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Abstract
In this work, we establish strong convergence theorems for solving the fixed point
problem of nonexpansive semigroups and strict pseudocontractions, and the
zero-finding problem of maximal monotone operators in a Hilbert space. We further
apply our result to the convex minimization problem and commutative semigroups.
MSC: 47H09; 47H10

Keywords: fixed point; maximal monotone operator; left regular; strict
pseudocontraction; nonexpansive semigroup

1 Introduction
Let H be a real Hilbert space and K a nonempty, closed, and convex subset of H . Let T :
K → K be a nonlinear mapping. Then T is said to be nonexpansive if ‖Tx –Ty‖ ≤ ‖x – y‖
for all x, y ∈ K . The fixed points set of T is denoted by F(T).
In , Mann [] introduced the following classical iteration for a nonexpansive map-

ping T : K → K in a real Hilbert space: x ∈ K and

xn+ = αnxn + ( – αn)Txn, n≥ , (.)

where {αn} ⊂ (, ).
In , Halpern [] introduced another classical iteration for a nonexpansivemapping

T : K → K in a real Hilbert space: x ∈ K and

xn+ = αnu + ( – αn)Txn, n ≥ ,

where {αn} ⊂ (, ) and u ∈ K is fixed.
Let f : K → K be a contraction (i.e., ‖f (x)– f (y)‖ ≤ α‖x–y‖ for all x, y ∈ K and α ∈ [, )).

In ,Moudafi [] introduced the viscosity approximationmethod for a nonexpansive
mapping T as follows: x ∈ K and

xn+ = αnf (xn) + ( – αn)Txn, n≥ , (.)

where {αn} ⊂ (, ). It was proved, in a Hilbert space that the sequence {xn} generated by
(.) strongly converges to a fixed point of T under suitable conditions.
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Let A be a strongly positive bounded linear operator on H : that is, there is a constant γ̄

with property

〈Ax,x〉 ≥ γ̄ ‖x‖ ∀x ∈H .

A typical problem is to minimize a quadratic function over the set of the fixed points of
a nonexpansive mapping on a real Hilbert space H :

min
x∈K 〈Ax,x〉 – 〈x,b〉,

where K is the fixed point set of a nonexpansive mapping T on H and b is a given point
in H .
Recently, Marino-Xu [] introduced the following general iterative method for a non-

expansive mapping T in a Hilbert space: x ∈H and

xn+ = αnγ f (xn) + (I – αnA)Txn, n≥ ,

where {αn} ⊂ (, ), f is a contraction and A is a strongly positive bounded linear operator.
Since then, there have been a number of modified viscosity approximation methods for

nonexpansive mappings or nonexpansive semigroups (see, for example, [, , , , , ,
, , ]).
Recall that T : K → K is called a κ-strict pseudocontraction if there exists a constant

 ≤ κ <  such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥ (.)

for all x, y ∈ K . It is known that (.) is equivalent to the following:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – κ


∥∥(I – T)x – (I – T)y

∥∥

for all x, y ∈ K .
The class of strict pseudocontractions was introduced, in , by Browder-Petryshyn

[]. The existence and weak convergence theorems were proved in a real Hilbert space by
usingMann iterative algorithm (.) with a constant sequence αn = α for all n≥ . Recently,
Marino-Xu [] and Zhou [] extended the results of Browder-Petryshyn [] to Mann’s
iteration process (.). Since , the study of fixed points for strict pseudocontractions
has been investigated by many authors (see, e.g., [, ]).
A set-valued mapping M : H → H is called monotone if for all x, y ∈ H , f ∈ M(x),

and g ∈ M(y) imply 〈x – y, f – g〉 ≥ . A monotone mapping M is maximal if its graph
G(M) := {(f ,x) ∈H×H : f ∈ M(x)} ofM is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mappingM ismaximal if and only if for
(x, f ) ∈ H × H , 〈x – y, f – g〉 ≥  for all (y, g) ∈ G(M) imply f ∈ M(x). Let JMλ = (I + λM)–,
λ >  be the resolvent ofM. It is well known that JMλ is single-valued andD(JMλ ) =H for any
λ > . For each λ > , the Yosida approximation of M is defined by Aλ =

I–JMλ
λ

. We know
that (JMλ x,Aλx) ∈G(M) for all λ >  and x ∈H .
A fundamental problem of monotone operators is that of finding an element x such

that  ∈ Mx. Such a problem is called the zero-finding problem (denoted by M–() the
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set of solutions) and also includes many concrete examples, such as convex programming
and monotone variational inequalities. It is known that if g : H → (–∞,∞] is a proper
lower semicontinuous convex function, then ∂g is maximal monotone and the equation
 ∈ ∂g(x) is reduced to g(x) =min{g(y) : y ∈H} (see [, ]).
Initiated by Martinet [], Rockafellar [] introduced the following iterative scheme:

x ∈H and

xn+ = JMλnxn, n ≥ , (.)

where {λn} ⊂ (,∞) and M is a maximal monotone operator on H . Such an algorithm is
called the proximal point algorithm. It was proved that the sequence {xn} generated by
(.) converges weakly to an element inM–() if lim infn→∞ λn > .
The convergence of the zero-finding problem of monotone operators has been studied

by many authors in several setting (see, for example, [, , , , , ]).
In this work, motivated by Lau et al. [–], Marino-Xu [], and Saeidi [], we intro-

duce a new general iterative scheme for solving the fixed- point problem of a nonexpansive
semigroup involving a strict pseudocontraction and the zero-finding problem of a maxi-
mal monotone operator in the framework of a Hilbert space. Some applications concern-
ing the convex minimization problem and commutative semigroups are also presented.

2 Preliminaries and lemmas
In this section, we state some preliminaries and lemmas which will be used in the sequel.
Let S be a semigroup. We denote by �∞(S) the Banach space of all bounded real-valued

functionals on S with supremum norm. For each s ∈ S, we define the left and right trans-
lation operators l(s) and r(s) on �∞(S) by

(
l(s)f

)
(t) = f (st) and

(
r(s)f

)
(t) = f (ts)

for each t ∈ S and f ∈ �∞(S), respectively. Let X be a subspace of �∞(S) containing . An
element μ in the dual space X* of X is said to be a mean on X if ‖μ‖ = μ() = . It is well
known that μ is a mean on X if and only if

inf
s∈S f (s)≤ μ(f ) ≤ sup

s∈S
f (s)

for each f ∈ X. We often write μt(f (t)) instead of μ(f ) for μ ∈ X* and f ∈ X.
Let X be a translation invariant subspace of �∞(S) (i.e., l(s)X ⊂ X and r(s)X ⊂ X for each

s ∈ S) containing . Then a mean μ on X is said to be left invariant (resp. right invari-
ant) if μ(l(s)f ) = μ(f ) (resp. μ(r(s)f ) = μ(f )) for each s ∈ S and f ∈ X. A mean μ on X is
said to be invariant if μ is both left and right invariant [–]. S is said to be left (resp.
right) amenable if X has a left (resp. right) invariant mean. S is a amenable if S is left and
right amenable. In this case, �∞(S) also has an invariant mean. It is known that �∞(S) is
amenable when S is commutative semigroup or solvable group. However, the free group
or semigroup of two generators is not left or right amenable (see [, ]). A net {μα} of
means on X is said to be left regular [] if

lim
α

∥∥l*sμα –μα

∥∥ = 

for each s ∈ S, where l*s is the adjoint operator of ls.
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Let K be a nonempty, closed, and convex subset of H . A family S = {T(s) : s ∈ S} is
called a nonexpansive semigroup on K if for each s ∈ S, the mapping T(s) : K → K is
nonexpansive and T(st) = T(s)T(t) for each s, t ∈ S. We denote by F(S) the set of common
fixed points of S , i.e.,

F(S) =
⋂
s∈S

F
(
T(s)

)
=

⋂
s∈S

{
x ∈ K : T(s)x = x

}
.

Throughout this article, we denote the open ball of radius r centered at  by Br and also
denote the closed and convex hull of A ⊂ H by coA. For ε >  and a mapping T : D → H ,
the set of ε-approximate fixed points of T will be denoted by Fε(T ,D), i.e. Fε(T ,D) = {x ∈
D : ‖x – Tx‖ ≤ ε}.
The following lemmas are important in order to prove our main theorem.

Lemma . [, , ] Let f be a function of a semigroup S into a Banach space E such
that the weak closure of {f (t) : t ∈ S} is weakly compact and let X be a subspace of �∞(S)
containing all the functions t �→ 〈f (t),x*〉 with x* ∈ E*. Then, for any μ ∈ X*, there exists a
unique element fμ in E such that

〈
fμ,x*

〉
= μt

〈
f (t),x*

〉
for all x* ∈ E*. Moreover, if μ is a mean on X then

∫
f (t)dμ(t) ∈ co

{
f (t) : t ∈ S

}
.

We can write fμ by
∫
f (t)dμ(t).

Lemma . [, , ] Let K be a closed and convex subset of a Hilbert space H, S =
{T(s) : s ∈ S} be a nonexpansive semigroup from K into K such that F(S) = ∅ and X be a
subspace of �∞(S) containing  and the mapping t �→ 〈T(t)x, y〉 be an element of X for each
x ∈ K and y ∈H, and μ be a mean on X.
If we write T(μ)x instead of

∫
Ttxdμ(t), then the following hold:

(i) T(μ) is a nonexpansive mapping from K into K ;
(ii) T(μ)x = x for each x ∈ F(S);
(iii) T(μ)x ∈ co{Ttx : t ∈ S} for each x ∈ K ;
(iv) if μ is left invariant, then T(μ) is a nonexpansive retraction from K onto F(S).

Let K be a nonempty, closed, and convex subset of a real Hilbert space H . Then, for any
x ∈H , there exists a unique nearest point in K , denoted by PKx, such that

‖x – PKx‖ ≤ ‖x – y‖

for all y ∈ K . Such a projection PK is called the metric projection of H onto K . We also
know that for x ∈H and z ∈ K , z = PKx if and only if

〈x – z, y – z〉 ≤ , ∀y ∈ K .

We know the following subdifferential inequality.
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Lemma . For all x, y ∈H, there holds the inequality

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . [] Let A be a strongly positive bounded linear operator on a Hilbert space
H with coefficient γ̄ and  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ̄ .

In the sequel, we need the following crucial lemmas.

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – ρn)an + ρnδn, n≥ ,

where {ρn} is a sequence in (, ) and {δn} is a sequence in R such that
(a)

∑∞
n= ρn = ∞;

(b) lim supn→∞ δn ≤  or
∑∞

n= |ρnδn| < ∞.
Then limn→∞ an = .

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E such that

xn+ = ( – βn)yn + βnxn, ∀n≥ ,

where {βn} is a real sequence in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . If
lim supn→∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ , then limn→∞ ‖yn – xn‖ = .

The following crucial results can be found in [].

Lemma . [] Let K be a nonempty, closed, and convex subset of a real Hilbert space
H and let T : K → K be a κ-strict pseudocontraction such that F(T) = ∅, then I – T is
demiclosed at zero, that is, for all sequence {xn} ⊂ K with xn ⇀ y and ‖xn – Txn‖ →  it
follows that y = Ty.

Lemma . [] Let K be a nonempty, closed, and convex subset of a real Hilbert space
H and let Ti : K → K (i = , , . . . ,N) be a family of κi-strict pseudocontractions for some
 ≤ κi < . Assume {ηi}Ni= is a positive sequence such that

∑N
i= ηi = . Then

∑N
i= ηiTi is a

κ-strict pseudocontraction with κ =max{κi :  ≤ i≤ N}. Moreover, if {Ti}Ni= has a common
fixed point, then F(

∑N
i= ηiTi) =

⋂N
i= F(Ti).

Lemma . [] Let the resolvent JMλ be defined by JMλ = (I + λM)–, λ > . Then the fol-
lowing holds:

∥∥JMs x – JMt x
∥∥ ≤

∣∣∣∣ s – t
t

∣∣∣∣∥∥x – JMt x
∥∥

for all s, t >  and x ∈H.

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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3 Main result
In this section, we are now ready to prove our main theorem.

Theorem . Let H be a real Hilbert space and S = {T(t) : t ∈ S} a nonexpansive semi-
group on H. Let M :H → H be a maximal monotone operator and T :H → H a κ-strict
pseudocontraction such that F := F(S) ∩M–() ∩ F(T) = ∅. Let X be a left invariant sub-
space of �∞(S) such that  ∈ X, and the function t �→ 〈T(t)x, y〉 is an element of X for each
x, y ∈H. Let {μn} be a left regular sequence ofmeans on X such that limn→∞ ‖μn+–μn‖ = .
Let f be an α-contraction on H and A a strongly positive bounded linear operator with co-
efficient γ̄ . Let β and γ be real numbers such that  < β <  and  < γ < γ̄ /α. Let {xn} be
generated by x ∈H and

⎧⎨
⎩yn = JMλn (δnxn + ( – δn)Txn),

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)T(μn)yn, n≥ ,

where {αn} ⊂ (, ), {δn} ⊂ (κ , ) and {λn} ⊂ (,∞) satisfying the conditions:
(C) limn→∞ αn =  and

∑∞
n= αn = ∞;

(C) limn→∞ |δn+ – δn| = ;
(C) κ < lim infn→∞ δn ≤ lim supn→∞ δn < ;
(C) lim infn→∞ λn >  and limn→∞ |λn+ – λn| = .
Then {xn} converges strongly to p ∈ F which also solves the following variational inequal-

ity:

〈
(γ f –A)p,q – p

〉 ≤ , ∀q ∈ F . (.)

Proof Since αn → , we shall assume that αn ≤ ( – β)‖A‖– and  – αn(γ̄ – αγ ) > . So by
Lemma ., we have ‖( – β)I – αnA‖ ≤  – β – αnγ̄ .
First, we show that {xn} is bounded. Let w ∈ F . Put zn = δnxn + ( – δn)Txn for all n ∈ N.

Then

‖zn –w‖ =
∥∥δnxn + ( – δn)Txn –w

∥∥

=
∥∥δn(xn –w) + ( – δn)(Txn –w)

∥∥

= δn‖xn –w‖ + ( – δn)‖Txn –w‖ – δn( – δn)‖xn – Txn‖

≤ δn‖xn –w‖ + ( – δn)‖xn –w‖ + ( – δn)κ‖xn – Txn‖

– δn( – δn)‖xn – Txn‖

= ‖xn –w‖ + ( – δn)(κ – δn)‖xn – Txn‖

≤ ‖xn –w‖, (.)

which yields

‖zn –w‖ ≤ ‖xn –w‖.

Moreover, since JMλn is firmly nonexpansive,

‖yn –w‖ = ∥∥JMλnzn –w
∥∥ ≤ ‖zn –w‖ ≤ ‖xn –w‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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From (.), we have

‖xn+ –w‖ ≤ ∥∥[
( – β)I – αnA

][
T(μn)yn –w

]∥∥ +
∥∥αnγ

[
f (xn) – f (w)

]∥∥
+

∥∥αn
[
γ f (w) –Aw

]∥∥ +
∥∥β(xn –w)

∥∥
≤ [

 – αn(γ̄ – αγ )
]‖xn –w‖ + αn

∥∥γ f (w) –Aw
∥∥

≤ max

{
‖xn –w‖, ‖γ f (w) –Aw‖

(γ̄ – γα)

}
.

By an induction, we can show that

‖xn –w‖ ≤ max

{
‖x –w‖, ‖γ f (w) –Aw‖

(γ̄ – γα)

}
, ∀n≥ .

Therefore, {xn} is bounded. So are {f (xn)}, {yn}, {zn}, and {T(μn)yn}.
We next show that

lim
n→∞‖xn+ – xn‖ = .

Observe that

lim
n→∞

∥∥T(μn+)yn – T(μn)yn
∥∥ = . (.)

Indeed,

∥∥T(μn+)yn – T(μn)yn
∥∥ = sup

‖z‖=

∣∣〈T(μn+)yn – T(μn)yn, z
〉∣∣

= sup
‖z‖=

∣∣(μn+)s
〈
T(s)yn, z

〉
– (μn)s

〈
T(s)yn, z

〉∣∣
≤ ‖μn+ –μn‖ sup

s∈S

∥∥T(s)yn∥∥.
Since {yn} is bounded and limn→∞ ‖μn+ –μn‖ = , (.) holds.
For each n ∈ N, define Tnx = δnx + ( – δn)Tx. Then Tn is nonexpansive, and hence

‖zn+ – zn‖ = ‖Tn+xn+ – Tnxn‖
≤ ‖Tn+xn+ – Tn+xn‖ + ‖Tn+xn – Tnxn‖
≤ ‖xn+ – xn‖ + |δn+ – δn|M (.)

for some big enough constantM > .
On the other hand, since yn = JMλnzn and yn+ = JMλn+zn+,

‖yn+ – yn‖ =
∥∥JMλn+zn+ – JMλnzn

∥∥
≤ ∥∥JMλn+zn+ – JMλnzn+

∥∥ +
∥∥JMλnzn+ – JMλnzn

∥∥
≤ ∥∥JMλn+zn+ – JMλnzn+

∥∥ + ‖zn+ – zn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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Put wn = xn+–βxn
–β

. Then

wn+ –wn =


 – β

[
(xn+ – βxn+) – (xn+ – βxn)

]

=


 – β

[
αn+

(
γ f (xn+) –AT(μn+)yn+

)
+ ( – β)T(μn+)yn+

]

–


 – β

[
αn

(
γ f (xn) –AT(μn)yn

)
+ ( – β)T(μn)yn

]
=

αn+

 – β

(
γ f (xn+) –AT(μn+)yn+

)
+ T(μn+)yn+

–
αn

 – β

(
γ f (xn) –AT(μn)yn

)
– T(μn)yn

=
αn+

 – β

(
γ f (xn+) –AT(μn+)yn+

)
+

(
T(μn+)yn+ – T(μn+)yn

)
–

αn

 – β

(
γ f (xn) –AT(μn)yn

)
–

(
T(μn)yn – T(μn+)yn

)

which implies

‖wn+ –wn‖ ≤ αn+

 – β

∥∥γ f (xn+) –AT(μn+)yn+
∥∥ + ‖yn+ – yn‖

+
αn

 – β

∥∥γ f (xn) –AT(μn)yn
∥∥ +

∥∥T(μn)yn – T(μn+)yn
∥∥. (.)

Substituting (.) and (.) into (.), we obtain

‖wn+ –wn‖ ≤ αn+

 – β

∥∥γ f (xn+) –AT(μn+)yn+
∥∥ +

∥∥JMλn+zn+ – JMλnzn+
∥∥

+ ‖xn+ – xn‖ + |δn+ – δn|M +
αn

 – β

∥∥γ f (xn) –AT(μn)yn
∥∥

+
∥∥T(μn)yn – T(μn+)yn

∥∥.
Using Lemma ., (.), (C), (C), and (C), we have

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
) ≤ .

From Lemma ., we derive

lim
n→∞‖wn – xn‖ = .

It also follows that

lim
n→∞‖xn+ – xn‖ = . (.)

We next show that

lim
n→∞

∥∥xn – T(t)xn
∥∥ = , ∀t ∈ S.

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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Put

K =max

{
‖x –w‖, ‖γ f (w) –Aw‖

(γ̄ – γα)

}
.

Set D = {y ∈ H : ‖y – w‖ ≤ K}. Then D is a nonempty bounded closed convex set. More-
over, {xn}, {yn}, and {zn} are in D. To complete our proof, we follow the proof line as in []
(see also [, , ]). Let ε > . From [], there exists δ >  such that

coFδ

(
T(t);D

)
+ Bδ ⊆ Fε

(
T(t);D

)
, ∀t ∈ S. (.)

From Corollary . in [], there exists a natural number N such that

∥∥∥∥∥ 
N + 

N∑
i=

T
(
tis

)
y – T(t)

(


N + 

N∑
i=

T
(
tis

)
y

)∥∥∥∥∥ ≤ δ, (.)

for all t, s ∈ S and y ∈D. Let t ∈ S. Since {μn} is left regular, there exists n ∈N such that

∥∥μn – l*tiμn
∥∥ ≤ δ

(K + ‖w‖)

for all n ≥ n and i = , , . . . ,N . So we have for all n≥ n

sup
y∈D

∥∥∥∥∥T(μn)y –
∫ 

N + 

N∑
i=

T
(
tis

)
ydμn(s)

∥∥∥∥∥
= sup

y∈D
sup
‖z‖=

∣∣∣∣∣(μn)s
〈
T(s)y, z

〉
– (μn)s

〈


N + 

N∑
i=

T
(
tis

)
y, z

〉∣∣∣∣∣
≤ 

N + 

N∑
i=

sup
y∈D

sup
‖z‖=

∣∣(μn)s
〈
T(s)y, z

〉
–

(
l*tiμn

)
s

〈
T(s)y, z

〉∣∣
≤ max

i=,,...,N

∥∥μn – l*tiμn
∥∥(
K + ‖w‖) ≤ δ


. (.)

Observe, by Lemma .

∫ 
N + 

N∑
i=

T
(
tis

)
ydμn(s) ∈ co

{


N + 

N∑
i=

T(t)i
(
T(s)y

)
: s ∈ S

}
. (.)

Combining (.)-(.), we derive

T(μn)y =
∫ 

N + 

N∑
i=

T
(
tis

)
ydμn(s) +

(
T(μn)y –

∫ 
N + 

N∑
i=

T
(
tis

)
ydμn(s)

)

∈ co

{


N + 

N∑
i=

T(t)i
(
T(s)y

)
: s ∈ S

}
+ Bδ/

⊆ coFδ

(
T(t);D

)
+ Bδ/, (.)
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for all y ∈ D and n ≥ n. Let t ∈ S and ε > . Then there exists δ >  which satisfies (.).
Observe

xn+ = T(μn)yn +
β

 – β
(xn+ – xn) +

αn

 – β

(
γ f (xn) –AT(μn)yn

)
.

Since ‖xn+ – xn‖ →  and αn → , there exists k ∈N such that

xn+ = T(μn)yn +
β

 – β
(xn – xn+) +

αn

 – β

(
γ f (xn) –AT(μn)yn

)
∈ coFδ

(
T(t);D

)
+ Bδ/ + Bδ/ + Bδ/

⊆ coFδ

(
T(t);D

)
+ Bδ ⊆ Fε

(
T(t);D

)
,

for all n > k. Hence, lim supn→∞ ‖xn – T(t)xn‖ ≤ ε. Since ε >  is arbitrary,

lim
n→∞

∥∥xn – T(t)xn
∥∥ = . (.)

We next show that

lim
n→∞‖yn – zn‖ = . (.)

Since JMλn is firmly nonexpansive and yn = JMλnzn,

‖yn –w‖ =
∥∥JMλnzn – JMλnw

∥∥

≤ 〈
JMλnzn – JMλnw, zn –w

〉
= 〈yn –w, zn –w〉
=



(‖yn –w‖ + ‖zn –w‖ – ‖zn – yn‖

)
,

which implies

‖yn –w‖ ≤ ‖zn –w‖ – ‖zn – yn‖.

Therefore,

‖xn+ –w‖ =
∥∥[
( – β)

(
T(μn)yn –w

)
+ β(xn –w)

]
+ αn

[
γ f (xn) –AT(μn)yn

]∥∥

≤ ∥∥( – β)
(
T(μn)yn –w

)
+ β(xn –w)

∥∥

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
≤ ( – β)‖yn –w‖ + β‖xn –w‖

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
≤ ( – β)

(‖zn –w‖ – ‖zn – yn‖
)
+ β‖xn –w‖

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
≤ ‖xn –w‖ – ( – β)‖zn – yn‖

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
,

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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which yields

( – β)‖zn – yn‖ ≤ αnM +
(‖xn –w‖ – ‖xn+ –w‖)

for someM > . Thus, (.) holds by (.) and αn → .
We next show that

lim
n→∞‖xn – Txn‖ = . (.)

From (.), we have

‖yn –w‖ ≤ ‖zn –w‖ ≤ ‖xn –w‖ + ( – δn)(κ – δn)‖xn – Txn‖.

So, we obtain

‖xn+ –w‖ ≤ ( – β)‖yn –w‖ + β‖xn –w‖

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
≤ ( – β)

(‖xn –w‖ + ( – δn)(κ – δn)‖xn – Txn‖
)
+ β‖xn –w‖

+ αn
〈
γ f (xn) –AT(μn)yn,xn+ –w

〉
≤ ‖xn –w‖ + ( – β)( – δn)(κ – δn)‖xn – Txn‖ + αnM.

It follows that

( – β)( – δn)(δn – κ)‖xn – Txn‖ ≤ αnM + ‖xn –w‖ – ‖xn+ –w‖.

From (C) and (C), we conclude that (.) holds. Moreover, we get that

lim
n→∞‖xn – zn‖ = . (.)

It is easy to see that PF (γ f + (I –A)) is a contraction. So, by Banach’s contraction principle,
there exists a unique point p which satisfies the following variational inequality:

〈
(γ f –A)p,q – p

〉 ≤ , ∀q ∈ F .

We next show that

lim sup
n→∞

〈
(γ f –A)p,xn – p

〉 ≤ .

To this end, we choose a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
(γ f –A)p,xn – p

〉
= lim

k→∞
〈
(γ f –A)p,xnk – p

〉
.

Since {xn} is bounded andH is reflexive, there exists a point z ∈H such that xnk ⇀ z. From
(.) and (.), there exists a corresponding subsequence {ynk } of {yn} (resp. {znk } of {zn})
such that ynk ⇀ z (resp. znk ⇀ z).

http://www.fixedpointtheoryandapplications.com/content/2012/1/129
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We next show that z ∈M–(). Since yn = JMλnzn,

‖Aλnzn‖ =

λn

‖yn – zn‖.

From (.) and lim infn→∞ λn > , we have

lim
n→∞‖Aλnzn‖ = . (.)

Noting that (zn,Aλnzn) ∈G(M), by the monotonicity ofM, we have

〈
s – zn, s* –Aλnzn

〉 ≥ 

for all (s, s*) ∈G(M). So we obtain

〈
s – z, s*

〉 ≥ 

for all (s, s*) ∈G(M). Hence, z ∈M–() by the maximality ofM.
On the other hand, from (.), we get that z ∈ F(S) by the demiclosedness of a non-

expansive mapping [, ]. Applying Lemma . to (.), we also get that z ∈ F(T). This
shows that z ∈ F , and hence

lim sup
n→∞

〈
(γ f –A)p,xn – p

〉
=

〈
(γ f –A)p, z – p

〉 ≤ . (.)

We finally show that xn → p as n → ∞. From Lemmas . and ., we have

‖xn+ – p‖ =
∥∥[(

( – β)I – αnA
)(
T(μn)yn – p

)
+ β(xn – p)

]
+ αn

(
γ f (xn) –Ap

)∥∥

≤ ∥∥(
( – β)I – αnA

)(
T(μn)yn – p

)
+ β(xn – p)

∥∥

+ αn
〈
γ f (xn) –Ap,xn+ – p

〉
=

∥∥∥∥( – β)
( – β)I – αnA

( – β)
(
T(μn)yn – p

)
+ β(xn – p)

∥∥∥∥


+ αnγ
〈
f (xn) – f (p),xn+ – p

〉
+ αn

〈
γ f (p) –Ap,xn+ – p

〉
≤ ( – β)

∥∥∥∥ ( – β)I – αnA
( – β)

(
T(μn)yn – p

)∥∥∥∥


+ β‖xn – p‖

+ αnγα‖xn – p‖‖xn+ – p‖ + αn
〈
γ f (p) –Ap,xn+ – p

〉
≤ ‖( – β)I – αnA‖

 – β

∥∥T(μn)yn – p
∥∥ + β‖xn – p‖

+ αnγα
(‖xn – p‖ + ‖xn+ – p‖) + αn

〈
γ f (p) –Ap,xn+ – p

〉
≤

(
(( – β) – γ̄ αn)

 – β
+ β + αnγα

)
‖xn – p‖ + αnγα‖xn+ – p‖

+ αn
〈
γ f (p) –Ap,xn+ – p

〉
=

(
 – (γ̄ – αγ )αn +

γ̄ α
n

 – β

)
‖xn – p‖ + αnγα‖xn+ – p‖

+ αn
〈
γ f (p) –Ap,xn+ – p

〉
.
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It follows that

‖xn+ – p‖ ≤
(
 –

αn(γ̄ – αγ )
 – αγαn

)
‖xn – p‖

+
αn(γ̄ – αγ )
 – αγαn

(


γ̄ – αγ

〈
γ f (p) –Ap,xn+ – p

〉

+
γ̄ αn

( – β)(γ̄ – αγ )
‖xn – p‖

)
.

From (.) and (C), we can apply Lemma . to conclude that xn → p as n → ∞. This
completes the proof. �

From Rockafellar’s theorem [, ], we next apply our result to the convex minimiza-
tion problem in a Hilbert space.

Corollary . Let H be a real Hilbert space and S = {T(t) : t ∈ S} a nonexpansive semi-
group on H. Let g :H → (–∞,∞] be a proper lower semi-continuous convex function and
T : H → H a κ-strict pseudocontraction such that F := F(S) ∩ ∂g–() ∩ F(T) = ∅. Let X
be a left invariant subspace of �∞(S) such that  ∈ X, and the function t �→ 〈T(t)x, y〉 is an
element of X for each x, y ∈ H. Let {μn} be a left regular sequence of means on X such that
limn→∞ ‖μn+ –μn‖ = . Let f be an α-contraction on H and A a strongly positive bounded
linear operator with coefficient γ̄ . Let {αn}, β , γ , {δn} and {λn} be as in Theorem .. Then
the sequence {xn} generated by x ∈H and

⎧⎪⎪⎨
⎪⎪⎩
zn = δnxn + ( – δn)Txn,

yn = argminy∈H{g(y) + 
λn ‖zn – y‖},

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)T(μn)yn, n≥ ,

converges strongly to p ∈ F which also solves the variational inequality (.).

Using Lemma ., we next apply our result to a finite family of strict pseudocontractions
in a Hilbert space.

Corollary . Let H be a real Hilbert space and S = {T(t) : t ∈ S} a nonexpansive semi-
group on H. Let M :H → H be a maximal monotone operator and {Ti}Ni= :H →H a fam-
ily of κi-strict pseudocontractions such that F := F(S) ∩ M–() ∩ F(T) ∩ · · · ∩ F(TN ) = ∅.
Let κ =max{κi :  ≤ i≤ N}. Let X be a left invariant subspace of �∞(S) such that  ∈ X, and
the function t �→ 〈T(t)x, y〉 is an element of X for each x, y ∈ H. Let {μn} be a left regular
sequence of means on X such that limn→∞ ‖μn+ –μn‖ = . Let f be an α-contraction on H
and A a strongly positive bounded linear operator with coefficient γ̄ . Let {αn}, β , γ , {δn} and
{λn} be as in Theorem . and ηi ∈ (, ) with

∑N
i= ηi = . Then the sequence {xn} generated

by x ∈ H and

⎧⎨
⎩yn = JMλn (δnxn + ( – δn)

∑N
i= ηiTixn),

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)T(μn)yn, n≥ ,

converges strongly to p ∈ F which also solves the variational inequality (.).
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Using the results proved in [] (see also []), we obtain the following corollaries.

Corollary . Let H be a real Hilbert space. Let S and S be nonexpansivemappings on H
with SS = SS. Let M :H → H be a maximal monotone operator and let T :H → H be
a κ-strict pseudocontraction such that F := F(S) ∩ F(S) ∩M–() ∩ F(T) = ∅. Let f be an
α-contraction on H and A a strongly positive bounded linear operator with coefficient γ̄ .
Let {αn}, β , γ , {δn}, and {λn} be as in Theorem .. Then the sequence {xn} generated by
x ∈H and⎧⎨

⎩yn = JMλn (δnxn + ( – δn)Txn),

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)( 
n

∑n–
i=

∑n–
j= SiS

j
yn), n≥ ,

converges strongly to p ∈ F which also solves the variational inequality (.).

Corollary . Let H be a realHilbert space. LetS = {T(t) : t ∈R+} be a strongly continuous
nonexpansive semigroup on H. Let M : H → H be a maximal monotone operator and
T :H → H a κ-strict pseudocontraction such that F := F(S)∩M–()∩ F(T) = ∅. Let f be
an α-contraction on H and A a strongly positive bounded linear operator with coefficient γ̄ .
Let {αn}, β , γ , {δn}, and {λn} be as in Theorem .. Then the sequence {xn} generated by
x ∈H and⎧⎨

⎩yn = JMλn (δnxn + ( – δn)Txn),

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)( 
tn

∫ tn
 T(s)yn d(s)), n≥ ,

where {tn} is an increasing sequence in (,∞) such that limn→∞ tn = ∞ and limn→∞ tn/
tn+ = , converges strongly to p ∈ F which also solves the variational inequality (.).

Corollary . LetH be a realHilbert space. LetS = {T(t) : t ∈R+} be a strongly continuous
nonexpansive semigroup on H. Let M : H → H be a maximal monotone operator and
T :H → H a κ-strict pseudocontraction such that F := F(S)∩M–()∩ F(T) = ∅. Let f be
an α-contraction on H and A a strongly positive bounded linear operator with coefficient γ̄ .
Let {αn}, β , γ , {δn} and {λn} be as in Theorem .. Then the sequence {xn} generated by
x ∈H and⎧⎨

⎩yn = JMλn (δnxn + ( – δn)Txn),

xn+ = αnγ f (xn) + βxn + (( – β)I – αnA)(an
∫ ∞
 exp(–ans)T(s)yn d(s)), n≥ ,

where {an} is a decreasing sequence in (,∞) such that limn→∞ an = , converges strongly
to p ∈ F which also solves the variational inequality (.).

Competing interests
The authors declare that they have no competing interests.

Acknowledgement
The author wishes to thank Professor Anthony To-Ming Lau for the hospitality and guidance when stayed in University of
Alberta during Spring/Summer 2011 and Professor Suthep Suantai for the valuable suggestion. The author was
supported by the Thailand Research Fund, the Commission on Higher Education, and University of Phayao under Grant
MRG5580016.

Received: 23 May 2012 Accepted: 16 July 2012 Published: 5 August 2012

http://www.fixedpointtheoryandapplications.com/content/2012/1/129


Cholamjiak Fixed Point Theory and Applications 2012, 2012:129 Page 15 of 16
http://www.fixedpointtheoryandapplications.com/content/2012/1/129

References
1. Acedo, GL, Xu, HK: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. TMA 67,

2258-2271 (2007)
2. Atsushiba, S, Takahashi, W: Approximation common fixed points of nonexpansive semigroups by the Mann iteration

process. Ann. Univ. Mariae Curie-Skl̄odowska, Sect. A 51, 1-16 (1997)
3. Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl.

20, 197-228 (1967)
4. Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
5. Bruck, RE: On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach

spaces. Isr. J. Math. 38, 304-314 (1981)
6. Chen, R, He, H: Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space. Appl.

Math. Lett. 20, 751-757 (2007)
7. Chen, R, Song, Y: Convergence to common fixed point of nonexpansive semigroups. J. Comput. Appl. Math. 200,

566-575 (2007)
8. Cho, YJ, Kang, SM, Zhou, H: Approximate proximal point algorithms for finding zeroes of maximal monotone

operators in Hilbert spaces. J. Inequal. Appl. 2008, Art. ID 598191 (2008)
9. Cholamjiak, P, Suantai, S: Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with

gauge functions. J. Glob. Optim. (2011). doi:10.1007/s10898-011-9756-4
10. Cholamjiak, P, Cho, YJ, Suantai, S: Composite iterative schemes for maximal monotone operators in reflexive Banach

spaces. Fixed Point Theory Appl. 2011, 7 (2011)
11. Day, MM: Amenable semigroup. Ill. J. Math. 1, 509-544 (1957)
12. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.

Cambridge University Press, Cambridge, UK (1990)
13. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
14. Kamimura, S, Takahashi, W: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx.

Theory 106, 226-240 (2000)
15. Kohsaka, F, Takahashi, W: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex

Anal. 6, 505-523 (2005)
16. Lau, AT-M: Invariant means on almost periodic functions and fixed point properties. Rocky Mt. J. Math. 3, 69-76 (1973)
17. Lau, AT-M: Invariant means and fixed point properties of semigroup of nonexpansive mappings. Taiwan. J. Math. 12,

1525-1542 (2008)
18. Lau, AT-M, Takahashi, W: Invariant means and fixed point properties for nonexpansive representations of topological

semigroups. Topol. Methods Nonlinear Anal. 5, 39-57 (1995)
19. Lau, AT-M, Miyake, H, Takahashi, W: Approximation of fixed points for amenable semigroups of nonexpansive

mappings in Banach spaces. Nonlinear Anal. TMA 67, 1211-1225 (2007)
20. Lau, AT-M, Shioji, N, Takahashi, W: Existence of nonexpansive retractions for amenable semigroups of nonexpansive

mappings and nonlinear ergodic theorems in Banach spaces. J. Funct. Anal. 161, 62-75 (1999)
21. Mann, WR: Mean value methods in iterations. Proc. Am. Math. Soc. 4, 506-510 (1953)
22. Marino, G, Xu, HK: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318,

43-52 (2006)
23. Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math.

Anal. Appl. 329, 336-346 (2007)
24. Martinet, B: Régularisation d’inéquations variationelles par approximations successives. Rev. Francaise d’Informatique

et de Recherche Opérationelle 4, 154-159 (1970)
25. Moudafi, A: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46-55 (2000)
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