ]) Let (X,d) be any CMS over a normal cone with normal constant
K ≥ . Then (X,D,K) is an MTS, where D(x, y) = ‖d(x, y)‖. In this case the spaces (X,d)
and (X,D,K) have the same topologies (see [, Theorem .]).
If (X,D,K) is a CMTS over a normal cone with a normal constant k ≥ , then (X,D,Kk)

is an MTS, where D(x, y) = ‖D(x, y)‖. Similarly as above, the spaces (X,D,K) and
(X,D,Kk) have the same topologies.

Notions such as convergent and Cauchy sequences, as well as completeness, are intro-
duced in (cone) metric type spaces in the standard way. The following obviously holds in
an arbitrary (cone) metric type space:

xn → x and yn → x =⇒ D(xn, yn) → .

We will sometimes need the continuity of metric-type function D in one variable:

xn → x =⇒ D(xn, y) → D(x, y),

or in two variables:

xn → x and yn → y =⇒ D(xn, yn)→ D(x, y).

The last property always holds in the case of an MTS (X,D,K) generated by a CMS (X,d)
over a normal cone, see Example , but not in general, as the following example shows.

Example  Let X =N∪ {∞} and let D : X ×X →R be defined by

D(m,n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, ifm = n,

| 
m – 

n |, ifm and n are even ormn = ∞,

, ifm and n are odd andm �= n,

, otherwise.

Then it is easy to see that for allm,n,p ∈ X, we have

D(m,p) ≤ 
(
D(m,n) +D(n,p)

)
.

Thus, (X,D, ) is a metric-type space. Let xn = n for each n ∈ N. Then

D(n,∞) =

n

→  as n→ ∞,

that is, xn → ∞, but D(xn, ) =  �→D(∞, ) as n→ ∞.

Recall that a selfmap T : X → X is said to have the property (P) [] if F(T) = F(Tn) for
each n ∈N, where F(T) is the set of fixed points of T .
In this paper, we extend Suzuki’s Theorems  and , as well as Popescu’s results from

[] to the case of metric type spaces and cone metric type spaces. Examples are given to
distinguish our results from the known ones.
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2 Results
2.1 Results in metric type spaces
Theorem  Let (X,D,K) be a complete MTS where D is continuous in each variable. Let
T : X → X be a selfmap and θ = θK : [, )→ (/(K + ), ] be defined by

θ (r) = θK (r) =

⎧⎪⎪⎨
⎪⎪⎩
,  ≤ r ≤

√
–
 ,

–r
r ,

√
–
 ≤ r ≤ bK ,


K+r , bK ≤ r < ,

(.)

where bK = –K+
√
+K+K
 is the positive solution of –r

r = 
K+r . If there exists r ∈ [, ) such

that for each x, y ∈ X,

θ (r)D(x,Tx)≤ D(x, y) =⇒ D(Tx,Ty) ≤ r
K
M(x, y), (.)

where

M(x, y) =max

{
D(x, y),D(x,Tx),D(y,Ty),


K

(
D(x,Ty) +D(y,Tx)

)}
,

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z. Moreover, T has the property (P).

Note that for K = , Theorem  reduces to a special case of Theorem . by Popescu [].

Proof First note that θ (r) ≤  implies that θ (r)D(x,Tx) ≤ D(x,Tx) and it follows by (.)
that

D
(
Tx,Tx

) ≤ r
K

max

{
D(x,Tx),D

(
Tx,Tx

)
,

K

D
(
x,Tx

)}

≤ r
K

max

{
D(x,Tx),D

(
Tx,Tx

)
,


(
D(x,Tx) +D

(
Tx,Tx

))}

=
r
K

max
{
D(x,Tx),D

(
Tx,Tx

)}
,

wherefrom

D
(
Tx,Tx

) ≤ r
K
D(x,Tx) (.)

for each x ∈ X.
Let u ∈ X be arbitrary and form the sequence {un} by u = u and un = Tnu for n ∈ N. It

follows from (.) that

D(un,un+) ≤ r
K
D(un–,un) (.)

and, by induction,

D(un,un+) ≤ rn

KnD(u,Tu). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/126
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Using [, Lemma .] we conclude that {un} is a Cauchy sequence, tending to some z in
the complete space X. Obviously, also Tun = un+ → z, n→ ∞.
Let us prove now that

D(Tx, z) ≤ r
K

max
{
D(x, z),D(x,Tx)

}
(.)

holds for each x �= z. Since un → z and Tun → z (and hence D(un,Tun) → ) and, by con-
tinuity of D, D(un,x)→D(x, z) �= , it follows that there exists n ∈N such that

θ (r)D(un,Tun) <D(un,x)

holds for each n≥ n. Assumption (.) implies that for such n

D(Tun,Tx) ≤ r
K

max

{
D(un,x),D(un,un+),D(x,Tx),


K

(
D(un,Tx) +D(un+,x)

)}
.

Passing to the limit when n→ ∞ (and using continuity of D), we get that

D(Tx, z) ≤ r
K

max

{
D(x, z),D(x,Tx),


K

(
D(z,Tx) +D(x, z)

)}
.

It is easy to see that (.) follows from the previous relation.
Putting x = Tn–z in (.), we get that

D
(
Tnz,Tn+z

) ≤ r
K
D

(
Tn–z,Tnz

)
(.)

holds for each n ∈N (where Tz = z). It follows by induction that

D
(
Tnz,Tn+z

) ≤ rn

KnD(z,Tz). (.)

We will prove now that

D
(
Tnz, z

) ≤ D(Tz, z) (.)

for each n ∈ N. For n =  this relation is obvious. Suppose that it holds for some n ∈ N.
If Tnz = z, then Tn+z = Tz and D(Tn+z, z) = D(Tz, z) ≤ D(Tz, z). If Tnz �= z, then we can
apply (.) to obtain that

D
(
Tn+z, z

) ≤ r
K

max
{
D

(
Tnz, z

)
,D

(
Tnz,Tn+z

)}
.

Using (.) and the induction hypothesis, we get that

D
(
Tn+z, z

) ≤ r
K

max

{
D(Tz, z),

rn

KnD(Tz, z)
}
=

r
K
D(Tz, z) ≤ d(Tz, z),

and (.) is proved by induction.
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In order to prove thatTz = z, we suppose that Tz �= z and consider the two possible cases.
Case I. ≤ r < bK (and hence θ (r)≤ –r

r ). We will prove first that

D
(
Tnz,Tz

) ≤ r
K
D(Tz, z) (.)

for n ∈ N. For n =  this is obvious and for n =  it follows from (.). Suppose that (.)
holds for some n≥ . Then

D(z,Tz) ≤ K
(
D

(
z,Tnz

)
+D

(
Tnz,Tz

)) ≤ K
(
D

(
z,Tnz

)
+

r
K
D(Tz, z)

)
,

wherefrom D(z,Tz) ≤ K
–rD(z,T

nz). It follows (using (.)) that

θ (r)D
(
Tnz,Tn+z

) ≤  – r
r

D
(
Tnz,Tn+z

) ≤  – r
rn

D
(
Tnz,Tn+z

)
≤  – r

Kn D(z,Tz) ≤ 
Kn–D

(
z,Tnz

) ≤ D
(
Tnz, z

)
.

Assumption (.) implies that

D
(
Tn+z,Tz

) ≤ r
K

max

{
D

(
Tnz, z

)
,D

(
Tnz,Tn+z

)
,D(z,Tz),


K

(
D

(
z,Tn+z

)
+D

(
Tz,Tnz

))}
.

It is easy to see (using (.), (.) and the inductive hypothesis) that the last maximum is
equal to D(z,Tz), i.e., D(Tn+z,Tz) ≤ r

K D(z,Tz) and relation (.) is proved by induction.
Now Tz �= z and (.) implies that Tnz �= z for each n ∈ N. Hence, (.) and (.) imply

that

D
(
Tn+z, z

) ≤ r
K

max
{
D

(
Tnz, z

)
,D

(
Tnz,Tn+z

)}
≤ r

K
max

{
D

(
Tnz, z

)
,
rn

KnD(z,Tz)
}
. (.)

Since D(Tz, z) ≤ K(D(Tz,Tnz) +D(Tnz, z)), it follows from (.) that

D
(
Tnz, z

) ≥ 
K
D(Tz, z) –D

(
Tz,Tnz

) ≥  – r
K

D(Tz, z).

There exists n ∈N such that  – r ≥ rn for n≥ n and  ≤ r < bK . For such n, we have that

D
(
Tnz, z

) ≥ rn

K
D(Tz, z) ≥ rn

KnD(Tz, z).

It follows from (.) that

D
(
Tn+z, z

) ≤ r
K
D

(
Tnz, z

) ≤ · · · ≤
(
r
K

)n–n+

D
(
Tnz, z

) →  (n→ ∞).

Thus, Tnz → z and, again from (.), we get that D(Tz, z) ≤ r
K D(Tz, z) and D(Tz, z) = ,

a contradiction.

http://www.fixedpointtheoryandapplications.com/content/2012/1/126
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Case II. bK ≤ r <  (and so θ (r) = 
K+r ). We will prove that there exists a subsequence

{unj} of {un} such that

θ (r)D(unj ,Tunj ) = θ (r)D(unj ,unj+) ≤ D(unj , z) (.)

holds for each j ∈ N. From (.) we know that D(un,un+) ≤ r
K D(un–,un) holds for each

n ∈N. Suppose that


K + r

D(un–,un) >D(un–, z) and


K + r
D(un,un+) >D(un, z)

both hold for some n ∈N. Then

D(un–,un) ≤ K
(
D(un–, z) +D(un, z)

)
<

K
K + r

(
D(un–, z) +D(un,un+)

)
≤ K

K + r

(
D(un–,un) +

r
K
D(un–,un)

)
=D(un–,un),

which is impossible. Hence one of the following holds for each n:

θ (r)D(un–,un) ≤ D(un–, z) or θ (r)D(un,un+)≤ D(un, z).

In particular,

θ (r)D(un–,un) ≤ D(un–, z) or θ (r)D(un,un+)≤ D(un, z)

holds for each n ∈ N. In other words, there is a subsequence {unj} of {un} such that (.)
holds for each j ∈N. But then assumption (.) implies that

D(Tunj ,Tz) ≤ r
K

max

{
D(unj , z),D(unj ,Tunj ),D(z,Tz),


K

(
D(unj ,Tz) +D(Tunj , z)

)}
.

Passing to the limit when j → ∞ we get that D(z,Tz) ≤ r
K D(z,Tz), which is possible only

if Tz = z, a contradiction.
Thus, we have proved that z is a fixed point of T . The uniqueness of the fixed point

follows easily from (.). Indeed, if y, z are two fixed points of T , then (.) implies that

D(y, z) =D(Ty, z) ≤ r
K

max
{
D(y, z),D(y,Ty)

}
=

r
K
D(y, z),

wherefrom y = z. The property (P) follows from (.) (see []). �

Suzuki-Banach-type and Suzuki-Kannan-type fixed point results in metric type spaces
(versions of [, Theorem ] and [, Theorem .]) are special cases of Theorem .

Corollary  Let (X,D,K) be a complete MTS where D is continuous in each variable. Let
T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists

http://www.fixedpointtheoryandapplications.com/content/2012/1/126
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r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx)≤ D(x, y) =⇒ D(Tx,Ty) ≤ r
K
D(x, y),

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z. Moreover, T has the property (P).

Corollary  Let (X,D,K) be a complete MTS where D is continuous in each variable. Let
T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists
r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx)≤ D(x, y) =⇒ D(Tx,Ty) ≤ r
K

max
{
D(x,Tx),D(y,Ty)

}
,

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z. Moreover, T has the property (P).

Corollary  Let (X,D,K) be a complete MTS where D is continuous in each variable. Let
T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists
r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx)≤ D(x, y) =⇒ D(Tx,Ty) ≤ r
K

(
D(x,Ty) +D(y,Tx)

)
,

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z. Moreover, T has the property (P).

Adapting [, Example ] we give now an example of a mapping satisfying the conditions
of Theorem  (and having a unique fixed point) but not satisfying the respective classical
(non-Suzuki-type) condition in metric type spaces (see, e.g., [, Theorem .]).

Example  Let X = {(, ), (, ), (, ), (, ), (, )}, and letD : X×X → [, +∞) be given
by D((x,x), (y, y)) = (x – y) + (x – y). Then (X,D, ) is a metric type space (see
Example ). Let T : X → X be given as

T :

(
(, ) (, ) (, ) (, ) (, )
(, ) (, ) (, ) (, ) (, )

)
.

We will check that condition (.) holds true for r = / and all x, y ∈ X. If x = y or if x, y ∈
{(, ), (, ), (, )}, it is trivially satisfied. Let x ∈ {(, ), (, ), (, )} and y ∈ {(, ), (, )}.
Then D(Tx,Ty) =  and M(x, y) =  for x = (, ) and M(x, y) =  for x = (, ) or x =
(, ). Hence, in any case,

D(Tx,Ty) = ≤ /


·M(x, y).

Let now x, y ∈ {(, ), (, )}, x �= y. Then D(x, y) =  and D(x,Tx) =  and so θ (r)D(x,Tx) >

 ·  >  = D(x, y), and (.) is trivially satisfied. Note that in the classical variant, in this
case D(Tx,Ty) =  andM(x, y) = , so the inequality D(Tx,Ty)≤ r

M(x, y) does not hold
for any r < .

http://www.fixedpointtheoryandapplications.com/content/2012/1/126
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The following is a metric-type version of Theorem .

Theorem  Let (X,D,K) be a compact MTS, where the function D is continuous. Let T :
X → X be a selfmap, satisfying for all x, y ∈ X, x �= y the condition


 +K

D(x,Tx) <D(x, y) =⇒ D(Tx,Ty) <

K
D(x, y). (.)

Then T has a unique fixed point in X.

Proof Denote β = inf{D(x,Tx) : x ∈ X} and choose a sequence {xn} in X such that
D(xn,Txn) → β (n → ∞). Since the space X is (sequentially) compact, we can suppose
that there exist v,w ∈ X such that xn → v and Txn → w (n → ∞). We will prove that
β = .
Suppose that β >  and note that continuity of D implies that limn→∞ D(xn,w) =

D(v,w) = limn→∞ D(xn,Txn) = β . Choose n ∈N such that for all n≥ n

 +K
 + K

β <D(xn,w) and D(xn,Txn) <
 +K


β

holds true. Then 
+K D(xn,Txn) <D(xn,w) and assumption (.) implies thatD(Txn,Tw) <


K D(xn,w) for n≥ n. Passing to the limit, we obtain that D(w,Tw)≤ 

K β . If K > , the last
inequality is impossible by the definition of β . If K = , it is possible only if D(w,Tw) = β

(recall that we have supposed that β > ). But in this case 
+K D(w,Tw) < D(w,Tw) and

(.) implies that D(Tw,Tw) < 
K D(w,Tw) = β , which is again impossible by the defini-

tion of β . Hence, in all cases we obtain a contradiction and it follows that β =  and so
v = w.
In order to prove that T has a fixed point, suppose that Tz �= z for all z ∈ X. Then, in

particular,  < 
+K D(xn,Txn) <D(xn,Txn) and (.) implies that

D
(
Txn,Txn

)
<


K
D(xn,Txn).

It follows that

D
(
v,Txn

) ≤ K
(
D(v,Txn) +D

(
Txn,Txn

))
< KD(v,Txn) +D(xn,Txn) → ,

when n→ ∞. Hence, Txn → v (n→ ∞).
Suppose now that


 +K

D(xn,Txn) ≥ D(xn, v) and


 +K
D

(
Txn,Txn

) ≥ D(Txn, v)

both hold for some n ∈N. Then

D(xn,Txn) ≤ K
(
D(xn, v) +D(Txn, v)

)
≤ K

 +K
(
D(xn,Txn) +D

(
Txn,Txn

))
<

K
 +K

(
D(xn,Txn) +


K
D(xn,Txn)

)
=D(xn,Txn),

http://www.fixedpointtheoryandapplications.com/content/2012/1/126
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which is impossible. Thus, for each n ∈N, either


 +K

D(xn,Txn) <D(xn, v) or


 +K
D

(
Txn,Txn

)
<D(Txn, v)

holds true. Assumption (.) implies that for each n ∈N either

D(Txn,Tv) <

K
D(xn, v) or D

(
Txn,Tv

)
<


K
D(Txn, v)

holds. In other words, there exists a sequence {nj} such that D(Txnj ,Tv) <

K D(xnj , v) holds

for each j ∈ N, or there exists a sequence {nk} such that D(Txnk ,Tv) <

K D(xnk , v) holds

for each k ∈ N. In both cases, passing to the limit, we obtain that D(v,Tv) = , i.e., Tv = v,
a contradiction with the assumption that T has no fixed points.
It follows that there exists z ∈ X such that Tz = z. Uniqueness follows easily. �

2.2 Results in conemetric type spaces
In this subsection,we formulate cone-metric-type versions of the results from the previous
subsection.

Theorem  Let (X,D,K) be a complete CMTS with the normal underlying cone P, where
D is continuous in each variable. Let T : X → X be a selfmap and θ = θK : [, )→ (/(K +
), ] be defined by (.). If there exists r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx) –D(x, y) /∈ intP =⇒ D(Tx,Ty) 
 r
K
u(x, y), (.)

for some

u(x, y) ∈
{
D(x, y),D(x,Tx),D(y,Ty),


K

(
D(x,Ty) +D(y,Tx)

)}
,

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z.

Proof Since the cone P is normal, without loss of generality, we can assume that the nor-
mal constant of P is k =  and that the given norm in E is monotone, i.e., θ 
 c � d =⇒
‖c‖ < ‖d‖ (see [, Lemma .]). Denote D(x, y) = ‖D(x, y)‖. Then D is a (real-valued)
metric-type function and the space (X,D) is compact (together with (X,D), see [, The-
orem .]). Let us prove that the mapping T satisfies for some r ∈ [, ) the condition

(∀x, y ∈ X) θ (r)D(x,Tx)≤ D(x, y) =⇒ D(Tx,Ty)≤ r
K
M(x, y) (.)

of Theorem . Suppose that θ (r)D(x,Tx) ≤ D(x, y). Then θ (r)D(x,Tx) – D(x, y) /∈ intP
(indeed, if, to the contrary, θ (r)D(x,Tx) – D(x, y) ∈ intP, i.e., θ (r)D(x,Tx) � D(x, y), it
would follow that θ (r)D(x,Tx) > D(x, y), a contradiction with the assumption). Assump-
tion (.) implies that D(Tx,Ty) 
 r

K u(x, y) for some

u(x, y) ∈
{
D(x, y),D(x,Tx),D(y,Ty),


K

(
D(x,Ty) +D(y,Tx)

)}
.
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Again by the monotonicity of the norm, this means that D(Tx,Ty) ≤ r
KM(x, y), where

M(x, y) =max

{
D(x, y),D(x,Tx),D(y,Ty),


K

(
D(x,Ty) +D(y,Tx)

)}
.

Hence, condition (.) is satisfied, and the conclusion follows. �

In a similar way, the following corollaries and the theorem can be proved.

Corollary  Let (X,D,K) be a complete CMTS where D is continuous in each variable.
Let T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists
r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx) –D(x, y) /∈ intP =⇒ D(Tx,Ty) 
 r
K
D(x, y),

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z.

Corollary  Let (X,D,K) be a complete CMTS where D is continuous in each variable.
Let T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists
r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx) –D(x, y) /∈ intP =⇒ D(Tx,Ty) 
 r
K
u(x, y),

where u(x, y) ∈ {D(x,Tx),D(y,Ty)}, then T has a unique fixed point z ∈ X and for each
x ∈ X, the sequence {Tnx} converges to z.

Corollary  Let (X,D,K) be a complete CMTS where D is continuous in each variable.
Let T : X → X be a selfmap and θ : [, ) → (/(K + ), ] be defined by (.). If there exists
r ∈ [, ) such that for each x, y ∈ X,

θ (r)D(x,Tx) –D(x, y) /∈ intP =⇒ D(Tx,Ty) 
 r
K

(
D(x,Ty) +D(y,Tx)

)
,

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {Tnx} converges
to z.

Example  can be easily adapted to a CMTS.

Theorem  Let (X,D,K) be a compact CMTS, where the function D is continuous. Let
T : X → X be a selfmap satisfying, for all x, y ∈ X, x �= y the condition


 +K

D(x,Tx) –D(x, y) /∈ intP =⇒ D(Tx,Ty) � 
K
D(x, y). (.)

Then T has a unique fixed point in X.

Note that for K =  the above theorem reduces to [, Theorem .].
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