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Abstract
In this paper, we establish a fixed-point theorem for multivalued contractive
mappings in complete cone metric spaces. We generalize Caristi’s fixed-point
theorem to the case of multivalued mappings in complete cone metric spaces. We
give examples to support our main results. Our results are extensions of the results
obtained by Feng and Liu (J. Math. Anal. Appl. 317:103-112, 2006) to the case of cone
metric spaces.
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1 Introduction
Banach’s contraction principle plays an important role in several branches ofmathematics.
Because of its importance for mathematical theory, it has been extended in many direc-
tions (see [, , , , , , ]); especially, the authors [, , ] generalized Ba-
nach’s principle to the case of multivalued mappings. Feng and Liu gave a generalization
of Nadler’s fixed-point theorem. They proved the following theorem in [].

Theorem . Let (X,d) be a complete metric space and let T : X → X be a multivalued
map such that Tx is a closed subset of X for all x ∈ X. Let Ixb = {y ∈ Tx : bd(x, y) ≤ d(x,Tx)},
where b ∈ (, ).
If there exists a constant c ∈ (, ) such that for any x ∈ X, there exists y ∈ Ixb satisfying

d(y,Ty) ≤ cd(x, y),

then T has a fixed point in X, i.e., there exists z ∈ X such that z ∈ Tz provided c < b and the
function d(x,Tx), x ∈ X is lower semicontinuous.

Recently, in [], the authors used the notion of a cone metric space to generalize the
Banach contraction principle to the case of cone metric spaces. Since then, many authors
[–, , , , , , –, –, , , , ] obtained fixed-point theorems in cone
metric spaces. The cone Banach space was first used in [, ]. Since then, the authors [,
] obtained fixed-point results in cone Banach spaces. The authors [] proved a Caristi-
type fixed-point theorem for single valued maps in cone metric spaces. The author []
studied the structure of cone metric spaces.
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Especially, the authors [, , , , , ] proved fixed point theorems for multival-
ued maps in cone metric spaces.
In this paper, we give a generalization of Theorem . to the case of cone metric spaces

and we establish a Caristi-type fixed-point theorem for multivalued maps in cone metric
spaces.
Consistent with Huang and Zhang [], the following definitions will be needed in the

sequel.
Let E be a topological vector space. A subset P of E is a cone if the following conditions

are satisfied:
() P is nonempty, closed, and P �= {θ},
() ax + by ∈ P, whenever x, y ∈ P and a,b ∈R (a,b≥ ),
() P ∩ (–P) = {θ}.
Given a cone P ⊂ E, we define a partial ordering 	 with respect to P by x 	 y if and only

if y – x ∈ P. We write x ≺ y to indicate that x	 y but x �= y.
For x, y ∈ P, x � y stand for y – x ∈ int(P), where int(P) is the interior of P.
If E is a normed space, a cone P is called normal whenever there exists a number K > 

such that for all x, y ∈ E, θ 	 x 	 y implies ‖x‖ ≤ K‖y‖.
A cone P isminihedral [] if sup{x, y} exists for all x, y ∈ E. A cone P is strongly minihe-

dral [] if every upper bounded nonempty subset A of E, supA exists in E. Equivalently, a
cone P is strongly minihedral if every lower bounded nonempty subset A of E, infA exists
in E (see also [, ]).
If E is a normed space, a strongly minihedral cone P is continuous whenever, for any

bounded chain {xα : α ∈ �}, inf{‖xα – inf{xα : α ∈ �}‖ : α ∈ �} =  and sup{‖xα – sup{xα :
α ∈ �}‖ : α ∈ �} = .
From now on, we assume that E is a normed space, P ⊂ E is a solid cone (that is, int(P) �=

∅), and 	 is a partial ordering with respect to P.
Let X be a nonempty set. A mapping d : X ×X → E is called cone metric [] on X if the

following conditions are satisfied:
() θ 	 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,
() d(x, y) = d(y,x) for all x, y ∈ X ,
() d(x, y) 	 d(x, z) + d(z, y) for all x, y, z ∈ X .
Let (X,d) be a cone metric space, and let {xn} ⊂ X be a sequence. Then
{xn} is convergent [] to a point x ∈ X (denoted by limn→∞ xn = x or xn → x) if for any

c ∈ int(P), there exists N such that for all n >N , d(xn,x)� c.
{xn} is Cauchy [] if for any c ∈ int(P), there exists N such that for all n,m > N ,

d(xn,xm) � c. A cone metric space (X,d) is called complete [] if every Cauchy sequence
is convergent.

Remark . () If limn→∞ d(xn,x) = θ , then limn→∞ xn = x. The converse is true if E is a
normed space and P is a normal cone.
() If limn,m→∞ d(xn,xm) = θ , then {xn} is a Cauchy sequence in X. If E is a normed

space and P is a normal cone, then {xn} is a Cauchy sequence in X if and only if
limn,m→∞ d(xn,xm) = θ .

We denote by N(X) (resp. B(X), C(X), CB(X)) the set of nonempty (resp. bounded,
closed, closed and bounded) subsets of a cone metric space or a metric space.
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The following definitions are found in [].
Let s(p) = {q ∈ E : p 	 q} for p ∈ E, and s(a,B) =

⋃
b∈B s(d(a,b)) for a ∈ X and B ∈N(X).

For A,B ∈ B(X), we denote

s(A,B) =
(⋂
a∈A

s(a,B)
)

∩
(⋂
b∈B

s(b,A)
)
.

Lemma . ([]) Let (X,d) be a cone metric space, and let P ⊂ E be a cone.
() Let p,q ∈ E. If p	 q, then s(q) ⊂ s(p).
() Let x ∈ X and A ∈N(X). If θ ∈ s(x,A), then x ∈ A.
() Let q ∈ P and let A,B ∈ B(X) and a ∈ A. If q ∈ s(A,B), then q ∈ s(a,B).

Remark . Let (X,d) be a cone metric space. If E = R and P = [,∞), then (X,d) is a
metric space. Moreover, for A,B ∈ CB(X), H(A,B) = inf s(A,B) is the Hausdorff distance
induced by d.

Remark . Let (X,d) be a cone metric space. Then s({a}, {b}) = s(d(a,b)) for a,b ∈ X.

Lemma . ([, ]) If un ∈ E with un → θ , then for each c ∈ int(P) there exists N such
that un � c for all n >N.

2 Fixed-point theorems for multivalued contractive mappings
Let (X,d) be a cone metric space, and let A ∈N(X).
A function h : X → P – {∅} defined by h(x) = s(x,A) is called sequentially lower semi-

continuous if for any c ∈ int(P), there exists n ∈N such that h(xn) ⊂ h(x) – c for all n≥ n,
whenever limn→∞ xn = x for any sequence {xn} ⊂ X and x ∈ X.
Let T : X → C(X) be a multivalued mapping. We define a function h : X → P – {∅} as

h(x) = s(x,Tx).
For a b ∈ (, ], let Jxb = {y ∈ Tx : s(x,Tx)⊂ s(bd(x, y))}.

Theorem . Let (X,d) be a complete cone metric space and let T : X → C(X) be a mul-
tivalued map. If there exists a constant c ∈ (, ) such that for any x ∈ X there exists y ∈ Jxb
satisfying

cd(x, y) ∈ s(y,Ty) (.)

then T has a fixed point in X provided c < b and h is sequentially lower semicontinuous.

Proof Let x ∈ X. Then there exists x ∈ Jxb such that cd(x,x) ∈ s(x,Tx). For x, there
exists x ∈ Jxb such that cd(x,x) ∈ s(x,Tx).
Continuing this process, we can find a sequence {xn} ⊂ X such that

xn+ ∈ Jxnb

and

cd(xn,xn+) ∈ s(xn+,Txn+) (.)

for all n = , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2012/1/133
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We now show that {xn} is a Cauchy sequence in X.
Since xn+ ∈ Jxn+b , s(xn+,Txn+) ⊂ s(bd(xn+,xn+)).
From (.), we have cd(xn,xn+) ∈ s(bd(xn+,xn+)). Thus, bd(xn+,xn+) 	 cd(xn,xn+).

Hence,

d(xn+,xn+) 	 kd(xn,xn+)

for all n = , , . . . , where k = c
b .

So we have

d(xn,xn+) 	 kd(xn–,xn) 	 kd(xn–,xn–) 	 · · · 	 knd(x,x).

Form > n, we have

d(xn,xm)

	 d(xn,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

	 (
kn + kn+ + · · · + km–)d(x,x) 	 kn

 – k
d(x,x).

By Lemma ., {xn} is a Cauchy sequence in X. It follows from the completeness of X
that there exists z ∈ X such that limn→∞ xn = z.
We now show that z ∈ Tz.
Suppose that z �∈ Tz.
Since Tz is closed, there exists c ∈ int(P) such that d(z, y) � c implies y �∈ Tz.
But since h is sequentially lower semicontinuous, there existsN such that d(xN ,xN+) �

c
 and s(xN ,TxN ) ⊂ s(z,Tz) – c

 .
Thus, there exists y ∈ Tz such that d(z, y)– c

 	 d(xN ,xN+). Hence, d(z, y) 	 d(xN ,xN+)+
c
 � c, which is a contradiction. �

Remark . By Remark ., Theorem . generalizes Theorem . ([, Theorem .]).

Corollary . Let (X,d) be a complete cone metric space and let T : X → C(X) be a mul-
tivalued map. If there exists a constant c ∈ (, ) such that for any x ∈ X, y ∈ Tx

cd(x, y) ∈ s(y,Ty)

then T has a fixed point in X provided h is sequentially lower semicontinuous.

By Lemma .(), we have the following result, which is Nadler’s fixed-point theorem in
the cone metric space.

Corollary . Let (X,d) be a complete cone metric space, and let T : X → CB(X) be a
multivalued map. If there exists a constant c ∈ (, ), such that

cd(x, y) ∈ s(Tx,Ty)

for all x ∈ X, y ∈ Tx, then T has a fixed point in X provided h is sequentially lower semi-
continuous.
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By Remark ., we have the following corollaries.

Corollary . ([]) Let (X,d) be a complete metric space and let T : X → C(X) be a mul-
tivalued map. If there exists a constant c ∈ (, ) such that

d(y,Ty) ≤ cd(x, y)

for all x ∈ X, y ∈ Tx, then T has a fixed point in X provided h is sequentially lower semi-
continuous.

Corollary . Let (X,d) be a complete metric space and let T : X → CB(X) be a multival-
ued map. If there exists a constant c ∈ (, ) such that

H(Tx,Ty) ≤ cd(x, y)

for all x ∈ X, y ∈ Tx, then T has a fixed point in X provided h is sequentially lower semi-
continuous.

The following example illustrates our main theorem.

Example . LetX = {f ∈ L[, ] : f (x)≥ }, E = C[, ] and P = {f ∈ E : f ≥  a.e.}. Define
d : X×X → E by d(f , g)(t) =

∫ t
 |f (x) – g(x)|dx, where ≤ t ≤ . Then d is a complete cone

metric on X. Consider a mapping T : X → CB(X) defined by

(Tf )(x) =
{
a(f ),a(f ) + f

}
,

where a(f ) ∈ X is defined by a(f )(x) =
∫ x
 y(f (y) + )dy.

Obviously, h(f ) = s(f ,Tf ) is sequentially lower semicontinuous.
For any f ∈ X, we can prove a(f ) ∈ J f . To see this, we compute for  ≤ t ≤ 

d
(
f ,a(f ) + f

)
(t)

=
∫ t



∣∣a(f )(x) + f (x)
∣∣dx

=
∫ t



(
a(f )(x) + f (x)

)
dx

≥
∫ t



(
a(f )(x) – f (x)

)
dx

= d
(
f ,a(f )

)
(t).

Since (Tf )(x) = {a(f ),a(f ) + f }, we have s(f ,Tf ) ⊂ s(d(f ,a(f ))), and hence we obtain
a(f ) ∈ J f .
Put a(f ) = g . Then we have a(a(f )) = a(g) ∈ T(a(f )) and for ≤ t ≤ 

d
(
a(f ),a

(
a(f )

))
(t)

= d
(
a(f ),a(g)

)
(t)
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=
∫ t



∣∣a(f )(x) – a(g)(x)
∣∣dx

=
∫ t



∣∣∣∣
∫ x


y
(
f (y) + 

)
dy –

∫ x


y
(
g(y) + 

)
dy

∣∣∣∣dx

=
∫ t



∣∣∣∣
∫ x


y
(
f (y) – g(y)

)
dy

∣∣∣∣dx

≤
∫ t



∫ x


y
∣∣f (y) – g(y)

∣∣dydx

=
∫ t



∫ t

y
y
∣∣f (y) – g(y)

∣∣dxdy

=
∫ t


(t – y)y

∣∣f (y) – g(y)
∣∣dy

≤
∫ t



t


∣∣f (y) – g(y)

∣∣dy

≤ 


∫ t



∣∣f (y) – g(y)
∣∣dy

=


d(f , g)(t).

Thus, we have g ∈ J f , and

d(f , g) ∈ s(g,Tg).

Therefore, all conditions of Theorem . are satisfied and T has a fixed point f *(x) =
e x

 – .

3 Fixed-point theorems for multivalued Caristi typemappings
Let (X,d) be a cone metric space with a preordering �.
A sequence {xn} of points in X is called �-decreasing if xn+ � xn for all n ≥ . The set

S(x) = {y ∈ X : y� x} is �-complete if every decreasing Cauchy sequence in S(x) converges
in it.
A function f : X → E is called lower semicontinuous from above if, for every sequence

{xn} ⊂ X conversing to some point x ∈ X and satisfying fxn+ 	 fxn for all n ∈ N, we have
fx 	 limn→∞ fxn.

Lemma. Let (X,d) be a conemetric space, and let T : X →N(X) be amultivaluedmap-
ping. Suppose that φ : X → E is a function and η : P → P is a nondecreasing, continuous,
and subadditive function such that η(t) =  if and only if t = .
We define a relation 	η on X as follows:

y	η x if and only if φ(x) – φ(y) ∈ s
(
η
(
d(x, y)

))
. (.)

Then 	η is a partial order on X.

Proof The proof follows by using the cone metric axioms, properties () and () for the
cone, and (.). �

Lemma . ([]) Let P ⊂ E be a strongly minihedral and continuous cone, and let (X,�)
be a preordered set. Suppose that a mapping ψ : X → E satisfies the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2012/1/133
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() x � y and x �= y imply ψ(x)≺ ψ(y);
() for every �-decreasing sequence {xn} ⊂ X , there exists y ∈ X such that y � xn for all

n ∈N;
() ψ is bounded from below.
Then, for each x ∈ X, S(x) has a minimal element in S(x), where S(x) = {y ∈ X : y � x}.

Theorem . Let (X,d) be a cone metric space such that P is strongly minihedral and
continuous, and let T : X →N(X) be a multivalued mapping and φ : X → E be a mapping
bounded from below. Suppose that, for each x ∈ X, S(x) = {y ∈ X : y 	η x} is 	η-complete,
where 	η is a partial ordering on X defined as (.).
If for any x ∈ X, there exists y ∈ Tx satisfying

φ(x) – φ(y) ∈ s
(
η
(
d(x, y)

))
,

then T has a fixed point in X.

Proof We define a partial ordering 	η on X as (.).
If x	η y and x �= y, then  ≺ d(y,x) and φ(y) –φ(x) ∈ s(η(d(y,x))), and so ≺ η(d(y,x))	

φ(y) – φ(x). Hence, φ(x)≺ φ(y).
Let {xn} be a 	η-decreasing sequence in X. Then xn+ ∈ S(xn) for all n≥ , and {φ(xn)} is

bounded from below, because φ is bounded from below. Hence, {φ(xn)} is bounded. Since
P is strongly minihedral, u = infφ(xn) exists in E. Also, since P is continuous, inf{‖φ(xn) –
u‖ : n ∈N} = . Hence, limn→∞ φ(xn) = u and u	 φ(xn) for all n≥ .
For m > n, since xm 	η xn, φ(xn) – φ(xm) ∈ s(η(d(xn,xm))). Hence η(d(xn,xm)) 	

φ(xn) – φ(xm) 	 φ(xn) – u. Thus, limn,m→∞ η(d(xn,xm)) = θ . Since η is continuous,
η(limn,m→∞ d(xn,xm)) = θ . So limn,m→∞ d(xn,xm) = θ .
Hence, {xn} is a 	η-decreasing Cauchy sequence in S(x). Since S(xn) is 	η-complete

and xn+ ∈ S(xn) for all n≥ , there exists x ∈ S(xn) such that limn→∞ xn = x. Thus, x 	η xn
for all n ≥ .
By Lemma ., S(x) has a minimal element x in S(x). By assumption, there exists y ∈

Tx such that φ(x) – φ(y) ∈ s(η(d(x, y))). Hence, y 	η x. Since x is minimal element in
S(x), y = x. Thus, x ∈ Tx. �

Corollary . Let (X,d) be a cone metric space such that P is strongly minihedral and
continuous, and let T : X →N(X) be a multivalued mapping and φ : X → E be a mapping
bounded from below. Suppose that, for each x ∈ X, S(x) = {y ∈ X : y 	η x} is 	η-complete,
where 	η is a partial ordering on X defined as (.).
If for any x ∈ X and for any y ∈ Tx,

φ(x) – φ(y) ∈ s
(
η
(
d(x, y)

))
,

then there exists x ∈ X such that Tx = {x}.

Theorem . Let (X,d) be a complete cone metric space such that P is strongly minihedral
and continuous. Suppose that T : X → N(X) is a multivalued mapping and φ : X → E is
lower semicontinuous from above and bounded from below.

http://www.fixedpointtheoryandapplications.com/content/2012/1/133
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If for any x ∈ X, there exists y ∈ Tx satisfying

φ(x) – φ(y) ∈ s
(
η
(
d(x, y)

))
,

then T has a fixed point in X.

Proof Wedefine a partial ordering	η onX as (.). It suffices to show that, for each x ∈ X,
S(x) is 	η-complete.
Let x ∈ X be a fixed, and let {xn} be a 	η-decreasing Cauchy sequence in S(x). Then

it is a 	η-decreasing Cauchy sequence in X. Hence, φ(xn+) 	 φ(xn) for all n ∈ N. Since X
is complete, there exists x ∈ X such that limn→∞ xn = x. Since φ is lower semicontinuous
from above, φ(x) 	 limn→∞ φ(xn). Thus, φ(x) 	 φ(xn) for all n ∈ N. Since xm 	η xn for
m > n, we obtain

φ(xn) – φ(xm) ∈ s
(
η
(
d(xn,xm)

))
.

Hence,

η
(
d(xn,xm)

) 	 φ(xn) – φ(xm) 	 φ(xn) – φ(x).

Letting m → ∞ in above inequality, we have η(d(xn,x)) 	 φ(xn) – φ(x) because η and d
are continuous. Hence, φ(xn) – φ(x) ∈ s(η(d(xn,x))).
Thus, we have x 	η xn, and so x 	η xn 	η x. Hence, x ∈ S(x), and hence S(x) is 	η-

complete. From Theorem ., T has a fixed point in X. �

Corollary . Let (X,d) be a complete conemetric space such that P is stronglyminihedral
and continuous. Suppose that T : X → N(X) is a multivalued mapping and φ : X → E is
lower semicontinuous from above and bounded from below.
If for any x ∈ X and for any y ∈ Tx,

φ(x) – φ(y) ∈ s
(
η
(
d(x, y)

))
,

then there exists x ∈ X such that Tx = {x}.

We now give an example to support Theorem ..

Example . Let X = L∞[, ], and let E = R
 and P = {(x, y) : x, y ≥ }. We define d : X ×

X → E by d(f , g) = (‖f – g‖∞,‖f – g‖p), where  ≤ p < ∞. Then (X,d) is a complete cone
metric space, and P is strongly minihedral and continuous.
Let η(s) = s for all s ∈ P.
We define a multivalued mapping T : X →N(X) by

Tf =
{
g ∈ X : –f (x)≤ g(x)≤ 


f (x) if f (x)≥  and



f (x)≤ g(x) ≤ –f (x) if f (x) < 

}

http://www.fixedpointtheoryandapplications.com/content/2012/1/133
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and we define a mapping φ : X → P by

φ(f ) =
(‖f ‖∞,‖f ‖p

)
.

Then φ is lower semicontinuous from above and bounded from below.
For any f ∈ X, put g(x) = 

 f (x) ∈ Tf . Then we have η(d(f , g)) = ( ‖f ‖∞, ‖f ‖p) = φ(f ) –
φ(g), and so φ(f ) – φ(g) ∈ s(η(d(f , g))).
Thus, all conditions of Theorem . are satisfied and T has a fixed point f *(x) = .

Remark . Theorem . (resp. Corollary .) is a generalization of Theorem . (resp.
Corollary .) in [], and also results in [, ] to the case of cone metric spaces.
If η(t) = t in Theorem . (resp. Corollary .), then we have generalizations of the re-

sults in [, , ] to the case of cone metric spaces.
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