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1 Introduction
In what follows, we always assume that E is a Banach space with the dual space E*. Let
C be a nonempty, closed, and convex subset of E. We use the symbol J to stand for the
normalized duality mapping from E to E* defined by

Jx =
{
f * ∈ E* :

〈
x, f *

〉
= ‖x‖ = ∥∥f *∥∥}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing of elements between E and E*.
LetUE = {x ∈ E : ‖x‖ = } be the unit sphere of E. E is said to be strictly convex if ‖ x+y

 ‖ < 
for all x, y ∈UE with x �= y. It is said to be uniformly convex if for any ε ∈ (, ] there exists
δ >  such that for any x, y ∈ UE ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said
to be smooth provided limt→

‖x+ty‖–‖x‖
t exists for all x, y ∈UE . It is also said to be uniformly

smooth if the limit is attained uniformly for all x, y ∈UE .
It is well known that if E* is strictly convex, then J is single valued; if E* is reflexive,

and smooth, then J is single valued and demicontinuous; for more details, see [] and the
references therein.
It is also well known that ifD is a nonempty, closed, and convex subset of a Hilbert space

H , and PD :H →D is the metric projection fromH ontoD, then PD is nonexpansive. This
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fact actually characterizes Hilbert spaces; and consequently, it is not available in more
general Banach spaces. In this connection, Alber [] introduced a generalized projection
operator �D in Banach spaces which is an analogue of the metric projection in Hilbert
spaces.
Let E be a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

Notice that, in a Hilbert space H , (.) is reduced to φ(x, y) = ‖x – y‖ for all x, y ∈ H . The
generalized projection �C : E → C is a mapping that assigns to an arbitrary point x ∈ E,
the minimum point of the functional φ(x, y); that is, �Cx = x̄, where x̄ is the solution to
the following minimization problem:

φ(x̄,x) =min
y∈C φ(y,x).

The existence and uniqueness of the operator �C follow from the properties of the func-
tional φ(x, y) and the strict monotonicity of the mapping J ; see, for example, [–]. In
Hilbert spaces, �C = PC . It is obvious from the definition of the function φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E, (.)

and

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)

Recall the following.
() A point p in C is said to be an asymptotic fixed point of T if C contains a sequence

{xn} which converges weakly to p such that limn→∞ ‖xn –Txn‖ = . The set of asymptotic
fixed points of T will be denoted by F̃(T).
() T is said to be relatively nonexpansive if

F̃(T) = F(T) �= ∅, and φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

() T is said to be relatively asymptotically nonexpansive if

F̃(T) = F(T) �= ∅, and φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.

Remark . The class of relatively asymptotically nonexpansive mappings was first con-
sidered in Su and Qin []; see also [, ] and the references therein.

() T is said to be quasi-φ-nonexpansive if

F(T) �= ∅, and φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).
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() T is said to be asymptotically quasi-φ-nonexpansive if there exists a sequence {μn} ⊂
[,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, and φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings were first considered in Zhou, Gao, and Tan []; see also
[–].

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptoti-
cally quasi-φ-nonexpansive mappings are more general than the class of relatively non-
expansive mappings and the class of relatively asymptotically nonexpansive mappings.
Quasi-φ-nonexpansive mappings and asymptotically quasi-φ-nonexpansive do not re-
quire F(T) = F̃(T).

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansivemappings in Banach spaces,
respectively.

()T is said to be a strict quasi-φ-pseudocontraction if F(T) �= ∅, and a constant κ ∈ [, )
such that

φ(p,Tx) ≤ φ(p,x) + κφ(x,Tx), ∀x ∈ C,p ∈ F(T).

Remark . The class of strict quasi-φ-pseudocontractions was first considered in Zhou
and Gao []; see also Qin, Wang, and Cho [].

() T is said to be an asymptotically strict quasi-φ-pseudocontraction if F(T) �= ∅, and
there exists a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ and a constant κ ∈ [, )
such that

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x) + κφ
(
x,Tnx

)
, ∀x ∈ C,p ∈ F(T).

Remark . The class of asymptotically strict quasi-φ-pseudocontractions was first con-
sidered in Qin, Wang, and Cho [].

Remark . The class of strict quasi-φ-pseudocontractions and the class of asymp-
totically strict quasi-φ-pseudocontractions are generalizations of the class of asymp-
totically strict quasi-pseudocontractions and the class of asymptotically strict quasi-
pseudocontractions in Banach spaces, respectively.

The following example can be found in [].
Let E = l := {x = {x,x, . . .} : ∑∞

n= |xn| < ∞} and BE be the closed unit ball in E. Define
a mapping T : BE → BE by

T(x,x, . . .) =
(
,x ,ax,ax, . . .

)
,
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where {ai} is a sequence of real numbers such that a > ,  < aj < , where i �= , and∏∞
i= aj =


 . Then T is an asymptotically strict quasi-φ-pseudocontraction.

() T is said to be asymptotically regular on C if, for any bounded subset K of C,

lim
n→∞ sup

x∈K

{∥∥Tn+x – Tnx
∥∥}

= .

During the past five decades, many famous existence theorems of fixed points of nonlin-
ear mappings were established. However, from the standpoint of real world applications,
it is not only to know the existence of fixed points of nonlinear mappings, but also to be
able to construct an iterative process to approximate their fixed points. The simplest and
oldest iterative algorithm is the well-known Picard iterative algorithm which generates an
iterative sequence from an arbitrary initial x in the following manner:

xn+ = Txn, n≥ ,

where T is somemapping. The Picard iterative algorithm is a beautiful tool in the study of
contractions. Awell-known result is the Banach contraction principle. The class of nonex-
pansive mappings as a class of important nonlinear mappings finds many applications in
signal processing, image reconstruction and so on.However, the Picard iterative algorithm
fails to converge fixed points of nonexpansive mappings even when the fixed point set is
not empty. For overcoming this, a Mann iterative algorithm has been studied extensively
recently. The Mann iterative algorithm generates an iterative sequence for an arbitrary
initial x in the following manner:

xn+ = αnTxn + ( – αn)xn, n ≥ ,

where T is some mapping and {αn} is some control sequence in (, ). The classic conver-
gence theorem for fixed points of nonexpansive mappings based on the Mann iterative
algorithm was established by Reich [] in Banach spaces; for more details, see [] and
the reference therein.
It is known that the Mann iterative algorithm only has weak convergence even for non-

expansive mappings in infinite-dimensional Hilbert spaces; for more details, see [] and
the reference therein. To obtain the weak convergence of the Mann iterative algorithm,
so-called hybrid projection algorithms have been considered; for more details, see [–
] and the references therein.
In [], Marino and Xu established a strong convergence theorem for fixed points

of strict pseudocontraction based on hybrid projection algorithms in Hilbert spaces.
Recently, Zhou and Gao [] studied a new projection algorithm for strict quasi-φ-
pseudocontractions and obtained a strong convergence theorem; formore details, see []
and the reference therein.Quite recently, Qin,Wang, andCho [] proved a strong conver-
gence theorem for fixed points of an asymptotically strict quasi-φ-pseudocontraction in
a uniformly convex and uniformly smooth Banach space based on the results announced
in Zhou and Gao []; for more details, see [] and the reference therein.
In this paper, motivated by the results announced in Zhou and Gao [] and Qin,Wang,

and Cho [], we consider asymptotically strict quasi-φ-pseudocontractions.We establish
a strong convergence theorem in a reflexive, strictly convex, and smooth Banach space
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such that both E and E* have the Kadec-Klee property to relax the restriction imposed
on the space in Qin, Wang, and Cho’s results. The results presented in this paper mainly
improve the corresponding results announced in Zhou and Gao [] and Qin, Wang, and
Cho [].
To prove our convergence theorem, we need the following lemmas:

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space, C a
nonempty closed convex subset of E, and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space. Then we
have the following:

φ(x, y) =  ⇔ x = y, ∀x, y ∈ E.

2 Main results
Theorem. Let E be a reflexive, strictly convex, and smooth Banach space such that both
E and E* have the Kadec-Klee property. Let C be a nonempty, closed, and convex subset
of E. Let T : C → C be a closed and asymptotically strict quasi-φ-pseudocontraction with
a sequence {μn} ⊂ [,∞) such that μn →  as n → ∞. Assume that T is asymptotically
regular on C and F(T) is nonempty and bounded. Let {xn} be a sequence generated in the
following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

Cn+ = {u ∈ Cn : φ(xn,Tnxn) ≤ 
–κ

〈xn – u, Jxn – JTnxn〉 +μn
Mn
–κ

},
xn+ = �Cn+x, ∀n≥ ,

(ϒ)

where Mn = sup{φ(p,xn) : p ∈ F(T)}. Then the sequence {xn} converges strongly to x̄ =
�F(T)x.

Proof First, we show that F(T) is closed and convex. The closedness of F(T) follows from
the closedness of T . Next, we show that F(T) is convex. Let p,p ∈ F(T), and pt = tp +
(– t)p, where t ∈ (, ). We see that pt = Tpt . Indeed, we see from the definition of T that

φ
(
p,Tnpt

) ≤ ( +μn)φ(p,pt) + κφ
(
pt ,Tnpt

)
, (.)

and

φ
(
p,Tnp

) ≤ ( +μn)φ(p,p) + κφ
(
pt ,Tnpt

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/137
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In view of (.), we obtain that

φ
(
p,Tnpt

)
= φ(p,pt) + φ

(
pt ,Tnpt

)
+ 

〈
p – pt , Jpt – J

(
Tnpt

)〉
, (.)

and

φ
(
p,Tnpt

)
= φ(p,pt) + φ

(
pt ,Tnpt

)
+ 

〈
p – pt , Jpt – J

(
Tnpt

)〉
. (.)

It follows from (.), (.), (.), and (.) that

φ
(
pt ,Tnpt

) ≤ μn

 – κ
φ(p,pt) +


 – κ

〈
pt – p, Jpt – J

(
Tnpt

)〉
, (.)

and

φ
(
pt ,Tnpt

) ≤ μn

 – κ
φ(p,pt) +


 – κ

〈
pt – p, Jpt – J

(
Tnpt

)〉
. (.)

Multiplying t and ( – t) on both sides of (.) and (.) respectively yields that

φ
(
pt ,Tnpt

) ≤ tμn

 – κ
φ(p,pt) +

( – t)μn

 – κ
φ(p,pt).

It follows that

lim
n→∞φ

(
pt ,Tnpt

)
= .

In light of (.), we arrive at

lim
n→∞

∥∥Tnpt
∥∥ = ‖pt‖. (.)

It follows that

lim
n→∞

∥∥J(Tnpt
)∥∥ = ‖Jpt‖. (.)

Since E* is reflexive, we may, without loss of generality, assume that J(Tnpt) ⇀ e* ∈ E*. In
view of the reflexivity of E, we have J(E) = E*. This shows that there exists an element e ∈ E
such that Je = e*. It follows that

φ
(
pt ,Tnpt

)
= ‖pt‖ – 

〈
pt , J

(
Tnpt

)〉
+

∥∥Tnpt
∥∥

= ‖pt‖ – 
〈
pt , J

(
Tnpt

)〉
+

∥∥J(Tnpt
)∥∥.

Taking lim infn→∞ on both sides of the equality above, we obtain that

 ≥ ‖pt‖ – 
〈
pt , e*

〉
+

∥∥e*∥∥

= ‖pt‖ – 〈pt , Je〉 + ‖Je‖

= ‖pt‖ – 〈pt , Je〉 + ‖e‖

= φ(pt , e).
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This implies from Lemma . that pt = e, that is, Jpt = e*. It follows that J(Tnpt) ⇀ Jpt ∈ E*.
In view of the Kadec-Klee property of E*, we obtain from (.) that

lim
n→∞

∥∥J(Tnpt
)
– Jpt

∥∥ = .

Since J– : E* → E is demicontinuous, we see that Tnpt ⇀ pt . By virtue of the Kadec-Klee
property of E, we see from (.) that Tnpt → pt as n → ∞. Since T is asymptotically
regular, we see that

TTnpt = Tn+pt → pt ,

as n → ∞. In view of the closedness of T , we can obtain that pt ∈ F(T). This shows that
F(T) is convex. This completes the proof that F(T) is closed and convex.
Next, we show that Cn is closed and convex for all n ≥ . It is not hard to see that Cn

is closed for each n ≥ . Therefore, we only show that Cn is convex for each n ≥ . It is
obvious that C = C is convex. Suppose that Ch is convex for some h ∈ N. Next, we show
that Ch+ is also convex for the same h. Let a,b ∈ Ch+ and c = ta+ ( – t)b, where t ∈ (, ).
It follows that

φ
(
xh,Thxh

) ≤ 
 – κ

〈
xh – a, Jxh – JThxh

〉
+μh

Mh

 – κ

and

φ
(
xh,Thxh

) ≤ 
 – κ

〈
xh – b, Jxh – JThxh

〉
+μh

Mh

 – κ
,

where a,b ∈ Ch. From the above two inequalities, we can get that

φ
(
xh,Thxh

) ≤ 
 – κ

〈
xh – c, Jxh – JThxh

〉
+μh

Mh

 – κ
,

where c ∈ Ch. It follows that Ch+ is closed and convex. This completes the proof that Cn

is closed and convex.
Next, we show that F(T)⊂ Cn. It is obvious that F(T) ⊂ C = C. Suppose that F(T) ⊂ Ch

for some h ∈N. For any z ∈ F(T)⊂ Ch, we see that

φ
(
z,Thxh

) ≤ ( +μh)φ(z,xh) + κφ
(
xh,Thxh

)
. (.)

On the other hand, we obtain from (.) that

φ
(
z,Thxh

)
= φ(z,xh) + φ

(
xh,Thxh

)
+ 

〈
z – xh, Jxh – JThxh

〉
. (.)

Combining (.) with (.), we arrive at

φ
(
xh,Thxh

) ≤ μh

 – κ
φ(z,xh) +


 – κ

〈
xh – z, Jxh – JThxh

〉

≤ μh
Mh

 – κ
+


 – κ

〈
xh – z, Jxh – JThxh

〉
,
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which implies that z ∈ Ch+. This shows that F(T) ⊂ Ch+. This completes the proof that
F(T)⊂ Cn.
Next, we show that {xn} is a convergent sequence which strongly converges to x̄, where

x̄ ∈ F(T). Since xn = �Cnx, we see that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈ Cn.

It follows from F(T) ⊂ Cn that

〈xn –w, Jx – Jxn〉 ≥ , ∀z′ ∈ F(T). (.)

By virtue of Lemma ., we obtain that

φ(xn,x) = φ(�Cnx,x)

≤ φ(�F(T)x,x) – φ(�F(T)x,xn)

≤ φ(�F(T)x,x).

This implies that the sequence {φ(xn,x)} is bounded. It follows from (.) that the se-
quence {xn} is also bounded. Since the space is reflexive, we may assume that xn ⇀ x̄.
Since Cn is closed, and convex, we see that x̄ ∈ Cn. On the other hand, we see from the
weakly lower semicontinuity of the norm that

φ(x̄,x) = ‖x̄‖ – 〈x̄, Jx〉 + ‖x‖

≤ lim inf
n→∞

(‖xn‖ – 〈xn, Jx〉 + ‖x‖
)

= lim inf
n→∞ φ(xn,x)

≤ lim sup
n→∞

φ(xn,x)

≤ φ(x̄,x),

which implies that φ(xn,x) → φ(x̄,x) as n → ∞. Hence, ‖xn‖ → ‖x̄‖ as n → ∞. In
view of the Kadec-Klee property of E, we see that xn → x̄ as n → ∞. Notice that xn+ =
�⋂

i∈
 F(Ti)x ∈ Cn+ ⊂ Cn. It follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Since xn = �Cnx, and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, we arrive at φ(xn,x) ≤ φ(xn+,x),
∀n≥ . This shows that {φ(xn,x)} is nondecreasing. It follows from the boundedness that
limn→∞ φ(x,x) exists. It follows that

lim
n→∞φ(xn+,xn) = . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/137
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By virtue of xn+ = �Cn+x ∈ Cn+, we find that

φ
(
xn,Tnxn

) ≤ 
 – κ

〈
xn – xn+, Jxn – JTnxn

〉
+μn

Mn

 – κ
.

It follows that

lim
n→∞φ

(
xn,Tnxn

)
= . (.)

In view of (.), we see that

lim
n→∞

(‖xn‖ – ∥∥Tnxn
∥∥)

= .

Since xn → x̄, we find that

lim
n→∞

∥∥Tnxn
∥∥ = ‖x̄‖. (.)

It follows that

lim
n→∞

∥∥J(Tnxn
)∥∥ = ‖Jx̄‖. (.)

This implies that {J(Tnxn)} is bounded. Note that both E and E* are reflexive. We may
assume that J(Tnxn) ⇀ y* ∈ E*. In view of the reflexivity of E, we see that there exists an
element y ∈ E such that Jy = y*. It follows that

φ
(
xn,Tnxn

)
= ‖xn‖ – 

〈
xn, J

(
Tnxn

)〉
+

∥∥Tnxn
∥∥

= ‖xn‖ – 
〈
xn, J

(
Tnxn

)〉
+

∥∥J(Tnxn
)∥∥.

Taking lim infn→∞ on both sides of the equality above yields that

 ≥ ‖x̄‖ – 
〈
x̄, y*

〉
+

∥∥y*∥∥

= ‖x̄‖ – 〈x̄, Jy〉 + ‖Jy‖

= ‖x̄‖ – 〈x̄, Jy〉 + ‖y‖

= φ(x̄, y).

That is, x̄ = y, which in turn implies that y* = Jx̄. It follows that J(Tnxn) ⇀ Jx̄ ∈ E*. Since
E* enjoys the Kadec-Klee property, we obtain from (.) that limn→∞ J(Tnxn) = Jx̄. Since
J– : E* → E is demicontinuous, we find that Tnxn ⇀ x̄. This implies, from (.) and the
Kadec-Klee property of E, that limn→∞ Tnxn = x̄. Notice that

∥∥Tn+xn – x̄
∥∥ ≤ ∥∥Tn+xn – Tnxn

∥∥ +
∥∥Tnxn – x̄

∥∥.
It follows from the asymptotic regularity of T that

lim
n→∞

∥∥Tn+xn – x̄
∥∥ = ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/137
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that is, TTnxn – x̄ →  as n→ ∞. It follows from the closedness of T that Tx̄ = x̄.
Finally, we show that x̄ = �F(T)x. Letting n→ ∞ in (.), we arrive at

〈x̄ –w, Jx – Jx̄〉 ≥ , ∀z′ ∈ F(T).

It follows from Lemma . that x̄ = �F(T)x. The proof of Theorem . is completed. �

Remark . Comparing with the results in Zhou and Gao [], the mapping was
generalized from strict quasi-φ-pseudocontractions to asymptotically strict quasi-φ-
pseudocontractions.

Remark . Comparing with the results in Qin, Wang, and Cho [], the restriction im-
posed on the space was relaxed from uniform convexness to strict convexness.

Since the class of asymptotically strict quasi-φ-pseudocontractions includes the class
asymptotically quasi-φ-nonexpansive mappings as a special case, we find the following
subresults from Theorem ..

Corollary . Let E be a reflexive, strictly convex, and smooth Banach space such that
both E and E* have the Kadec-Klee property. Let C be a nonempty, closed, and convex subset
of E. Let T : C → C be a closed and asymptotically quasi-φ-nonexpansive mapping with
a sequence {μn} ⊂ [,∞) such that μn →  as n → ∞. Assume that T is asymptotically
regular on C, and F(T) is nonempty and bounded. Let {xn} be a sequence generated in the
following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = �Cx,

Cn+ = {u ∈ Cn : φ(xn,Tnxn) ≤ 〈xn – u, Jxn – JTnxn〉 +μnMn},
xn+ = �Cn+x, ∀n≥ ,

where Mn = sup{φ(p,xn) : p ∈ F(T)}. Then the sequence {xn} converges strongly to x̄ =
�F(T)x.

In Hilbert spaces, asymptotically strict quasi-φ-pseudocontractions are reduced to
asymptotically strict quasi-pseudocontractions. The following results are not hard to de-
rive.

Corollary . Let C be a nonempty, closed, and convex subset of a Hilbert space E. Let
T : C → C be a closed and asymptotically strict quasi-pseudocontraction with a sequence
{μn} ⊂ [,∞) such that μn →  as n → ∞. Assume that T is asymptotically regular on
C and F(T) is nonempty and bounded. Let {xn} be a sequence generated in the following
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manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = PCx,

Cn+ = {u ∈ Cn : ‖xn – Tnxn‖ ≤ 
–κ

〈xn – u,xn – Tnxn〉 +μn
Mn
–κ

},
xn+ = PCn+x, ∀n≥ ,

where Mn = sup{‖p – xn‖ : p ∈ F(T)}. Then the sequence {xn} converges strongly to x̄ =
PF(T)x.

For strict quasi-pseudocontractions, we have the following.

Corollary . Let C be a nonempty, closed, and convex subset of a Hilbert space E. Let
T : C → C be a closed and strict quasi-pseudocontraction with a nonempty fixed point set.
Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

x = PCx,

Cn+ = {u ∈ Cn : ‖xn – Txn‖ ≤ 
–κ

〈xn – u,xn – Txn〉},
xn+ = PCn+x, ∀n≥ .

Then the sequence {xn} converges strongly to x̄ = PF(T)x.
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