## RESEARCH

### Fixed Point Theory and Applications a SpringerOpen Journal

**Open Access** 

# Common fixed points of Ćirić-type contractive mappings in two ordered generalized metric spaces

M Abbas<sup>1</sup>, YJ Cho<sup>2</sup> and T Nazir<sup>1\*</sup>

<sup>\*</sup>Correspondence: talat@lums.edu.pk <sup>1</sup>Department of Mathematics, Lahore University of Management Sciences, Lahore, 54792, Pakistan <sup>2</sup>Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju, 660-701, Korea

### Abstract

In this paper, using the setting of two ordered generalized metric spaces, a unique common fixed point of four mappings satisfying a generalized contractive condition is obtained. We also present an example to demonstrate the results presented herein. **MSC:** 54H25; 47H10; 54E50

**Keywords:** weakly compatible mappings; compatible mappings; dominated mappings; common fixed point; partially ordered set; generalized metric space

### 1 Introduction and preliminaries

The study of a unique common fixed point of given mappings satisfying certain contractive conditions has been at the center of rigorous research activity. Mustafa and Sims [1] generalized the concept of a metric in which a real number is assigned to every triplet of an arbitrary set. Based on the notion of generalized metric spaces, Mustafa *et al.* [2–5] obtained some fixed point theorems for some mappings satisfying different contractive conditions. The existence of common fixed points in generalized metric spaces was initiated by Abbas and Rhoades [6] (see also [7] and [8]). For further study of common fixed points in generalized metric spaces, we refer to [9–12] and references mentioned therein. Abbas *et al.* [13] showed the existence of coupled common fixed points in two generalized metric spaces (for more results on couple fixed points, see also [14–21]).

The existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings [22] and further studied by Nieto and Lopez [23]. Subsequently, several interesting and valuable results have appeared in this direction [24–30].

The aim of this paper is to study common fixed point of four mappings that satisfy the generalized contractive condition in two ordered generalized metric spaces.

In the sequel,  $\mathbb{R}$ ,  $\mathbb{R}^+$  and  $\mathbb{N}$  denote the set of real numbers, the set of nonnegative integers and the set of positive integers respectively. The usual order on  $\mathbb{R}$  (respectively, on  $\mathbb{R}^+$ ) will be indistinctly denoted by  $\leq$  or by  $\geq$ .

In [1], Mustafa and Sims introduced the following definitions and results:

**Definition 1.1** Let *X* be a nonempty set. Suppose that a mapping  $G : X \times X \times X \to \mathbb{R}^+$  satisfies the following conditions:

- (a) G(x, y, z) = 0 if x = y = z for all  $x, y, z \in X$ ;
- (b) 0 < G(x, y, z) for all  $x, y, z \in X$  with  $x \neq y$ ;

© 2012 Abbas et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



- (c)  $G(x, x, y) \leq G(x, y, z)$  for all  $x, y, z \in X$  with  $y \neq z$ ;
- (d)  $G(x, y, z) = G(p\{x, y, z\})$ , where *p* is a permutation of  $x, y, z \in X$  (symmetry);
- (e)  $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$  for all  $x, y, z, a \in X$ .

Then G is called a G-metric on X and (X, G) is called a G-metric space.

**Definition 1.2** A sequence  $\{x_n\}$  in a *G*-metric space *X* is called:

- (1) a *G*-*Cauchy sequence* if, for any  $\varepsilon > 0$ , there exists  $n_0 \in N$  (the set of natural numbers) such that, for all  $n, m, l \ge n_0$ ,  $G(x_n, x_m, x_l) < \varepsilon$ ;
- (2) *G-convergent* if, for any  $\varepsilon > 0$ , there exist  $x \in X$  and  $n_0 \in N$  such that, for all  $n, m \ge n_0, G(x, x_n, x_m) < \varepsilon$ ;
- (3) A *G*-metric space *X* is said to be *G*-complete if every *G*-Cauchy sequence in *X* is *G*-convergent in *X*.

It is known that  $\{x_n\}$  is *G*-convergent to a point  $x \in X$  if and only if  $G(x_m, x_n, x) \to 0$  as  $n, m \to \infty$ .

**Proposition 1.3** [1] Let X be a G-metric space. Then the following items are equivalent:

- (1) A sequence  $\{x_n\}$  in X is G-convergent to a point  $x \in X$ ;
- (2)  $G(x_n, x_m, x) \to 0 \text{ as } n, m \to \infty;$
- (3)  $G(x_n, x_n, x) \rightarrow 0 \text{ as } n \rightarrow \infty;$
- (4)  $G(x_n, x, x) \to 0 \text{ as } n \to \infty$ .

**Definition 1.4** A *G*-metric on *X* is said to be *symmetric* if G(x, y, y) = G(y, x, x) for all  $x, y \in X$ .

**Proposition 1.5** *Every G*-metric on *X* defines a metric  $d_G$  on *X* by

$$d_G(x, y) = G(x, y, y) + G(y, x, x)$$
(1.1)

for all  $x, y \in X$ .

For a symmetric *G*-metric, we have

$$d_G(x, y) = 2G(x, y, y)$$
 (1.2)

for all  $x, y \in X$ . However, if *G* is non-symmetric, then the following inequality holds:

$$\frac{3}{2}G(x,y,y) \le d_G(x,y) \le 3G(x,y,y)$$
(1.3)

for all  $x, y \in X$ . It is obvious that

$$G(x, x, y) \le 2G(x, y, y)$$

for all  $x, y \in X$ .

Now, we give an example of a non-symmetric *G*-metric.

Table 1 G-metric

| ( <i>x</i> , <i>y</i> , <i>z</i> ) | G(x, y, z) |
|------------------------------------|------------|
| (1, 1, 1), (2, 2, 2)               | 0          |
| (1, 1, 2), (1, 2, 1), (2, 1, 1)    | 0.5        |
| (1, 2, 2), (2, 1, 2), (2, 2, 1)    | 1.0        |

**Example 1.6** Let  $X = \{1, 2\}$  and  $G : X \times X \times X \to \mathbb{R}^+$  be a mapping defined by Table 1.

Note that *G* satisfies all the axioms of a generalized metric, but  $G(x, x, y) \neq G(x, y, y)$  for two distinct points  $x, y \in X$ .

**Definition 1.7** Let f and g be self-mappings on a set X. If w = fx = gx for some  $x \in X$ , then the point x is called a *coincidence point* of f and g and w is called a *point of coincidence* of f and g.

**Definition 1.8** [31] Let f and g be self-mappings on a set X. Then f and g are said to be *weakly compatible* if they commute at every coincidence point.

**Definition 1.9** [8] Let *X* be a *G*-metric space and *f*, *g* be self-mappings on *X*. Then *f* and *g* are said to be *R*-weakly commuting if there exists a positive real number *R* such that  $G(fgx, fgx, gfx) \le RG(fx, fx, gx)$  for all  $x \in X$ .

The maps f and g are R-weakly commuting on X if and only if they commute at their coincidence points.

Recall that two mappings f and g on a G-metric space X are said to be compatible if, for a sequence  $\{x_n\}$  in X such that  $\{fx_n\}$  and  $\{gx_n\}$  are G-convergent to some  $t \in X$ ,

 $\lim_{n\to\infty}G(fgx_n,fgx_n,gfx_n)=0.$ 

**Definition 1.10** Let *X* be a nonempty set. Then  $(X, \leq, G)$  is called an *ordered generalized metric space* if the following conditions hold:

- (a) *G* is a generalized metric on *X*;
- (b)  $\leq$  is a partial order on *X*.

**Definition 1.11** Let  $(X, \preceq)$  be a partial ordered set. Then two points  $x, y \in X$  are said to be *comparable* if  $x \preceq y$  or  $y \preceq x$ .

**Definition 1.12** [24] Let  $(X, \preceq)$  be a partially ordered set. A self-mapping f on X is said to be *dominating* if  $x \preceq fx$  for all  $x \in X$ .

**Example 1.13** [24] Let X = [0,1] be endowed with usual ordering and  $f : X \to X$  be a mapping defined by  $fx = \sqrt[n]{x}$  for some  $n \in \mathbb{N}$ . Since  $x \le x^{\frac{1}{n}} = fx$  for all  $x \in X$ , f is a dominating mapping.

**Definition 1.14** Let  $(X, \preceq)$  be a partially ordered set. A self-mapping f on X is said to be *dominated* if  $fx \preceq x$  for all  $x \in X$ .

**Example 1.15** Let X = [0,1] be endowed with usual ordering and  $f : X \to X$  be a mapping defined by  $fx = x^n$  for some  $n \in \mathbb{N}$ . Since  $fx = x^n \le x$  for all  $x \in X$ , f is a dominated mapping.

**Definition 1.16** A subset  $\mathcal{K}$  of a partially ordered set X is said to be *well-ordered* if every two elements of  $\mathcal{K}$  are comparable.

### 2 Common fixed point theorems

In [32], Kannan proved a fixed point theorem for a single valued self-mapping T on a metric space X satisfying the following property:

 $d(Tx, Ty) \le h \{ d(x, Tx) + d(y, Ty) \}$ 

for all  $x, y \in X$ , where  $h \in [0, \frac{1}{2})$ . If a self-mapping *T* on a metric space *X* satisfies the following property:

$$d(Tx, Ty) \le ad(x, y) + bd(x, Tx) + cd(y, Ty) + e[d(x, Ty) + d(y, Tx)]$$

for all  $x, y \in X$ , where  $a, b, c, e \ge 0$  with a + b + c + 2e < 1, then *T* has a unique fixed point provided that *X* is *T*-orbitally complete (for related definitions and results, we refer to [33]).

Afterwards, Ćirić [34] obtained a fixed point result for a mapping satisfying the following property:

$$d(Tx, Ty) \le q \max\left\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2}\right\}$$

for all  $x, y \in X$ , where  $0 \le q < 1$ .

In this section, we show the existence of a unique common fixed point of four mappings satisfying Ćirić-type contractive condition in the framework of two ordered generalized metric spaces.

Now, we start with the following result:

**Theorem 2.1** Let  $(X, \preceq)$  be a partially ordered set and  $G_1$ ,  $G_2$  be two *G*-metrics on *X* such that  $G_2(x, y, z) \leq G_1(x, y, z)$  for all  $x, y, z \in X$  with a complete metric  $G_1$  on *X*. Suppose that *f*, *g*, *S* and *T* are self-mappings on *X* satisfying the following properties:

$$G_{1}(fx, fx, gy) \leq k \max \{G_{2}(Sx, Sx, Ty), G_{2}(fx, fx, Sx), G_{2}(gy, gy, Ty), \\ [G_{2}(fx, fx, Ty) + G_{2}(gy, gy, Sx)]/2\}$$
(2.1)

and

$$G_{1}(fx, gy, gy) \leq k \max \{ G_{2}(Sx, Ty, Ty), G_{2}(fx, Sx, Sx), G_{2}(gy, Ty, Ty), \\ [G_{2}(fx, Ty, Ty) + G_{2}(gy, Sx, Sx)]/2 \}$$
(2.2)

for all comparable  $x, y \in X$ , where  $k \in [0,1)$ . Suppose that  $f(X) \subseteq T(X)$  and  $g(X) \subseteq S(X)$ , f, g are dominated mappings and S, T are dominating mappings. If, for any nonincreasing sequence  $\{x_n\}$  in X with  $y_n \preceq x_n$  for all  $n \in \mathbb{N}$ ,  $y_n \rightarrow u$  implies that  $u \preceq x_n$  and either

*(a) f*, *S* are compatible, *f* or *S* is continuous and *g*, *T* are weakly compatible or

(b) g, T are compatible, g or T is continuous and f, S are weakly compatible, then f, g, S and T have a common fixed point. Moreover, the set of common fixed points of f, g, S and T is well-ordered if and only if f, g, S and T have one and only one common fixed point.

*Proof* Let  $x_0$  be an arbitrary point in *X*. Since  $f(X) \subseteq T(X)$  and  $g(X) \subseteq S(X)$ , we can define the sequences  $\{x_n\}$  and  $\{y_n\}$  in *X* by

$$y_{2n} = gx_{2n} = Sx_{2n+1}, \quad y_{2n+1} = fx_{2n+1} = Tx_{2n+2}$$

for all  $n \ge 0$ . By the given assumptions, we have

$$x_{2n+2} \leq Tx_{2n+2} = fx_{2n+1} \leq x_{2n+1},$$
  
 $x_{2n+1} \leq Sx_{2n+1} = gx_{2n} \leq x_{2n}.$ 

Thus, for all  $n \ge 0$ , we have  $x_{n+1} \le x_n$ . Suppose that  $G_1(y_{2n}, y_{2n+1}, y_{2n+1}) > 0$  for all  $n \ge 0$ . If not, then, for some  $m \ge 0$ ,  $y_m = y_{m+1}$ . Indeed, if m = 2k, then  $y_{2k} = y_{2k+1}$  and from (2.1), it follows that

# $$\begin{split} &G_{1}(y_{2k+1}, y_{2k+1}, y_{2k+2}) \\ &= G_{1}(fx_{2k+1}, fx_{2k+1}, gx_{2k+2}) \\ &\leq k \max \Big\{ G_{2}(Sx_{2k+1}, Sx_{2k+1}, Tx_{2k+2}), G_{2}(fx_{2k+1}, fx_{2k+1}, Sx_{2k+1}), \\ &G_{2}(gx_{2k+2}, gx_{2k+2}, Tx_{2k+2}), \\ & \left[ G_{2}(fx_{2k+1}, fx_{2k+1}, Tx_{2k+2}) + G_{2}(gx_{2k+2}, gx_{2k+2}, Sx_{2k+1}) \right] / 2 \Big\} \\ &= k \max \Big\{ G_{2}(y_{2k}, y_{2k}, y_{2k+1}), G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}), G_{2}(y_{2k+2}, y_{2k+2}, y_{2k+1}), \\ & \left[ G_{2}(y_{2k+1}, y_{2k+1}, y_{2k+1}) + G_{2}(y_{2k+2}, y_{2k+2}, y_{2k+2}) \right] / 2 \Big\} \\ &\leq k \max \Big\{ G_{2}(y_{2k}, y_{2k}, y_{2k+1}), G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}), G_{2}(y_{2k+2}, y_{2k+2}, y_{2k+1}), \\ & \left[ G_{2}(y_{2k+2}, y_{2k+2}, y_{2k+1}) + G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}) \right] / 2 \Big\} \\ &\leq k \max \Big\{ G_{1}(y_{2k}, y_{2k}, y_{2k+1}), G_{1}(y_{2k+1}, y_{2k+1}, y_{2k}), G_{1}(y_{2k+2}, y_{2k+2}, y_{2k+1}), \\ & \left[ G_{1}(y_{2k+2}, y_{2k+2}, y_{2k+1}) + G_{1}(y_{2k+1}, y_{2k+1}, y_{2k}) \right] / 2 \Big\} \end{split}$$

 $= kG_1(y_{2k+2}, y_{2k+2}, y_{2k+1}).$ 

(2.3)

### Again, from (2.2), it follows that

 $G_1(y_{2k+1}, y_{2k+2}, y_{2k+2})$ 

$$= G_1(fx_{2k+1}, gx_{2k+2}, gx_{2k+2})$$

$$\leq k \max \{G_2(Sx_{2k+1}, Tx_{2k+2}, Tx_{2k+2}), G_2(fx_{2k+1}, Sx_{2k+1}, Sx_{2k+1}), G_2(gx_{2k+2}, Tx_{2k+2}, Tx_{2k+2}), G_2(fx_{2k+1}, Tx_{2k+2}, Tx_{2k+2}), G_2(fx_{2k+1}, Tx_{2k+2}, Tx_{2k+2}) + G_2(gx_{2k+2}, Sx_{2k+1}, Sx_{2k+1})]/2\}$$

$$= k \max \{G_{2}(y_{2k}, y_{2k+1}, y_{2k+1}), G_{2}(y_{2k+1}, y_{2k}, y_{2k}), G_{2}(y_{2k+2}, y_{2k+1}, y_{2k+1}), \\ [G_{2}(y_{2k+1}, y_{2k+1}, y_{2k+1}) + G_{2}(y_{2k+2}, y_{2k}, y_{2k})]/2 \}$$

$$\leq k \max \{G_{2}(y_{2k}, y_{2k+1}, y_{2k+1}), G_{2}(y_{2k+1}, y_{2k}, y_{2k}), G_{2}(y_{2k+2}, y_{2k+1}, y_{2k+1}), \\ [G_{2}(y_{2k+2}, y_{2k+1}, y_{2k+1}) + G_{2}(y_{2k+1}, y_{2k}, y_{2k})]/2 \}$$

$$\leq k \max \{G_{1}(y_{2k}, y_{2k}, y_{2k+1}), G_{2}(y_{2k+1}, y_{2k}, y_{2k}), G_{1}(y_{2k+2}, y_{2k+1}, y_{2k+1}), \\ [G_{1}(y_{2k+2}, y_{2k+1}) + G_{1}(y_{2k+1}, y_{2k}, y_{2k})]/2 \}$$

$$= kG_{1}(y_{2k+2}, y_{2k+1}, y_{2k+1}). \qquad (2.4)$$

Thus (2.3) and (2.4) imply that

 $G_1(y_{2k+2}, y_{2k+1}, y_{2k+1}) \le k^2 G_1(y_{2k+2}, y_{2k+1}, y_{2k+1})$ 

and so  $y_{2k+1} = y_{2k+2}$  since  $k^2 < 1$ .

Similarly, if m = 2k + 1, then one can easily obtain  $y_{2k+2} = y_{2k+3}$ . Thus  $\{y_n\}$  becomes a constant sequence and  $y_{2n}$  serves as the common fixed point of *f*, *g*, *S* and *T*.

Suppose that  $G_1(y_{2n}, y_{2n+1}, y_{2n+1}) > 0$  for all  $n \ge 0$ .

If  $n \in \mathbb{N}$  is even, then n = 2k for some  $k \in \mathbb{N}$ ; then it follows from (2.1) that

```
\begin{aligned} G_{1}(y_{n+1}, y_{n+1}, y_{n}) \\ &= G_{1}(y_{2k+1}, y_{2k+1}, y_{2k}) \\ &= G_{1}(fx_{2k+1}, fx_{2k+1}, gx_{2k}) \\ &\leq k \max\{G_{2}(Sx_{2k+1}, Sx_{2k+1}, Tx_{2k}), G_{2}(fx_{2k+1}, fx_{2k+1}, Sx_{2k+1}), \\ &G_{2}(gx_{2k}, gx_{2k}, Tx_{2k}), [G_{2}(fx_{2k+1}, fx_{2k+1}, Tx_{2k}) + G_{2}(gx_{2k}, gx_{2k}, Sx_{2k+1})]/2 \} \\ &= k \max\{G_{2}(y_{2k}, y_{2k}, y_{2k-1}), G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}), \\ &G_{2}(y_{2k}, y_{2k}, y_{2k-1}), [G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}), + G_{2}(y_{2k}, y_{2k}, y_{2k})]/2 \} \\ &\leq k \max\{G_{2}(y_{2k}, y_{2k}, y_{2k-1}), G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}), \\ & [G_{2}(y_{2k+1}, y_{2k+1}, y_{2k}) + G_{2}(y_{2k}, y_{2k}, y_{2k-1})]/2 \} \\ &\leq k \max\{G_{1}(y_{n}, y_{n}, y_{n-1}), G_{1}(y_{n+1}, y_{n+1}, y_{n})\}, \end{aligned}
```

which implies that

 $G_1(y_{n+1}, y_{n+1}, y_n) \le kG_1(y_n, y_n, y_{n-1}).$ 

If  $n \in \mathbb{N}$  is odd, then n = 2k + 1 for some  $k \in \mathbb{N}$ . Again, it follows from (2.1) that

$$G_{1}(y_{n+1}, y_{n+1}, y_{n})$$

$$= G_{1}(y_{2k+2}, y_{2k+2}, y_{2k+1})$$

$$= G_{1}(fx_{2k+2}, fx_{2k+2}, gx_{2k+1})$$

$$\leq k \max \{G_{2}(Sx_{2k+2}, Sx_{2k+2}, Tx_{2k+1}), G_{2}(fx_{2k+2}, fx_{2k+2}, Sx_{2k+2}),$$

$$\begin{aligned} &G_2(gx_{2k+1}, gx_{2k+1}, Tx_{2k+1}), \\ &\left[G_2(fx_{2k+2}, fx_{2k+2}, Tx_{2k+1}) + G_2(gx_{2k+1}, gx_{2k+1}, Sx_{2k+2})\right]/2 \right\} \\ &= k \max\left\{G_2(y_{2k+1}, y_{2k+1}, y_{2k}), G_2(y_{2k+2}, y_{2k+2}, y_{2k+1}), \\ &G_2(y_{2k+1}, y_{2k+1}, y_{2k}), \left[G_2(y_{2k+2}, y_{2k+2}, y_{2k}) + G_2(y_{2k+1}, y_{2k+1}, y_{2k+1})\right]/2 \right\} \\ &\leq k \max\left\{G_2(y_{2k+1}, y_{2k+1}, y_{2k}), G_2(y_{2k+2}, y_{2k+2}, y_{2k+2}, y_{2k+1}), \\ &\left[G_2(y_{2k+2}, y_{2k+2}, y_{2k+1}) + G_2(y_{2k+1}, y_{2k+1}, y_{2k})\right]/2 \right\} \\ &\leq k \max\left\{G_1(y_{2k+1}, y_{2k+1}, y_{2k}), G_1(y_{2k+2}, y_{2k+2}, y_{2k+1})\right\} \\ &= k \max\left\{G_1(y_n, y_n, y_{n-1}), G_1(y_{n+1}, y_{n+1}, y_n)\right\}, \end{aligned}$$

that is,

$$G_1(y_{n+1}, y_{n+1}, y_n) \le kG_1(y_n, y_n, y_{n-1})$$

for all  $n \in \mathbb{N}$ . Continuing the above process, we have

 $G_1(y_{n+1}, y_{n+1}, y_n) \le k^n G_1(y_1, y_1, y_0)$ 

for all  $n \in \mathbb{N}$ . Thus, for all  $n, m \in \mathbb{N}$  with m > n, we have

$$G_{1}(y_{m}, y_{m}, y_{n})$$

$$\leq G_{1}(y_{n}, y_{n+1}, y_{n+1}) + G_{1}(y_{n+1}, y_{n+2}, y_{n+2}) + \dots + G_{1}(y_{m-1}, y_{m}, y_{m})$$

$$\leq k^{n}G_{1}(y_{0}, y_{1}, y_{1}) + k^{n+1}G_{1}(y_{0}, y_{1}, y_{1}) + \dots + k^{m-1}G_{1}(y_{0}, y_{1}, y_{1})$$

$$= k^{n}G_{1}(y_{0}, y_{1}, y_{1}) \sum_{i=0}^{m-n-1} k^{i}$$

$$\leq \frac{k^{n}}{1-k}G_{1}(y_{0}, y_{1}, y_{1})$$

and so  $G_1(y_n, y_m, y_m) \to 0$  as  $m, n \to \infty$ . Hence  $\{y_n\}$  is a *G*-Cauchy sequence in *X*. Since *X* is  $G_1$ -complete, there exists a point  $z \in X$  such that  $\lim_{n\to\infty} y_n = z$ . Consequently, we have

$$\lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} f x_{2n+1} = \lim_{n \to \infty} T x_{2n+2} = z$$

and

$$\lim_{n\to\infty}y_{2n}=\lim_{n\to\infty}gx_{2n}=\lim_{n\to\infty}Sx_{2n+1}=z.$$

If S is continuous and  $\{f, S\}$  is compatible, then

$$\lim_{n \to \infty} S^2 x_{2n+1} = Sz,$$
$$\lim_{n \to \infty} fS x_{2n+1} = \lim_{n \to \infty} Sf x_{2n+1} = Sz.$$

$$G_1(fSx_{2n+1}, fSx_{2n+1}, gx_{2n})$$

$$\leq k \max \{G_2(SSx_{2n+1}, SSx_{2n+1}, Tx_{2n}), G_2(fSx_{2n+1}, fSx_{2n+1}, SSx_{2n+1}), G_2(gx_{2n}, gx_{2n}, Tx_{2n}), G_2(gx_{2n+2}, fSx_{2n+2}, Tx_{2n}) + G_2(gx_{2n}, gx_{2n}, SSx_{2n+1})]/2 \}.$$

Taking the limit as  $n \to \infty$ , we obtain

$$G_{1}(Sz, Sz, z) \leq k \max \{G_{2}(Sz, Sz, z), G_{2}(Sz, Sz, Sz), G_{2}(z, z, z), \\ [G_{2}(Sz, Sz, z) + G_{2}(z, z, Sz)]/2 \} \\ \leq k \max \{G_{1}(Sz, Sz, z), [G_{1}(Sz, Sz, z) + G_{1}(z, z, Sz)]/2 \} \\ = \frac{k}{2} [G_{1}(Sz, Sz, z) + G_{1}(z, z, Sz)],$$

which further implies that

$$G_1(Sz, Sz, z) \le hG_1(z, z, Sz), \tag{2.5}$$

where  $h = \frac{k}{2-k}$ . Obviously,  $0 \le h < 1$ . Similarly, we obtain

$$G_1(Sz, z, z) \le hG_1(z, Sz, Sz). \tag{2.6}$$

From (2.5) and (2.6), we have

$$G_1(Sz, Sz, z) \le h^2 G_1(z, Sz, Sz)$$

and so Sz = z since  $0 \le h^2 < 1$ . Since  $gx_{2n} \le x_{2n}$  and  $gx_{2n} \to z$  as  $n \to \infty$  implies  $z \le x_{2n}$ , it follows from (2.1) that

$$\begin{aligned} G_1(fz, fz, gx_{2n}) \\ &\leq k \max \Big\{ G_2(Sz, Sz, Tx_{2n}), G_2(fz, fz, Sz), G_2(gx_{2n}, gx_{2n}, Tx_{2n}), \\ & \left[ G_2(fz, fz, Tx_{2n}) + G_2(gx_{2n}, gx_{2n}, Sz) \right] / 2 \Big\} \\ &= k \max \Big\{ G_2(z, z, Tx_{2n}), G_2(fz, fz, z), G_2(gx_{2n}, gx_{2n}, Tx_{2n}), \\ & \left[ G_2(fz, fz, Tx_{2n}) + G_2(gx_{2n}, gx_{2n}, z) \right] / 2 \Big\}, \end{aligned}$$

which, taking the limit as  $n \to \infty$ , gives

$$G_{1}(fz, fz, z) \leq k \max \{G_{2}(z, z, z), G_{2}(fz, fz, z), G_{2}(z, z, z), \\ [G_{2}(fz, fz, z) + G_{2}(z, z, z)]/2 \}$$
$$\leq kG_{1}(fz, fz, z).$$
(2.7)

Similarly, we obtain

$$G_1(fz, z, z) \le kG_1(z, fz, fz).$$
 (2.8)

Therefore, by using the above two inequalities, we have fz = z.

Since  $f(X) \subseteq T(X)$ , there exists a point  $v \in X$  such that fz = Tv. Since  $v \preceq Tv = fz \preceq z$ , it follows from (2.1) that

$$G_{1}(fz, fz, gv) \leq k \max \{G_{2}(Sz, Sz, Tv), G_{2}(fz, fz, Sz), G_{2}(gv, gv, Tv), \\ [G_{2}(fz, fz, Tv) + G_{2}(gv, gv, Sz)]/2 \} \\ = k \max \{G_{2}(fz, fz, fz), G_{2}(fz, fz, fz), G_{2}(gv, gv, fz), \\ [G_{2}(fz, fz, fz) + G_{2}(gv, gv, fz)]/2 \} \\ \leq kG_{1}(fz, gv, gv).$$

$$(2.9)$$

Similarly, we get

$$G_1(fz, gv, gv) \le kG_1(fz, fz, gv).$$
 (2.10)

Thus (2.9) and (2.10) imply fz = gv. Since g and T are weakly compatible, we have gz = gfz = gTv = Tgv = Tfz = Tz, and so z is the coincidence point of g and T.

Now, from (2.1), we have

$$\begin{split} G_1(z,z,gz) &= G_1(fz,fz,gz) \\ &\leq k \max \{ G_2(Sz,Sz,Tz), G_2(fz,fz,Sz), G_2(gz,gz,Tz), \\ & \left[ G_2(fz,fz,Tz) + G_2(gz,gz,Sz) \right] / 2 \} \\ &= k \max \{ G_2(z,z,gz), G_2(z,z,z), G_2(gz,gz,gz), \\ & \left[ G_2(z,z,gz) + G_2(gz,gz,z) \right] / 2 \} \\ &= k \max \{ G_2(z,z,gz), \left[ G_2(z,z,gz) + G_2(gz,gz,z) \right] / 2 \} \\ &\leq \frac{k}{2} \Big[ G_1(z,z,gz) + G_1(gz,gz,z) \Big], \end{split}$$

that is,

$$G_1(z, z, gz) \le hG_1(gz, gz, z),$$
 (2.11)

where  $h = \frac{k}{2-k}$ . Obviously,  $0 \le h < 1$ . Using (2.2), we have

$$G_1(z, gz, gz) \le hG_1(z, z, gz).$$
 (2.12)

Combining the above two inequalities, we get

$$G_1(z, z, gz) \le h^2 G_1(z, z, gz)$$

and so z = gz. Therefore, fz = gz = Sz = Tz = z. The proof is similar when f is continuous. Similarly, if (b) holds, then the result follows.

Now, suppose that the set of common fixed points of f, g, S and T is well ordered. We show that a common fixed point of f, g, S and T is unique. Let u be another common fixed point of f, g, S and T. Then, from (2.1), we have

$$\begin{split} G_1(z,z,u) &= G_1(fz,fz,gu) \\ &\leq k \max \left\{ G_2(Sz,Sz,Tu), G_2(fz,fz,Sz), G_2(gu,gu,Tu), \right. \\ &\left. \left[ G_2(fz,fz,Tu) + G_2(gu,gu,Sz) \right] / 2 \right\} \\ &= k \max \left\{ G_2(z,z,u), G_2(z,z,z), G_2(u,u,u), \right. \\ &\left. \left[ G_2(z,z,u) + G_2(u,u,z) \right] / 2 \right\} \\ &= \frac{k}{2} \Big[ G_2(z,z,u) + G_2(u,u,z) \Big] \\ &\leq \frac{1}{2} G_1(z,z,u) + \frac{k}{2} G_1(u,u,z), \end{split}$$

that is,

$$G_1(z, z, u) \le kG_1(z, u, u).$$

Similarly, using (2.2), we obtain

 $G_1(z, u, u) \le kG_1(z, z, u).$ 

Combining the above two inequalities, we get

$$G_1(z,z,u) \le k^2 G_1(z,z,u)$$

and hence z = u.

The converse follows immediately. This completes the proof.

**Example 2.2** Let  $X = \{0, 1, 2, 3\}$  be endowed with the usual ordering and  $G_1$ ,  $G_2$  be two *G*-metrics on *X* defined by Table 2. Then  $G_1$  and  $G_2$  are non-symmetric since  $G_1(1, 1, 0) \neq 0$ 

| Table 2 | Two G-metrices |
|---------|----------------|
|---------|----------------|

| ( <i>x</i> , <i>y</i> , <i>z</i> )                                                                                                                                                                                                  | $G_1(x,y,z)$ | $G_2(x, y, z)$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| (0,0,0), (1,1,1), (2,2,2), (3,3,3),                                                                                                                                                                                                 | 0            | 0              |
| (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 3), (0, 3, 0), (3, 0, 0),                                                                                                 | 4            | 3              |
| $\begin{array}{l}(0,1,1),(1,0,1),(1,1,0),(0,3,3),(3,0,3),(3,3,0),\\(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,1,2),(2,2,1),\\(1,1,3),(1,3,1),(3,1,1),(1,3,3),(3,1,3),(3,3,1),\\(2,2,3),(2,3,2),(3,2,2),(2,3,3),(3,2,3),(3,3,2),\end{array}$ | 8            | 6              |
| $\begin{array}{l}(0,1,2),(0,1,3),(0,2,1),(0,2,3),(0,3,1),(0,3,2),\\(1,0,2),(1,0,3),(1,2,0),(1,2,3),(1,3,0),(1,3,2),\\(2,0,1),(2,0,3),(2,1,0),(2,1,3),(2,3,0),(2,3,1),\\(3,0,1),(3,0,2),(3,1,0),(3,1,2),(3,2,0),(3,2,1),\end{array}$ | 8            | 6              |

### Table 3 Self maps

| x | f(x) | <b>g</b> (x) | S(x) | T(x) |
|---|------|--------------|------|------|
| 0 | 0    | 0            | 0    | 0    |
| 1 | 0    | 0            | 2    | 2    |
| 2 | 0    | 2            | 2    | 3    |
| 3 | 0    | 0            | 3    | 3    |

### Table 4 Dominated and dominating maps

| $x \in X$    | f is dominated | <b>g</b> is dominated | <b>S</b> is dominating | T is dominating |
|--------------|----------------|-----------------------|------------------------|-----------------|
| x = 0        | f(0) = 0       | g(0) = 0              | 0 = S(0)               | 0 = T(0)        |
| <i>x</i> = 1 | f(1) = 0 < 1   | g(1) = 0 < 1          | 1 < 2 = S(1)           | 1 < 2 = T(1)    |
| <i>x</i> = 2 | f(2) = 0 < 2   | g(2) = 2              | 2 = S(2)               | 2 < 3 = T(2)    |
| <i>x</i> = 3 | f(3) = 0 < 3   | g(3) = 0 < 3          | 3 = S(3)               | 3 = T(3)        |

 $G_1(1,0,0)$  and  $G_2(1,1,0) \neq G_2(1,0,0)$  with  $G_2(x,y,z) \leq G_1(x,y,z)$  for all  $x,y,z \in X$ . Let  $f,g,S,T:X \to X$  be the mappings defined by Table 3. Clearly,  $f(X) \subseteq T(X), g(X) \subseteq S(X), f,g$  are dominated mappings and S, T are dominating mappings, see Table 4.

Now, we shall show that for all comparable  $x, y \in X$ , (2.1) and (2.2) are satisfied with  $k = \frac{3}{4} \in [0, 1)$ . Note that for all  $x, y \in \{0, 1, 3\}$ , G(fx, fx, gy) = G(fx, gy, gy) = 0 and (2.1), (2.2) are satisfied obviously.

(1) When x = 0 and y = 2, then fx = 0, gy = 2, Sx = 0, Ty = 3 and so

$$G_{1}(fx, fx, gy) = G_{1}(0, 0, 2) = 4$$

$$< \frac{3}{4}(6) = \frac{3}{4}G_{2}(2, 2, 3) = \frac{3}{4}G_{2}(gy, gy, Ty)$$

$$\leq k \max \{G_{2}(Sx, Sx, Ty), G_{2}(fx, fx, Sx), G_{2}(gy, gy, Ty), [G_{2}(fx, fx, Ty) + G_{2}(gy, gy, Sx)]/2\}$$

and

$$G_{1}(fx, gy, gy) = G_{1}(0, 2, 2) = 4$$

$$< \frac{3}{4}(6) = \frac{3}{4}G_{2}(2, 3, 3) = \frac{3}{4}G_{2}(gy, Ty, Ty)$$

$$\leq k \max \{G_{2}(Sx, Ty, Ty), G_{2}(fx, Sx, Sx), G_{2}(gy, Ty, Ty), G_{2}(fx, Ty, Ty) + G_{2}(gy, Sx, Sx)\}/2\}.$$

(2) When x = 1 and y = 2, then fx = 0, gy = 2, Sx = 2, Ty = 3 and so

$$G_1(fx, fx, gy) = G_1(0, 0, 2) = 4$$

$$< \frac{3}{4}(6) = \frac{3}{4}G_2(2, 2, 3) = \frac{3}{4}G_2(gy, gy, Ty)$$

$$\leq k \max \{G_2(Sx, Sx, Ty), G_2(fx, fx, Sx), G_2(gy, gy, Ty), [G_2(fx, fx, Ty) + G_2(gy, gy, Sx)]/2\}$$

and

$$\begin{aligned} G_1(fx,gy,gy) &= G_1(0,2,2) = 4 \\ &< \frac{3}{4}(6) = \frac{3}{4}G_2(2,3,3) = \frac{3}{4}G_2(gy,Ty,Ty) \\ &\leq k \max \left\{ G_2(Sx,Ty,Ty), G_2(fx,Sx,Sx), G_2(gy,Ty,Ty), \right. \\ &\left. \left[ G_2(fx,Ty,Ty) + G_2(gy,Sx,Sx) \right] / 2 \right\}. \end{aligned}$$

(3) When x = 2 and y = 2, then fx = 0, gy = 2, Sx = 2, Ty = 3 and so

$$G_1(fx, fx, gy) = G_1(0, 0, 2) = 4$$

$$< \frac{3}{4}(6) = \frac{3}{4}G_2(2, 2, 3) = \frac{3}{4}G_2(Sx, Sx, Ty)$$

$$\leq k \max \{G_2(Sx, Sx, Ty), G_2(fx, fx, Sx), G_2(gy, gy, Ty), [G_2(fx, fx, Ty) + G_2(gy, gy, Sx)]/2\}$$

and

$$G_{1}(fx,gy,gy) = G_{1}(0,2,2) = 4$$

$$< \frac{3}{4}(6) = \frac{3}{4}G_{2}(2,3,3) = \frac{3}{4}G_{2}(Sx,Ty,Ty)$$

$$\leq k \max \{G_{2}(Sx,Ty,Ty), G_{2}(fx,Sx,Sx), G_{2}(gy,Ty,Ty), G_{2}(fx,Ty,Ty) + G_{2}(gy,Sx,Sx)\}/2\}.$$

(4) Finally, when x = 3 and y = 2, then fx = 0, gy = 2, Sx = 3, Ty = 3 and so

$$\begin{aligned} G_1(fx, fx, gy) &= G_1(0, 0, 2) = 4 \\ &< \frac{3}{4}(6) = \frac{3}{4}G_2(2, 2, 3) = \frac{3}{4}G_2(gy, gy, Ty) \\ &\leq k \max \Big\{ G_2(Sx, Sx, Ty), G_2(fx, fx, Sx), G_2(gy, gy, Ty), \\ & \left[ G_2(fx, fx, Ty) + G_2(gy, gy, Sx) \right] / 2 \Big\} \end{aligned}$$

and

$$\begin{aligned} G_1(fx, gy, gy) &= G_1(0, 2, 2) = 4 \\ &< \frac{3}{4}(6) = \frac{3}{4}G_2(2, 3, 3) = \frac{3}{4}G_2(gy, Ty, Ty) \\ &\leq k \max \Big\{ G_2(Sx, Ty, Ty), G_2(fx, Sx, Sx), G_2(gy, Ty, Ty), \\ & \left[ G_2(fx, Ty, Ty) + G_2(gy, Sx, Sx) \right] / 2 \Big\}. \end{aligned}$$

Thus, for all cases, the contractions (2.1) and (2.2) are satisfied. Hence all of the conditions of Theorem 2.1 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and g.

If we consider the same set equipped with two metrics given by  $d_1(x, y) = |x - y|$  and  $d_2(x, y) = \frac{1}{2}|x - y|$  for all  $x, y \in X$ , then for x = 1 and y = 2, we have

$$d_1(fx, gy) = d_1(0, 2) = 2 \leq 2k$$
  

$$\leq k \max\{d_2(2, 3), d_2(0, 2), d_2(2, 3), [d_2(0, 3) + d_2(2, 2)]/2\}$$
  

$$= k \max\{d_2(Sx, Ty), d_2(fx, Sx), d_2(gy, Ty), [d_2(fx, Ty) + d_2(gy, Sx)]/2\}$$

for any  $k \in [0, 1)$ . So corresponding results in ordinary metric spaces cannot be applied in this case.

Theorem 2.1 can be viewed as an extension of Theorem 2.1 of [8] to the case of two ordered *G*-metric spaces.

Since the class of weakly compatible mappings includes *R*-weakly commuting mappings, Theorem 2.1 generalizes the comparable results in [8].

**Corollary 2.3** Let  $(X, \leq)$  be a partially ordered set and  $G_1$ ,  $G_2$  be two *G*-metrics on *X* such that  $G_2(x, y, z) \leq G_1(x, y, z)$  for all  $x, y, z \in X$  with a complete metric  $G_1$  on *X*. Suppose that *f*, *g*, *S* and *T* are self-mappings on *X* satisfying the following properties:

$$G_{1}(fx, fx, gy) \leq a_{1}G_{2}(Sx, Sx, Ty) + a_{2}G_{2}(Sx, Sx, fx) + a_{3}G_{2}(Ty, Ty, gy) + a_{4}[G_{2}(Sx, Sx, gy) + G_{2}(Ty, Ty, fx)]$$
(2.13)

and

$$G_{1}(fx, gy, gy) \leq a_{1}G_{2}(Sx, Ty, Ty) + a_{2}G_{2}(Sx, fx, fx) + a_{3}G_{2}(Ty, gy, gy) + a_{4}[G_{2}(Sx, gy, gy) + G_{2}(Ty, fx, fx)]$$

$$(2.14)$$

for all comparable  $x, y \in X$ , where  $a_1 + a_2 + a_3 + 2a_4 < 1$ . Suppose that  $f(X) \subseteq T(X)$ ,  $g(X) \subseteq S(X)$  and f, g are dominated mappings and S, T are dominating mappings. If, for any nonincreasing sequence  $\{x_n\}$  with  $y_n \preceq x_n$  for all  $n \in \mathbb{N}$ ,  $y_n \rightarrow u$  implies that  $u \preceq x_n$  and either

*(a) f*, *S* are compatible, *f* or *S* is continuous and *g*, *T* are weakly compatible or

(b) g, T are compatible, g or T is continuous and f, S are weakly compatible,

then f, g, S and T have a common fixed point in X. Moreover, the set of common fixed points of f, g, S and T is well-ordered if and only if f, g, S and T have one and only one common fixed point in X.

**Example 2.4** Let X = [0,1] be endowed with the usual ordering and  $G_1$ ,  $G_2$  be two *G*-metrics on *X* given in [13]:

$$G_1(a, b, c) = |a - b| + |b - c| + |c - a|,$$
  

$$G_2(a, b, c) = \frac{1}{2} [|a - b| + |b - c| + |c - a|].$$

Define the mappings  $f, g, S, T : X \to X$  as

$$fx = \frac{x}{12}, \qquad gx = \begin{cases} \frac{x}{4} & \text{if } x \in [0, \frac{1}{2}), \\ \frac{x}{6} & \text{if } x \in [\frac{1}{2}, 1), \end{cases} \qquad S(x) = \frac{3x}{2}, \qquad T(x) = \frac{5x}{2}$$

for all  $x \in X$ . Clearly, f, g are dominated mappings and S, T are dominating mappings with  $f(X) \subseteq T(X)$  and  $g(X) \subseteq S(X)$ . Also, f, S are compatible, f is continuous and g, T are weakly compatible. Now, for all comparable  $x, y \in X$ , we check the following cases:

(1) If  $x, y \in [0, \frac{1}{2})$ , then we have

$$\begin{aligned} G_1(fx, fx, gy) &= \frac{1}{12} |x - 3y| \leq \frac{1}{12} (x + 3y) \\ &\leq \frac{3}{10} \left( \frac{17}{12} x \right) + \frac{3}{10} \left( \frac{9}{4} y \right) \\ &= a_2 G_2(fx, fx, Sx) + a_3 G_2(gy, gy, Ty) \\ &\leq a_1 G_2(Sx, Sx, Ty) + a_2 G_2(fx, fx, Sx) + a_3 G_2(gy, gy, Ty) \\ &\quad + a_4 \big[ G_2(fx, fx, Ty) + G_2(gy, gy, Sx) \big]. \end{aligned}$$

(2) If  $x \in [0, \frac{1}{2})$  and  $y \in [\frac{1}{2}, 1]$ , then we have

$$G_{1}(fx, fx, gy) = \frac{1}{12}|x - 2y| \le \frac{1}{12}(x + 2y)$$
  
$$\le \frac{3}{10}\left(\frac{17}{12}x\right) + \frac{3}{10}\left(\frac{14}{6}y\right)$$
  
$$= a_{2}G_{2}(fx, fx, Sx) + a_{3}G_{2}(gy, gy, Ty)$$
  
$$\le a_{1}G_{2}(Sx, Sx, Ty) + a_{2}G_{2}(fx, fx, Sx) + a_{3}G_{2}(gy, gy, Ty)$$
  
$$+ a_{4}[G_{2}(fx, fx, Ty) + G_{2}(gy, gy, Sx)].$$

(3) If  $y \in [0, \frac{1}{2})$  and  $x \in [\frac{1}{2}, 1]$ , then we have

$$\begin{aligned} G_1(fx, fx, gy) &= \frac{1}{12} |x - 3y| \leq \frac{1}{12} (x + 3y) \\ &\leq \frac{3}{10} \left( \frac{17}{12} x \right) + \frac{3}{10} \left( \frac{9}{4} y \right) \\ &= a_2 G_2(fx, fx, Sx) + a_3 G_2(gy, gy, Ty) \\ &\leq a_1 G_2(Sx, Sx, Ty) + a_2 G_2(fx, fx, Sx) + a_3 G_2(gy, gy, Ty) \\ &+ a_4 \left[ G_2(fx, fx, Ty) + G_2(gy, gy, Sx) \right]. \end{aligned}$$

(4) If  $x, y \in [\frac{1}{2}, 1]$ , then we obtain

$$G_1(fx, fx, gy) = \frac{1}{12} |x - 2y| \le \frac{1}{12} (x + 2y)$$
$$\le \frac{3}{10} \left(\frac{17}{12}x\right) + \frac{3}{10} \left(\frac{14}{6}y\right)$$

$$= a_2G_2(fx, fx, Sx) + a_3G_2(gy, gy, Ty)$$
  

$$\leq a_1G_2(Sx, Sx, Ty) + a_2G_2(fx, fx, Sx) + a_3G_2(gy, gy, Ty)$$
  

$$+ a_4[G_2(fx, fx, Ty) + G_2(gy, gy, Sx)].$$

Thus (2.13) is satisfied with  $a_1 = a_4 = \frac{1}{10}$  and  $a_2 = a_3 = \frac{3}{10}$ , where  $a_1 + a_2 + a_3 + 2a_4 < 1$ . Similarly, (2.14) is satisfied. Thus all the conditions of Corollary 2.3 are satisfied. Moreover, 0 is the unique common fixed point of *f* and *g*.

### **3** Application

Let  $X = L^2(\Omega)$ , the set of comparable functions on  $\Omega$  whose square is integrable on  $\Omega$ where  $\Omega = [0,1]$ , be a bounded set in  $\mathbb{R}$ . We endow *X* with the partial ordered  $\leq$  given by:  $x, y \in X, x \leq y \Leftrightarrow x(t) \leq y(t)$ , for all  $t \in \Omega$ . We consider the integral equations

$$\begin{aligned} x(t) &= \int_{\Omega} q_1(t, s, x(s)) \, ds - c(t), \\ y(t) &= \int_{\Omega} q_2(t, s, y(s)) \, ds - c(t), \end{aligned}$$
(3.1)

where  $q_1, q_2 : \Omega \times \Omega \times \mathbb{R} \to \mathbb{R}$  and  $c : \Omega \to \mathbb{R}^+$ , to be given continuous mappings. Recently, Abbas *et al.* [35] obtained a common solution of integral equations (3.1) as an application of their results in the setup of ordered generalized metric spaces. Here we study a sufficient condition for the existence of a common solution of integral equations in the framework of two generalized metric spaces. Define  $G_1, G_2 : X \times X \times X \to \mathbb{R}^+$  by

$$G_{1}(x, y, z) = \sup_{t \in \Omega} |x(t) - y(t)| + \sup_{t \in \Omega} |y(t) - z(t)| + \sup_{t \in \Omega} |z(t) - x(t)|,$$
  

$$G_{2}(x, y, z) = \frac{1}{2} \Big[ \sup_{t \in \Omega} |x(t) - y(t)| + \sup_{t \in \Omega} |y(t) - z(t)| + \sup_{t \in \Omega} |z(t) - x(t)| \Big].$$

Obviously,  $G_2(x, y, z) \le G_1(x, y, z)$  for all  $x, y, z \in X$ . Suppose that the following hypotheses hold:

(i) For each  $s, t \in \Omega$ ,

$$\int_{\Omega} q_1(t,s,u(s)) \, ds \leq u(s)$$

and

$$\int_{\Omega} q_2(t,s,u(s)) \, ds \leq u(s)$$

hold.

(ii) There exists  $r: \Omega \to \Omega$  such that

$$\int_{\Omega} \left| q_1(t,s,u(t)) - q_2(t,s,v(t)) \right| dt \le r(t) \left| u(t) - v(t) \right|$$

for each  $s, t \in \Omega$  with  $\sup_{t \in \Omega} r(t) \le k$  where  $k \in [0, 1)$ . Then the integral equations (3.1) have a common solution in  $L^2(\Omega)$ . *Proof* Define  $fx(t) = \int_{\Omega} q_1(t, s, x(t)) dt - c(t)$  and  $gx(t) = \int_{\Omega} q_2(t, s, x(t)) dt - c(t)$ . As  $fx(t) \le x(t)$  and  $gx(t) \le x(t)$ , so f and g are dominated maps. Now, for all comparable  $x, y \in X$ ,

$$G_{1}(fx,fx,gy) = 2 \sup_{t \in \Omega} |fx(t) - gy(t)|$$

$$= 2 \sup_{t \in \Omega} \left| \int_{\Omega} q_{1}(t,s,x(t)) dt - \int_{\Omega} q_{2}(t,s,y(t)) dt \right|$$

$$\leq 2 \sup_{t \in \Omega} \int_{\Omega} |q_{1}(t,s,x(t)) - q_{2}(t,s,y(t))| dt$$

$$\leq 2 \sup_{t \in \Omega} r(t) |x(t) - y(t)|$$

$$\leq 2k \sup_{t \in \Omega} |x(t) - y(t)|$$

$$= kG_{2}(x,y,y)$$

$$\leq k \max \{G_{2}(x,x,y), G_{2}(fx,fx,x), G_{2}(gy,gy,y), [G_{2}(fx,fx,y) + G_{2}(gy,gy,x)]/2 \}.$$

Similarly,

$$G_1(fx, gy, gy) \le k \max \{ G_2(x, y, y), G_2(fx, x, x), G_2(gy, y, y), \\ [G_2(fx, y, y) + G_2(gy, x, x)]/2 \}$$

is satisfied. Now we can apply Theorem 2.1 by taking *S* and *T* as identity maps to obtain the common solutions of integral equations (3.1) in  $L^2(\Omega)$ .

### Remarks

(1) If we take f = g in Theorem 2.1, then it generalizes Corollary 2.3 in [8] to a more general class of commuting mappings in the setup of two ordered *G*-metric spaces.

(2) If we take S = T in Theorem 2.1, then Corollary 2.4 in [8] is a special case of Theorem 2.1.

(3) If  $S = T = I_X$  (: the identity mapping on *X*) in Theorem 2.1, then we obtain Corollary 2.5 in [8] in a more general setup.

(4) Corollary 2.6 of [8] becomes a special case of Theorem 2.1 if we take f = g and  $S = T = I_X$ .

(5) A *G*-metric naturally induces a metric  $d_G$  given by  $d_G(x, y) = G(x, y, y) + G(x, x, y)$ . If the *G*-metric is not symmetric, then the inequalities (2.1), (2.2), (2.13) and (2.14) do not reduce to any metric inequality with the metric  $d_G$ . Hence our results do not reduce to fixed point problems in the corresponding metric space  $(X, \leq, d_G)$ .

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

All authors read and approved the final manuscript.

### Acknowledgements

The authors thank the referees for their appreciation and suggestions regarding this work.

Received: 16 March 2012 Accepted: 22 August 2012 Published: 4 September 2012

### References

- 1. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289-297 (2006)
- Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID 189870 (2008)
- 3. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)
- Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of Fixed point Results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009)
- Mustafa, Z, Awawdeh, F, Shatanawi, W: Fixed point theorem for expansive mappings in G-metric spaces. Internat. J. Contemp. Math. Sci. 5, 2463-2472 (2010)
- Abbas, M, Rhoades, BE: Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 215, 262-269 (2009)
- 7. Abbas, M, Nazir, T, Radenović, S: Some periodic point results in generalized metric spaces. Appl. Math. Comput. 217, 4094-4099 (2010)
- Abbas, M, Khan, SH, Nazir, T: Common fixed points of *R*-weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl. 2011, 41 (2011)
- 9. Abbas, M, Cho, YJ, Nazir, T: Common fixed point theorems for four mappings in TVS-valued cone metric spaces. J. Math. Inequal. **5**, 287-299 (2011)
- Chugh, R, Kadian, T, Rani, A, Rhoades, BE: Property p in G-metric spaces. Fixed Point Theory Appl. 2010, Article ID 401684 (2010)
- Saadati, R, Vaezpour, SM, Vetro, P, Rhoades, BE: Fixed point theorems in generalized partially ordered G-metric spaces. Math. Comput. Model. 52, 797-801 (2010)
- Shatanawi, W: Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces. Fixed Point Theory Appl. 2010, Article ID 181650 (2010)
- 13. Abbas, M, Khan, AR, Nazir, T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. **217**, 6328-6336 (2011)
- Aydi, H, Damjanović, B, Samet, B, Shatanawi, W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443-2450 (2011)
- Chang, SS, Cho, YJ, Huang, NJ: Coupled fixed point theorems with applications. J. Korean Math. Soc. 33, 575-585 (1996)
- Cho, YJ, He, G, Huang, NJ: The existence results of coupled quasi-solutions for a class of operator equations. Bull. Korean Math. Soc. 47, 455-465 (2010)
- 17. Cho, YJ, Rhoades, BE, Saadati, R, Samet, B, Shatanawi, W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. **2012**, 8 (2012). doi:10.1186/1687-1812-2012-8
- Cho, YJ, Shah, MH, Hussain, N: Coupled fixed points of weakly F-contractive mappings in topological spaces. Appl. Math. Lett. 24, 1185-1190 (2011)
- Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54, 73-79 (2011)
- Gordji, ME, Cho, YJ, Baghani, H: Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces. Math. Comput. Model. 54, 1897-1906 (2011)
- 21. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. **2011**, 81 (2011)
- 22. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Am. Math. Soc. **132**, 1435-1443 (2004)
- Nieto, JJ, Lopez, RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005)
- 24. Abbas, M, Nazir, T, Radenović, S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 24, 1520-1526 (2011)
- Cho, YJ, Saadati, R, Wang, S: Common fixed point theorems on generalized distance in order cone metric spaces. Comput. Math. Appl. 61, 1254-1260 (2011)
- 26. Guo, D, Cho, YJ, Zhu, J: Partial Ordering Methods in Nonlinear Problems. Nova Science Publishers, New York (2004)
- Huang, NJ, Fang, YP, Cho, YJ: Fixed point and coupled fixed point theorems for multi-valued increasing operators in ordered metric spaces. In: Cho, YJ, Kim, JK, Kang, SM (eds.) Fixed Point Theory and Applications, vol. 3, pp. 91-98. Nova Science Publishers. New York (2002)
- Nieto, JJ, Pouso, RL, Rodríguez-López, R: Fixed point theorems in ordered abstract sets. Proc. Am. Math. Soc. 135, 2505-2517 (2007)
- 29. Nieto, JJ, Rodríguez-López, R: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 23, 2205-2212 (2007)
- 30. Sintunavarat, W, Cho, YJ, Kumam, P: Common fixed point theorems for *c*-distance in ordered cone metric spaces. Comput. Math. Appl. **62**, 1969-1978 (2011)
- 31. Jungck, G: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9, 771-779 (1986)
- 32. Kannan, R: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968)
- 33. Ćirić, Lj: Generalized contractions and fixed-point theorems. Publ. Inst. Math. 12(26), 19-26 (1971)
- 34. Ćirić, Lj: Fixed points for generalized multi-valued contractions. Mat. Vesnik 9(24), 265-272 (1972)
- 35. Abbas, M, Nazir, T, Radenović, S: Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces. Appl. Math. Comput. **218**, 9383-9395 (2012)

### doi:10.1186/1687-1812-2012-139

Cite this article as: Abbas et al.: Common fixed points of Ćirić-type contractive mappings in two ordered generalized metric spaces. *Fixed Point Theory and Applications* 2012 2012:139.