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1 Introduction and preliminaries

The study of a unique common fixed point of given mappings satisfying certain contrac-
tive conditions has been at the center of rigorous research activity. Mustafa and Sims [1]
generalized the concept of a metric in which a real number is assigned to every triplet of
an arbitrary set. Based on the notion of generalized metric spaces, Mustafa et al. [2-5]
obtained some fixed point theorems for some mappings satisfying different contractive
conditions. The existence of common fixed points in generalized metric spaces was initi-
ated by Abbas and Rhoades [6] (see also [7] and [8]). For further study of common fixed
points in generalized metric spaces, we refer to [9-12] and references mentioned therein.
Abbas et al. [13] showed the existence of coupled common fixed points in two generalized
metric spaces (for more results on couple fixed points, see also [14—21]).

The existence of fixed points in ordered metric spaces has been initiated in 2004 by
Ran and Reurings [22] and further studied by Nieto and Lopez [23]. Subsequently, several
interesting and valuable results have appeared in this direction [24-30].

The aim of this paper is to study common fixed point of four mappings that satisfy the
generalized contractive condition in two ordered generalized metric spaces.

In the sequel, R, R* and N denote the set of real numbers, the set of nonnegative integers
and the set of positive integers respectively. The usual order on R (respectively, on R*) will
be indistinctly denoted by < or by >.

In [1], Mustafa and Sims introduced the following definitions and results:

Definition 1.1 Let X be a nonempty set. Suppose that a mapping G: X x X x X — R*
satisfies the following conditions:

(a) Glx,y,2)=0ifx=y=zforallx,y,z€ X;

(b) 0< G(x,y,2) forall x,y,z € X with x #y;
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() Gx,x,9) <G(x,9,2) for all x,y,z € X with y # z;
(d) G(x,y,2) = G(p{x,y,2}), where p is a permutation of x,,z € X (symmetry);
(e) G(x,9,2) < Gx,a,a) + G(a,y,z) for all x,y,z,a € X.
Then G is called a G-metric on X and (X, G) is called a G-metric space.
Definition 1.2 A sequence {x,} in a G-metric space X is called:
(1) a G-Cauchy sequence if, for any € > 0, there exists ny € N (the set of natural
numbers) such that, for all n, m, [ > ny, G(x,1, X, X1) < &;
(2) G-convergent if, for any ¢ > 0, there exist x € X and ny € N such that, for all
n,m > ny, G(x, %, %) < &;
(3) A G-metric space X is said to be G-complete if every G-Cauchy sequence in X is

G-convergent in X.

It is known that {x,} is G-convergent to a point x € X if and only if G(x,,,x,,x) — 0 as

n,m —> 0.

Proposition 1.3 [1] Let X be a G-metric space. Then the following items are equivalent:
(1) A sequence {x,} in X is G-convergent to a point x € X;
2) G(xp, Xy x) — 0 as n,m — 00;
(3) G(x,,%,%) — 0 as n — oo;

(4) G(x,,%,2) — 0 asn— oo.

Definition 1.4 A G-metric on X is said to be symmetric if G(x,y,y) = G(y,x,x) for all
x,yeX.

Proposition 1.5 Every G-metric on X defines a metric dg on X by

dg(x,y) = G(x,9,9) + G(,,%) (11)
forall x,y € X.

For a symmetric G-metric, we have

dg(x,y) = 2G(x,,9) (1.2)
for all x,y € X. However, if G is non-symmetric, then the following inequality holds:

3

5 Gwy.9) =dex,y) <3G(x,5,9) (13)
for all v,y € X. It is obvious that

G(x,%,y) < 2G(x,,7)

forall x,y € X.

Now, we give an example of a non-symmetric G-metric.
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Table 1 G-metric

(x,y,2) Glx,y,2)
(1,1,1),2,22 0
(1,1,2,(1,2,1),2,1,1) 05
(1,2,2,(2,1,2,2,21) 10

Example 1.6 Let X ={1,2} and G: X x X x X — R* be a mapping defined by Table 1.
Note that G satisfies all the axioms of a generalized metric, but G(x,x,y) # G(x,y,y) for
two distinct points %,y € X.

Definition 1.7 Let f and g be self-mappings on a set X. If w = fx = gx for some x € X, then
the point x is called a coincidence point of f and g and w is called a point of coincidence of
fandg.

Definition 1.8 [31] Let f and g be self-mappings on a set X. Then f and g are said to be
weakly compatible if they commute at every coincidence point.

Definition 1.9 [8] Let X be a G-metric space and f, g be self-mappings on X. Then f and
g are said to be R-weakly commuting if there exists a positive real number R such that
G(fgx, fox, gfx) < RG(fx, fx,gx) for all x € X.

The maps f and g are R-weakly commuting on X if and only if they commute at their
coincidence points.

Recall that two mappings f and g on a G-metric space X are said to be compatible if, for
a sequence {x,} in X such that {fx,} and {gx,} are G-convergent to some ¢ € X,

lim G(fgx,, fgxu, gf*u) = 0.
n— o0

Definition 1.10 Let X be a nonempty set. Then (X, <X, G) is called an ordered generalized
metric space if the following conditions hold:

(a) G isa generalized metric on X;

(b) < isa partial order on X.

Definition 1.11 Let (X, <) be a partial ordered set. Then two points x,y € X are said to be
comparable if x <y or y < x.

Definition 1.12 [24] Let (X, <) be a partially ordered set. A self-mapping f on X is said
to be dominating if x < fx for all x € X.

Example1.13 [24] Let X = [0,1] be endowed with usual ordering and f : X — X be a map-
ping defined by fx = /x for some n € N. Since x < X = fx for all x € X, f is a dominating

mapping.

Definition 1.14 Let (X, <) be a partially ordered set. A self-mapping f on X is said to be
dominated if fx < x for all x € X.

Example 1.15 Let X = [0,1] be endowed with usual ordering and f : X — X be a mapping
defined by fx = x” for some n € N. Since fx = x” < xforall x € X, f is a dominated mapping.
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Definition 1.16 A subset K of a partially ordered set X is said to be well-ordered if every
two elements of /C are comparable.

2 Common fixed point theorems
In [32], Kannan proved a fixed point theorem for a single valued self-mapping T on a
metric space X satisfying the following property:

d(Tx, Ty) < h{d(x, Tx) + d(y, Ty))

for all x,y € X, where & € [0, %). If a self-mapping T on a metric space X satisfies the fol-
lowing property:

d(Tx, Ty) < ad(x,y) + bd(x, Tx) + cd(y, Ty) + e[d(x, Ty) + d(y, Tx)]

for all x,y € X, where a,b,c,e > 0 with a + b + ¢ + 2e < 1, then T has a unique fixed point
provided that X is T-orbitally complete (for related definitions and results, we refer to
[33]).

Afterwards, Ciri¢ [34] obtained a fixed point result for a mapping satisfying the follow-
ing property:

d(Tx, Ty) < qmax{d(x,y), d(x, Tx), d(y, Ty), w }

forallx,y € X, where 0 <g<1.

In this section, we show the existence of a unique common fixed point of four mappings
satisfying Ciri¢-type contractive condition in the framework of two ordered generalized
metric spaces.

Now, we start with the following result:

Theorem 2.1 Let (X, <) be a partially ordered set and G,, G, be two G-metrics on X such
that Gy(x,9,2) < Gi(x,9,%) for all x,y,z € X with a complete metric G, on X. Suppose that
18 Sand T are self-mappings on X satisfying the following properties:

Gi(fx, fx,gy) < kmax{G,(Sx, Sx, Ty), Ga(fx, fx, Sx), G2 (g, £9» T),
[Ga(fx, fx, Ty) + Ga(gy, gy, Sx)]/2} (2.1)

and

Gl (fx’gy)gy) = kmaX{ GZ (Sx> Ty; Ty)) GZ (fxr Sx, Sx)) G2 (gy; T}’, T)’),
[Ga(fx, Ty, Ty) + Ga(gy, Sx, Sx)]/2} (2.2)

for all comparable x,y € X, where k € [0,1). Suppose that f(X) € T(X) and g(X) C S(X),
f> g are dominated mappings and S, T are dominating mappings. If, for any nonincreasing
sequence {x,} in X with y, < x, foralln € N, y, — u implies that u < x,, and either

(a) f, S are compatible, f or S is continuous and g, T are weakly compatible
or
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(b) g T are compatible, g or T is continuous and f, S are weakly compatible,
then f, g, S and T have a common fixed point. Moreover, the set of common fixed points
of f, g S and T is well-ordered if and only if f, g, S and T have one and only one common
fixed point.

Proof Let xg be an arbitrary point in X. Since f(X) € T(X) and g(X) < S(X), we can define
the sequences {x,} and {y,} in X by

Yon = &Xon = SX2n+15 Yon+l :fx2n+1 = TXop42

for all n > 0. By the given assumptions, we have

Xop2 X Tx2n+2 :fx2n+1 = X2n+1>

Xopi1 = SXopi1 = §Xon X Xy

Thus, for all » > 0, we have x,,,1 < x,,. Suppose that G (Y2, You+1, Yous1) > 0 for all m > 0. If
not, then, for some m > 0, y,, = y,,,1. Indeed, if m = 2k, then yyx = y2x41 and from (2.1), it
follows that

G1(¥2k+1> Y2k+1, Y2k+2)

= G1(fX2k+1, k41, §¥2k+2)

< kmax{Ga(Sxaxs1, Saks1, Tak+2), Go (k15 fk1s SXaka1)s
Ga(gxak+2) X2kr2s Th2k12),
[ G (Fakens fookers THoksz) + Ga(@hks2, Goks2s Saki1) |12}

= kmax{ Gy (k> Yok» Yak+1)s G2 (Vaks1s Yoks1, Y2k)s G2 (Vaks2s Yake2s Yako1)s
[Ga (k1 Y2ke1 Vaks1) + Ga(Vaks2s Yok Yar) |12}

< kmax{Ga(yak, Y2k Y2k+1)s Ga (Vaks1s Yok Y2k)s G2 (Vaks2s Yaks2s Yaks1)s
[G2(2ks2s Yars2s Yaks1) + G2 (Vaksrs Yakats y2r) |12}

< kmax{Gi(yar> 210 Y2k41)s G1 (V2ks15 Y2ks1 V2k)» GL(V2kr20 Y2ks2s Y2ks1),
[G1(y2kr25 Y2ks25 Y2ks1) + G1(V2ks1, Yakats y2r) |12}

= kG1(y2k+2) Y2k+2) Y2k +1)- (2.3)

Again, from (2.2), it follows that

G1(Y2k+1) Y2k+25 Y2ks2)
= G1(fX2ks1, @Xoks2) X2k 42)
< kmax{Ga(Sxaxs1, Tk, Takr2), Go(fak 1, Sxoks1, SXai1)s
Ga(gwak+2, Took+2, Thok42),

[ G2 (Faks1s Tokszs Thkr2) + Ga(@hakszs S¥aksts S¥a1s1) |12}
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= kmax{ Gy (yak> Yak+1, Yaks1)» G2 (ake1s Yoko Yak)» Go (Vake2s Yakets Yorsn)s
[ G2 (aks1s Yaks1 Yaks1) + Go(Vakss Varo Y1) |12}

= kmax{ G2(yaks Y2k+1, Y2k41)s G2 (V2ks1 Yako Yok )» G2 (V2kr25 Y2ks 1 Yake1)s
[ G2 (k2 Yaksts Yoks) + Ga(Vakets Yars Y2u) | 12}

< kmax{G1(yar y21> Y2k41)s G2 (V2ks1s Yo Y2k GL (V22 Yaks1s Yok
[G1(3aks2s Y2ks1, Yaks1) + GL(Yakets Yaro Y1) | 12}

= kG1(Yok+2 Yok+1) Yoks1)-
Thus (2.3) and (2.4) imply that
G1(Vaks2> Yaks15 Vaks1) < K2G1(Vaks2s Yoks1, Voks1)

and SO yor,1 = Yors2 since k2 < 1.

Similarly, if m = 2k + 1, then one can easily obtain yt.2 = yak+3. Thus {y,} becomes a

constant sequence and y,, serves as the common fixed point of f, g, Sand T.
Suppose that Gi(y2u, Y2u+1,¥2us1) > 0 for all > 0.
If n € N is even, then # = 2k for some k € N; then it follows from (2.1) that

G1(Vns1> Yns15 V)
= G1(Yok+1» Yok+15Y2k)
= G1(fxaks1, fX2k41, §%2k)
< kmax{Gy(Sxaks1, Sx2k41, Tx24)> Go (ot ka1, S¥aks1)s
Ga(gxas @2k T21), [ G (o foakat, Took) + Go (s @2k, Sxkca1) |12}
= kmax{ G (yar> Y2 ¥2k-1)» G2 (Vaks1> Y2ks1, Y2k),
G2 (y2s Y2k Y2k-1)s [ G2 2k 15 Yarsts Y2k-1) + Ga(Vager Y2k yax) |12}
< kmax{Ga(yaks Y2k ¥ak-1)> G2 (Voks1, Yak1 Yak)»
[Gz()/2k+17y2k+1¢y2k) + Gy (sz’}’zk:ka—l)]/z}
< kmax{G1(¥us Yn» Yn-1)s Gt V15 Yns1, ¥ }»

which implies that

Gl(yn+1;yn+1:yn) = kGl()/nyyn:yn—l)'

If n € N is odd, then n = 2k + 1 for some k € N. Again, it follows from (2.1) that

Gl(yn+1’yn+1:yn)
= G1(V2ks2> Yok+2> Y2kc+1)
= G1(foks2, Hoke2 §¥2k41)

< kmax{Gy(Sxaxs2, S¥ars2, Th2k41)» Go (k2 fHoks2s S¥oks2)s

Page 6 of 17
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Ga(gXak+1, §¥2k+15 TX2k11),

[Ga(faks fakrns Thoka1) + Go(@aks1, Goke1, SEoks2) |12}
= kmax{ G (yars1, Y241, ¥21)» G2 (Vaks2 Yars2s Y2ks1)s

G2 (Y2ks1 Y2kes1s Y2k)s [ G2 V2ks2s Y2ks2s Y2k) + Ga(Vakeats Yarsts Yoks) 12}
= kmax{Gz Yaks1> Y2k+1 Y2k )» G2 (V2kr25 Yak2s Yaks1),

[ G2 (Vaks2s Yaks2 Yaks1) + Go(Vaksts Yoke1s Y2k) |12}
< kmax{Gi(yaxs1, Yake1, Y24), G1 (Vak2, Y2ks2 Yaks1) |

= kmaX{Gl(yn;ym_yn—l)) Gl(yn+17yn+l;yn)};

that is,
Gl(yn+11yn+1;yn) < kGl(ym_ym_yn—l)
for all » € N. Continuing the above process, we have

Gl(yn+11yn+1;yn) < knGl(ylrylxyO)

for all # € N. Thus, for all n,m € N with m > n, we have

Gl(ymrym’yn)
=< Gl(ymynﬂ,ywrl) + Gl()’n+1:}’n+2¢yn+2) L Gl()’m—hym,ym)
< K"Gi(yo, y1,01) + K" Gi(yo, y1, 1) + - - - + K" G1(yo, y1, 1)

m-n-1
:knGl()/o,ybyl) Z ki
i=0
< G ) ’
=1k 1()/0 N yl)

and so G1 (¥, Ym» ¥m) — 0 as m,n — oo. Hence {y,} is a G-Cauchy sequence in X. Since X

is G;-complete, there exists a point z € X such that lim,,_, o ¥, = z. Consequently, we have
lim yy,41 = lim fxo,, = lim Txy,0 =2
n—o0 n— o0 n—00
and
lim yy, = lim gxy, = lim Sxy,41 =2.
H—0Q Hn— 00 H— 00
If S is continuous and {f, S} is compatible, then

lim $%xy,,.1 = Sz,

n—00

lim fSxy,.1 = lim Sfxy, = Sz.
n—0o0 n—0o0
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Since Sxoy,41 = gxon < X2y, (2.1) gives

G1(fSx2+1,fS%241, &%)
< kmax { G2(SS%2141, SS%21415 Thon) G2 (fSxop+1, fS%on+1, SSX2141),

Ga(g%2ns %20 Tx21),
[ G2 (FSxoms2, fS%2ms2s T2n) + Go(g%2ms @¥2n» SSK2mi1) |12}

Taking the limit as # — 0o, we obtain

G1(Sz, Sz,2) < kmax{Ga(Sz, Sz,2), G2(Sz, Sz, 5z2), Ga (2, 2, 2),
[G2(Sz,S2,2) + Ga(z,2,52)]/2}

< kmax{G\(Sz, Sz,2), [ G1(Sz, Sz, 2) + Gi(2,2,52)] 12}

k
=5 [Gl(Sz, Sz,2) + Gi(z, z, Sz)],

which further implies that

Gi1(Sz,Sz,2) < hGi(z,z,Sz), (2.5)

where 4 = ﬁ Obviously, 0 </ <1.

Similarly, we obtain
Gi1(Sz,z,2) < hGi(z, Sz, Sz). (2.6)
From (2.5) and (2.6), we have
G1(Sz,Sz,2) < W2Gy(z, Sz, Sz)

and so Sz = z since 0 < 42 < 1. Since gxoy =< %, and gxy, — z as n — oo implies z < xy,,, it
follows from (2.1) that

G1(fz,fz, g%on)
< kmax{Gz (Sz, Sz, Txay), Go(fz, f2, S2), G2 (g%2n, 8X20> Thon),
[Ga(fz.fz, Txan) + Ga(gkon g%2m, S2)]/2}
= kmax{ Gy (2,2, T%21), G2 (12, /2, 2), Ga (g% @2 T2),

[GZ(fZ’fZI Tx2n) + GZ(ngn;ngmZ)]/Z},
which, taking the limit as n — oo, gives

Gi(fz.f2,2) < kmax{G1(2,2,2), G2 (fz.f2.2), G2 (2,2, 2),
[Gafz.f2.2) + Galz,2,2)] 12}
< kGi(fz,fz, 2). (2.7)
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Similarly, we obtain
Gl(fzr z, Z) S kGl(Z:fZ’fZ)' (2'8)

Therefore, by using the above two inequalities, we have fz = z.
Since f(X) C T(X), there exists a point v € X such that fz = Tv. Since v < Tv = fz < z, it
follows from (2.1) that

Gi(fz.fz.gv) < kmax{G,(Sz, Sz, Tv), Ga(fz,fz, Sz), Ga(gv, gv, TV),
[Ga(fz.fz, TV) + Ga(gv, gv, S2)]/2}
= kmax{Gy(fz,fz.f2), Ga(fz. fz. f2), G2 (gv, gv, f2),
[Ga(fz.fz.f2) + Galgv,gv. f2)]/2}
< kG (fz,gv,gv). (2.9)

Similarly, we get

Gi(fz, gv,gv) < kG1(fz, fz, gv). (2.10)
Thus (2.9) and (2.10) imply fz = gv. Since g and T are weakly compatible, we have gz =

gfz =gTv = Tgv = Tfz = Tz, and so z is the coincidence point of g and T'.
Now, from (2.1), we have

Gi(z,2,g2) = Gi(fz,fz,g2)
< kmax{Gx(Sz, Sz, Tz), G (fz, fz, Sz), G2 (g2, g2, T2),
[Ga(fz.fz, T2) + Ga(gz, g2, S2)]/2}
= kmax{G,(z,2,2), G2(2,2,2), G2(gz, g2, 82),
[G2(2,2,82) + Ga(gz,82,2)]/2}
= kmax{G,(z,2,£), [ G2(2,2.g2) + G2(gz, 2,2) |12}

< l_([Gl(Z: 2,82) + G1(g2,82,2) ),
that is,
Gi(z,2,22) < hGi(gz, gz, 2), (2.11)
where /1 = ﬁ Obviously, 0 < & < 1. Using (2.2), we have
Gi(z, g2z, 82) < hGi(z,2,g2). (2.12)
Combining the above two inequalities, we get

Gl (ZI z, gz) = hz Gl (Z; ngz)

Page9of 17
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and so z = gz. Therefore, fz = gz = Sz = Tz = z. The proof is similar when f is continuous.
Similarly, if (b) holds, then the result follows.

Now, suppose that the set of common fixed points of f, g, S and T is well ordered. We
show that a common fixed point of f, g, S and T is unique. Let # be another common fixed
point of f, g, S and T. Then, from (2.1), we have

Gi(z,z,u) = Gi(fz,fz,gu)
<k rnax{ G2(Sz, Sz, Tu), Go(fz, fz, Sz), Go(gu, gu, Tu),
[Ga(fz.fz, Tu) + G (gu, gu, S2) | /2}
= kmax{Ga(z,z, 1), G2(2,2,2), G (u, u, 1),

[Gg(z, z,u) + Gy (u, u, z)]/Z}

[Gz(z, z,u) + Go(u, u, z)]

— N X

k
< —Gi(z,z,u) + EGI(M’ u,z),

N

that is,
Gi(z,z,u) < kGi(z, u, u).

Similarly, using (2.2), we obtain
Gi(z,u,u) < kGi(z,z, u).

Combining the above two inequalities, we get
Gi(z,z,u) < k*Gi(z,z,u)

and hence z = u.
The converse follows immediately. This completes the proof. O

Example 2.2 Let X = {0,1,2,3} be endowed with the usual ordering and G;, G, be two
G-metrics on X defined by Table 2. Then G; and G, are non-symmetric since G;(1,1,0) #

Table 2 Two G-metrices

(x,y,2) Gilx,y,2)  Galx,y,2)

(0,0,0),(1,1,1),(2,2,2),3,3,3), 0 0
0,0,2),(0,2,0),(2,0,0),(0,2,2),(2,0,2),(2,2,0), 4 3
(0,0,1),(0,1,0), (1,0,0), (0,0,3), (0,3,0), (3,0,0),
0,1,1),(1,0,1),(1,1,0), (0,3,3), 3, o 3),(3,3,0), 8 6
(1,1,2),01,2,1),2,1,1),01,2,2),2,1,2),(2,2,1),
(1,1,3),(1,3,1),(3,1,1),(1,3,3), 3,1,3), (3,3, 1),
(2,2,3),(2,3,2),3,2,2),(2,3,3), 3, 2 3),(3,3,2),
0,1,2),(0,1,3),(0,2,1),(0,2,3),(0,3,1), (0,3,2), 8 6
(1,0,2),(1,0,3),(1,2,0), (1,2,3), (1,3,0), (1,3,2),
(2,0,1),(2,0,3),(2,1,0),(2,1,3),(2,3,0), 2,3,1),
(3,0,1),(3,0,2),(3,1,0),3,1,2), 3,2,0), (3,2, 1),
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Table 3 Self maps

fix) glx) Skx) T(x)
0 0 0 0

X
0
1 0 0 2 2
2 0 2 2 3
3 0 0 3 3

Table 4 Dominated and dominating maps

xeX fisdominated gisdominated Sisdominating T isdominating
x=0 f(0)=0 g(0)=0 0=5(0) 0=T(0)

x=1 f1)=0<1 g(1)=0<1 1<2=5(1) 1<2=T(1)
X=2 f2)=0<2 g2)=2 2=502) 2<3=T(2)
x=3 f3)=0<3 g(3)=0<3 3=503) 3=T703)

G1(1,0,0) and G»(1,1,0) # G3(1,0,0) with Ga(x,7,2) < Gi(x,y,2) for all x,y,z € X. Let
f,8S,T: X — X be the mappings defined by Table 3. Clearly, f(X) C T(X), g(X) C S(X),
f, g are dominated mappings and S, T are dominating mappings, see Table 4.

Now, we shall show that for all comparable x,y € X, (2.1) and (2.2) are satisfied with
k= % € [0,1). Note that for all x,y € {0,1, 3}, G(fx,fx,gy) = G(fx,gy,gy) = 0 and (2.1), (2.2)
are satisfied obviously.

(1) Whenx =0and y =2, then fx=0,gy=2,Sx=0, Ty =3 and so

Gl(fxrfx)gy) = Gl(or 0’ 2) =4
3 3 3
—(6)=—-G2(2,2,3) = —Gy(gy, gy, )
<20)=,6:02.23) = G:(ee 1))
< kmax{Gz (Sx, Sx, Ty); G2(fxrfx; Sx)r G2(gyrgy’ TJ’):

[Gg (fx. fx, Ty) + Ga(gy, £ Sx)]/z}

and

Gl(fx’gy’gy) = GI(O; 2) 2) = 4
3 3 3
2(6) = =G1(2,3,3) = ~Galgy, Ty, T
<26)=,6:233) = Gley. 1 1Y)
< kmax{G,(Sx, Ty, Ty), G2(fx, Sx, Sx), G2 (gy, Ty, Ty),

[G2 (fx, Ty, Ty) + Go(gy, Sx, Sx)]/2}.

(2) Whenx =1and y =2, then fx =0, gy =2, Sx =2, Ty = 3 and so

Gl(fxyfx’gy) = G}(O, 0’ 2) =4
3 3 3
—(6) = —G2(2,2,3) = =Gy (gy, gy, T}
<4() 2 2( ) 2 2(20,29, T)

< kmax{Ga(Sx, Sx, Ty), G (fx, fx, Sx), G2 (g3, 2, T¥),

[Gafic fx, Ty) + Galgy, gy, )] 12}

Page 11 of 17
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and

Gl(fx’gy’gy) = GI(O; 2: 2) = 4

3 3 3

—(6) = =G2(2,3,3) = =Ga(gy, I, T}

< (0 =7G2(2,3,3) = Galey, Ty, T)

< kmax{ Gy (Sx, Ty, Ty), Ga(fx, Sx, Sx), Ga(gy, Ty, Ty),

[Ga2(fx, Ty, Ty) + Ga(gy, Sx, Sx)]/2}.
(3) Whenx=2andy=2, thenfx=0,gy=2,Sx=2, Ty=3 and so

Gi(fx.fx,gy) = G1(0,0,2) = 4
3 3 3
< 2(6)=,62(2.2,3) = Gao(Sx. 5%, Ty)
< kmax{G(Sx, Sx, Ty), G (fx, fx, Sx), G2 (g9, 29, T¥),

[Gg (fx. fx, Ty) + Ga(gy, £y Sx)]/z}

and

Gl(fx’gy’gy) = GI(O; 2) 2) = 4

3 3 3

—(6) = —G2(2,3,3) = —Go(Sx, Ty, T)
<4()42( )42(xyy)

< kmax { Gy (Sx, Ty, Ty), Ga(fx, Sx, Sx), Go(gy, Ty, Ty),

[Ga(fx, Ty, Ty) + Ga(gy, Sx, Sx)]/2}.
(4) Finally, when x =3 and y = 2, then fx =0, gy =2, Sx =3, Ty =3 and so

Gi(fx,fx,gy) = G1(0,0,2) =4
3 3 3
—(6)=—-G2(2,2,3) = —Gy(gy, gy, )
<10)=,6:2.23) = G:eg 1Y)
< kmaX{G2 (Sx, Sx; Ty)r Gz(fx;fx1 Sx); G2(gy’gy7 T}/);

[Gafi fix, Ty) + Galgy, gy, %)) /2

and

Gi(fx,gy,8y) = G1(0,2,2) = 4
3 3 3
_6=_G 273;3=_G ,T,T
<2(6)=26:2,3,3) = S G@n T )
< kmax{G,(Sx, Ty, Ty), G (fx, Sx, Sx), G2(gy, Ty, T),

[Ga(fx, Ty, Ty) + Ga(gy, Sx, Sx) ] /2}.

Thus, for all cases, the contractions (2.1) and (2.2) are satisfied. Hence all of the conditions

of Theorem 2.1 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and g.

Page 12 of 17
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If we consider the same set equipped with two metrics given by d(x,7) = |x — y| and
da(x,y) = %|x —y| for all x,y € X, then for x =1 and y = 2, we have

di(fx,gy) = di(0,2) =2 £ 2k
< kmax{d5(2,3),d5(0,2),d>(2,3), [d2(0,3) + d»(2,2)]/2}

= kmax{dz (Sx, Ty), da(fx, Sx), do (gy, Ty), [dz (fx, Ty) + do(gy, Sx)]/ 2}

for any k € [0,1). So corresponding results in ordinary metric spaces cannot be applied in
this case.

Theorem 2.1 can be viewed as an extension of Theorem 2.1 of [8] to the case of two
ordered G-metric spaces.

Since the class of weakly compatible mappings includes R-weakly commuting mappings,
Theorem 2.1 generalizes the comparable results in [8].

Corollary 2.3 Let (X, <) be a partially ordered set and Gy, Gy be two G-metrics on X such
that Gy(x,y,2) < Gi(x,y,2) for all x,y,z € X with a complete metric Gy on X. Suppose that
f, g Sand T are self-mappings on X satisfying the following properties:

G1(fx, fx, gy) < a1G2(Sx, Sx, Ty) + a2 Go(Sx, Sx, fx) + a3 Go(Ty, Ty, gy)

+ as[ G (Sx, Sx, gy) + Go(Ty, Ty, f) ] (2.13)

and

G1(fx, 29, 8y) < a1G2(Sx, Ty, Ty) + a2 Go(Sx, fx, fx) + a3 G2 (Ty, gy, g)
+ as[G2(Sx, g9, 2y) + Go (T, f, fx) | (2.14)

for all comparable x,y € X, where a1 + ay + as + 2a4 < 1. Suppose that f(X) € T(X),
g(X) € S(X) and f, g are dominated mappings and S, T are dominating mappings. If; for
any nonincreasing sequence {x,} with y, < x, foralln € N, y, — u implies that u < x,, and
either

(a) f, S are compatible, f or S is continuous and g, T are weakly compatible
or

(b) g T are compatible, g or T is continuous and f, S are weakly compatible,
thenf, g, S and T have a common fixed point in X. Moreover, the set of common fixed points
off, g S and T is well-ordered if and only if f, g, S and T have one and only one common
fixed point in X.

Example 2.4 Let X = [0,1] be endowed with the usual ordering and G;, G, be two G-
metrics on X given in [13]:

Gila,b,c)=|la-b|+|b—c|+|c—al,

1
Gy(a,b,c) = 5[|a—b| +|b—c|+ |c—a|].
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Define the mappings f,g,S, 7: X — X as

ifx € [0, %), x 3x 5x
ifxe(3,1), 2 2

AR BIR

for all x € X. Clearly, f, g are dominated mappings and S, T are dominating mappings
with f(X) C T(X) and g(X) C S(X). Also, f, S are compatible, f is continuous and g, T are
weakly compatible. Now, for all comparable x,y € X, we check the following cases:

(1) Ifx,y €0, %), then we have

1 1
Gi(fx, fx,gy) = o lx -3yl < E(x +3y)

3 /17 3/9
S| =x)+={-y
10<12 ) 10 <4 )
= ayGo(fx, fx, Sx) + as G2 (gy, gy, Ty)

< a1Go(Sx, Sx, Ty) + a2 Ga(fx, fx, Sx) + asGa(gy, gy, Ty)

+ as[Go(fx, fx, Ty) + G2 (gy, £9> S%) .

(2)Ifx €O, %) andy € [%,1], then we have

1 1
VA2 = —lx-2y < — 2
Gi(fx, fx,gy) 3 lx —2y] < 12(x+ )

3 (17 3 /14
<—|—=x)+=—=y
10 <12 ) 10 < 6 )
= ay Go(fx, fx, Sx) + azGa(gy, gy, Ty)
< a1G5(Sx, Sx, Ty) + a2 Ga(fx, fx, Sx) + a3 G»(gy, gy, Ty)

+ as[Go(fx, fx, Ty) + G2 (gy, g9» S%) |

(3)Ifye|o, %) and x € [%,1], then we have

1 1
Gi(fx, fx,gy) = o lx -3yl < E(x +3y)

3 (17 3/9
<—|=x)+—|->y
10 <12 ) 10 <4 )
= ay Go(fx, fx, Sx) + azGa(gy, gy, Ty)
< a1Go(Sx, Sx, Ty) + axGa(fx, fx, Sx) + asGa(gy, gy, Ty)

+ as[ G (fx, fx, Ty) + Ga(gy, gy, Sx) |-

(4)Ifx,y e [%, 1], then we obtain

1 1
3N = X -2y < — 2
Gi(fx, fx,gy) B lx —2y] < 12(x+ )

3 (17 3 (14
S—\=x)+—=|—y
10<12 ) 10<6 )
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= ay G (fx, fx, Sx) + a3 Ga(gy, gy, Ty)
< a1G2(Sx, Sx, Ty) + ax G (fx, fx, Sx) + as G2(gy, gy, Ty)

+ a4[G2(fx,fx, Ty) + Ga(gy, 2, Sx)].

Thus (2.13) is satisfied with a; = a4 = % and ay = az = %, where a; + ay + a3 + 2a4 < 1.
Similarly, (2.14) is satisfied. Thus all the conditions of Corollary 2.3 are satisfied. Moreover,

0 is the unique common fixed point of f and g.

3 Application

Let X = L*(Q2), the set of comparable functions on  whose square is integrable on Q
where Q = [0,1], be a bounded set in R. We endow X with the partial ordered < given by:
x%y€X,x <xy<s x(t) < y(t), for all £ € Q. We consider the integral equations

x(t) = /Q 78} (t,s,x(s)) ds — c(t),
(3.1)

) - /Q a2 (6,5,5(6)) ds - c(t),

where g1,42 : 2 X 2 xR — Rand c: @ — R, to be given continuous mappings. Recently,
Abbas et al. [35] obtained a common solution of integral equations (3.1) as an application
of their results in the setup of ordered generalized metric spaces. Here we study a sufficient
condition for the existence of a common solution of integral equations in the framework
of two generalized metric spaces. Define G;, Gy : X X X x X — R* by

G (x,,2) = sup|x(t) — ()| + sup|y(£) — z(£)| + sup|z(t) — x(2)|,
teQ teQ teQ
1
Grw3,2) = 5 [sup|x(t) — y()| + sup|y() — z(£)| + sup|z(s) - x(t)|].
teQ teQ teQ
Obviously, Gy (x,y,z) < Gi(x,y,2) for all x, 7,z € X. Suppose that the following hypotheses

hold:
(i) Foreachs,te Q,

/ 01(6,5,u(5)) ds < u(s)
Q
and
/ 70 (t, S, u(s)) ds < u(s)
Q

hold.
(ii) There exists r: Q — Q such that

/Q|q1 (t:s,u(t)) — g2(£,5,v(2)) | dt <r(t) |u(t) - v(t)|

for each s,t € Q with sup, ., r(t) < k where k € [0,1).
Then the integral equations (3.1) have a common solution in L2(£2).
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Proof Define fx(t) = [, q1(¢,s,%(¢)) dt — c(¢) and gx(t) = [, g2(t,5,%(2)) dt — c(t). As fx(t) <
x(¢) and gx(t) < x(t), so f and g are dominated maps. Now, for all comparable x,y € X,

Gi(fx, fx,gy) = 2 sup |fx(t) - gy(0)|

= 2sup
teQ

/ q1(6,5,%(2)) dt—/ 7> (t,5,y(0)) dt’
Q

Q
<2sup [ |qi1(t:5%(8) — q2(t: 5, ¥(2))| dt
teQ JQ

< 2supr(t) |x() = ¥(2)|

<2k sup|x(t) —y(t)|
teQ

= kGZ (x; Y y)
< kmax{G(x,x,y), G (fx, fx, x), G2(gy,87,9),
[Galf, f,) + Ga(gy, g9, )] 12}

Similarly,

Gl(fx’gy’gy) S kmaX{GZ(xry'y): Gz(fx’x’ x)! GZ(gy;y;y);
[Gz (7%, 3,9) + Ga(gy, x, x)]/2}

is satisfied. Now we can apply Theorem 2.1 by taking S and T as identity maps to obtain
the common solutions of integral equations (3.1) in L2(2). a

Remarks

(1) If we take f = g in Theorem 2.1, then it generalizes Corollary 2.3 in [8] to a more
general class of commuting mappings in the setup of two ordered G-metric spaces.

(2) If we take S = T in Theorem 2.1, then Corollary 2.4 in [8] is a special case of Theo-
rem 2.1.

(3) If S = T = Ix (: the identity mapping on X) in Theorem 2.1, then we obtain Corol-
lary 2.5 in [8] in a more general setup.

(4) Corollary 2.6 of [8] becomes a special case of Theorem 2.1 if we take f = g and S =
T =Ix.

(5) A G-metric naturally induces a metric dg given by dg(x,y) = G(x,y,y) + G(x,x,). If
the G-metric is not symmetric, then the inequalities (2.1), (2.2), (2.13) and (2.14) do not
reduce to any metric inequality with the metric dg. Hence our results do not reduce to
fixed point problems in the corresponding metric space (X, <X, dg).
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