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Abstract
The purpose of this article is to use the modified Halpern-Mann type iteration
algorithm for total quasi-φ-asymptotically nonexpansive semigroups to prove strong
convergence in Banach spaces. The main results presented in this paper extend and
improve the corresponding results of many authors.
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1 Introduction
Throughout this article, we assume that E is a real Banach space with norm ‖ · ‖, E∗ is
the dual space of E; 〈·, ·〉 is the duality pairing between E and E∗; C is a nonempty closed
convex subset of E;N andR denote the natural number set and the set of nonnegative real
numbers respectively. The mapping J : E → E∗ defined by

J(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖;∥∥f ∗∥∥ = ‖x‖,x ∈ E

}

is called the normalized duality mapping. Let T : C → C be a nonlinear mapping; F(T)
denotes the set of fixed points of mapping T .
Alber et al. [] introduced amore general class of asymptotically nonexpansivemappings

called total asymptotically nonexpansive mappings and studied the methods of approxi-
mation of fixed points. They are defined as follows.

Definition . Let T : C → C be a mapping. T is said to be total asymptotically non-
expansive if there exist sequences {μn}, {νn} with μn,νn →  as n → ∞ and a strictly
increasing continuous function ψ : R → R with ψ() =  such that ‖Tnx – Tny‖ ≤
‖x – y‖ +μnψ(‖x – y‖) + νn holds for all x, y ∈ C and all n ∈N.
T is said to be total asymptotically quasi-nonexpansive if F(T) 
= ∅, there exist sequences

{μn}, {νn}withμn,νn →  as n→ ∞ and a strictly increasing continuous functionψ :R →
R with ψ() =  such that ‖Tnx – p‖ ≤ ‖x – p‖ +μnψ(‖x – p‖) + νn holds for all x ∈ C,
p ∈ F(T) and all n ∈N.

Chidume and Ofoedu [] introduced an iterative scheme for approximation of a com-
mon fixed point of a finite family of total asymptotically nonexpansive mappings and
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total asymptotically quasi-nonexpansive mappings in Banach spaces. Chidume et al. []
gave a new iterative sequence and necessary and sufficient conditions for this sequence to
converge to a common fixed point of finite total asymptotically nonexpansive mappings.
Chang [] established some new approximation theorems of common fixed points for a
countable family of total asymptotically nonexpansive mappings in Banach spaces.
Recently, many researchers have focused on studying the convergence of iterative algo-

rithms for quasi-φ-asymptotically nonexpansive (see [–]) and total quasi-φ-asymptoti-
cally nonexpansive (see [–]) mappings. Ye et al. [] used a new hybrid projection al-
gorithm to obtain strong convergence theorems for fixed point problems and generalized
equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces.
Kim [] used hybrid projection methods for equilibrium problems and fixed point prob-
lems of the asymptotically quasi-φ-nonexpansive mappings to prove the strong conver-
gence theorems. Saewan [] used the shrinking projectionmethod for solving generalized
equilibrium problems and common fixed points for asymptotically quasi-φ-nonexpansive
mappings.
A Banach space E is said to be strictly convex if ‖x+y‖

 <  for ‖x‖ = ‖y‖ =  and x 
= y; it is
also said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any two sequences {xn}, {yn}
in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖xn+yn‖

 = . Let U = {x ∈ E : ‖x‖ = } be the unit
sphere of E, then the Banach space E is said to be smooth provided limt→

‖x+ty‖–‖y‖
t exists

for each x, y ∈U . It is also said to be uniformly smooth if the limit is attained uniformly for
each x, y ∈ U . It is well known that if E is reflexive and smooth, then the duality mapping
J is single valued. A Banach space E is said to have the Kadec-Klee property if a sequence
{xn} of E satisfies that xn ⇀ x ∈ E and ‖xn‖ → x, then xn → x. It is known that if E is
uniformly convex, then E has the Kadec-Klee property.
In the sequel, we assume that E is a smooth, strictly convex and reflexive Banach space

and C is a nonempty closed convex subset of E. We use φ : E × E → R+ to denote the
Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

It is obvious that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E, ()

and

φ
(
x, J–

(
λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z). ()

Following Alber [], the generalized projection �Cx : E → C is defined by

�Cx = arg inf
y∈C φ(y,x), ∀x ∈ E.

The quasi-φ-asymptotically nonexpansive and total quasi-φ-asymptotically nonexpansive
mappings are defined as follows.
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Definition . Amapping T : C → C is said to be quasi-φ-asymptotically nonexpansive,
if F(T) 
= ∅, there exist sequences {kn} ⊂ [, +∞) with kn →  as n→ ∞ such that

φ
(
p,Tnx

) ≤ knφ(p,x)

holds for all x ∈ C, p ∈ F(T) and all n ∈N.
A mapping T : C → C is said to be total quasi-φ-asymptotically nonexpansive, if F(T) 
=

∅, there exist sequences {μn}, {νn} with μn,νn →  as n → ∞ and a strictly increasing
continuous function ψ :R →R with ψ() =  such that

φ
(
p,Tnx

) ≤ φ(p,x) +μnψ
(
φ(p,x)

)
+ νn

holds for all x ∈ C, p ∈ F(T) and all n ∈N.

In recent years, many researchers have considered the convergence of asymptotically
nonexpansive semigroups [, ]. The asymptotically nonexpansive semigroups are de-
fined as follows.

Definition . [] One-parameter family T := {T(t) : t ≥ } of mappings from C into
itself is said to be an asymptotically nonexpansive semigroup on C, if the following con-
ditions are satisfied:
(a) T()x = x for each x ∈ C;
(b) T(t + s)x = T(s)T(t) for any t, s ∈ R+ and x ∈ C;
(c) For any x ∈ C, the mapping t → T(t)x is continuous;
(d) There exist sequences {kn} ⊂ [, +∞) with kn →  as n→ ∞ such that

∥∥Tn(t)x – Tn(t)y
∥∥ ≤ kn‖x – y‖

holds for all x, y ∈ C, n ∈N.

We use F(T) to denote the common fixed point set of the semigroup T, i.e., F(T) =⋂
t≥ F(T(t)).
Chang [] used the modified Halpern-Mann type iteration algorithm for quasi-φ-

asymptotically nonexpansive semigroups to prove the strong convergence in the Banach
space. The quasi-φ-asymptotically nonexpansive semigroups are defined as follows.

Definition . [] One-parameter family T := {T(t) : t ≥ } of mappings from C into
itself is said to be a quasi-φ-asymptotically nonexpansive semigroup onC if the conditions
(a), (b), (c) in Definition . and following condition (e) are satisfied:
(e) For all x, y ∈ C, p ∈ F((T)), t ≥ , there exist sequences {kn} ⊂ [, +∞) with kn → 

as n→ ∞, such that

φ
(
p,Tn(t)x

) ≤ knφ(p,x)

holds for all n ∈N.
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2 Preliminaries
This section contains some definitions and lemmas which will be used in the proofs of our
main results in the following section.

Definition . One-parameter family T := {T(t) : t ≥ } of mappings from C into itself is
said to be a total quasi-φ-asymptotically nonexpansive semigroup on C if conditions (a),
(b), (c) in Definition . and following condition (f ) are satisfied:
(f ) If F(T) 
= ∅, there exist sequences {μn}, {νn} with μn,νn →  as n→ ∞ and a strictly

increasing continuous function ψ :R→R with ψ() =  such that

φ
(
p,Tn(t)x

) ≤ φ(p,x) +μnψ
(
φ(p,x)

)
+ νn

holds for all x ∈ C, p ∈ F(T) and all n ∈N.
A total quasi-φ-asymptotically nonexpansive semigroup T is said to be uniformly Lips-

chitzian if there exists a bounded measurable function L : [,∞) → (, +∞) such that

∥∥T (n)(t)x – T (n)(t)y
∥∥ ≤ L(t)‖x – y‖, ∀x, y ∈ C, t ≥ ,n ∈N.

The purpose of this article is to use the modified Halpern-Mann type iteration algo-
rithm for total quasi-φ-nonexpansive asymptotically semigroups to prove the strong con-
vergence in Banach spaces. The results presented in the article improve and extend the
corresponding results of [, , –, , , ] and many others.
In order to prove the results of this paper, we shall need the following lemmas:

Lemma . (See []) Let E be a smooth, strictly convex and reflexive Banach space and
C be a nonempty closed convex subset of E. Then the following conclusions hold:

(i) φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y) for all x ∈ C, y ∈ E;
(ii) If x ∈ E and z ∈ C, then z = �Cx⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C;
(iii) For x, y ∈ E, φ(x, y) =  if and only if x = y.

Lemma . [] Let E be a uniformly convex and smooth Banach space and let {xn} and
{yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn} is bounded, then ‖xn –
yn‖ → .

Lemma . [] Let E be a real uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, and C be a nonempty closed convex subset of E. Let T : C → C be
a closed and total quasi-φ-asymptotically nonexpansivemapping defined byDefinition ..
If ν = , then the fixed point set F(T) of T is a closed and convex subset of C.

3 Main results
Theorem . Let E be a real uniformly convex and uniformly smooth Banach space and
C be a nonempty closed convex subset of E. Let T := {T(t) : t ≥ } be a total quasi-φ-
asymptotically nonexpansive semigroup from C into itself defined by Definition .. Sup-
pose T := {T(t) : t ≥ } is closed, uniformly L-Lipschitz and F(T) :=

⋂
t≥ F(T(t)) 
= ∅. Sup-

pose there exists M∗ >  such that ψ(ηn) ≤ M∗ηn. Let αn be a sequence in [, ] and βn be

http://www.fixedpointtheoryandapplications.com/content/2012/1/142
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a sequence in (, ) satisfying the following conditions: limn→∞ αn = ,  < lim infn→∞ βn <
lim supn→∞ βn < . Let xn be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily; C = C,

ln,t = βnJxn + ( – βn)JTn(t)xn,

yn,t = J–[αnJx + ( – αn)ln,t], t ≥ ,

Cn+ = {z ∈ Cn : supt≥ φ(z, yn,t)≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn},
xn+ = �Cn+x, ∀n≥ ,

()

where ξn = μnM* supp∈F(T) φ(p,xn). If ν =  and F(T) is bounded in C, then the iterative
sequence {xn} converges strongly to a common fixed point x* ∈ F(T) in C.

Proof
(I) We prove F(T) and Cn(n ∈N) all are closed and convex subsets in C.
It follows from Lemma . that F(T(t)), t ≥  is a closed and convex subset of C. So F(T)

is closed and convex in C. By the assumption we know that C = C is closed and convex.
We suppose that Cn is closed and convex for some n ≥ . By the definition of φ, we have
that

Cn+ =
{
z ∈ Cn : sup

t≥
φ(z, yn,t) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

}

=
⋂
t≥

{
z ∈ C : φ(z, yn,t) ≤ αnφ(z,x) + ( – αn)φ(z,xn) + ξn

} ∩Cn

=
⋂
t≥

{
z ∈ C : αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jyn,t〉

≤ αn‖x‖ + ( – αn)‖xn‖ – ‖yn,t‖
} ∩Cn.

This shows that Cn+ is closed and convex.
(II) We prove that F(T) ⊂ Cn.
In fact F(T)⊂ C = C. Suppose that F(T) ⊂ Cn, n≥ . Let

ωn,t = J–
(
βnJxn + ( – βn)JTn(t)xn

)
, t ≥ .

It follows from () that for any u ∈ F(T) ⊂ Cn, we have

φ(u, yn,t) = φ
(
u, J–

(
αnJx + ( – αn)Jωn,t

))

≤ αnφ(u,x) + ( – αn)φ(u,ωn,t),

and

φ(u,ωn,t) = φ
(
u, J–

(
βnJxn + ( – βn)JTn(t)xn

))

≤ βnφ(u,xn) + ( – βn)φ
(
u,Tn(t)xn

)

≤ βnφ(u,xn) + ( – βn)
[
φ(u,xn) +μnψ

(
φ(u,xn)

)
+ νn

]

≤ φ(u,xn) + ( – βn)
(
μnM*φ(u,xn) + νn

)
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/142
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Therefore, we have

sup
t≥

φ(u, yn,t) ≤ αnφ(u,x) + ( – αn)
[
φ(u,xn) + ( – βn)

(
μnM*φ(u,xn) + νn

)]

≤ αnφ(u,x) + ( – αn)φ(u,xn) +μnM* sup
p∈F(T)

φ(p,xn) + νn

= αnφ(u,x) + ( – αn)φ(u,xn) + ξn.

Where ξn = μnM* supp∈F(T) φ(p,xn) + νn. This shows that u ∈ Cn+, so F(T) ⊂ Cn+.
(III) We prove that {xn} is a Cauchy sequence in C.
Since xn = �Cnx, from Lemma .(ii), we have

〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈ Cn.

Again since F(T) ⊂ Cn, n≥ , we have

〈xn – u, Jx – Jxn〉 ≥ , ∀u ∈ F(T).

It follows from Lemma .(i) that for each u ∈ F(T), n ≥ ,

φ(xn,x) = φ(�Cnx,x) ≤ φ(u,x) – φ(u,xn) ≤ φ(u,x).

Therefore, φ(xn,x) is bounded. By virtue of (), xn is also bounded. Since xn = �Cnx and
xn+ = �Cn+x ∈ Cn+ ⊂ Cn, we have φ(xn,x) ≤ φ(xn+,x). This implies that {φ(xn,x)} is
nondecreasing. Hence, the limit limn→∞ φ(xn,x) exists. By the construction of Cn, for any
positive integer m ≥ n, we have Cm ⊂ Cn and xm = �Cx ∈ Cn. This shows that

φ(xm,xn) = φ(xm,�Cnx)

≤ φ(xm,x) – φ(xn,x) → , asm,n→ ∞.

It follows from Lemma . that limn,m→∞ ‖xm – xn‖ = . Hence xn is a Cauchy sequence
in C. Since C is complete, without loss of generality, we can assume that xn → p* (some
point in C). By the assumption, we have that

lim
n→∞ ξn = lim

n→∞

[
μnM* sup

p∈F(T)
φ(p,xn) + νn

]
= . ()

(IV) Now we prove p* ∈ F(T).
Since xn+ ∈ Cn+ and αn → , it follows from () and () that

sup
t≥

φ(xn+, yn,t) ≤ αnφ(xn+,x) + ( – αn)φ(xn+,xn) + ξn →  as n→ ∞.

Since xn → p*, by Lemma ., for each t ≥ , we have

lim
n→∞ yn,t = p*. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/142
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Since xn is bounded, and T = {T(t), t ≥ } is a total quasi-φ-asymptotically nonexpansive
semigroup with sequence μn,νn,p ∈ F(T), we have

φ
(
p,Tn(t)x

) ≤ φ(p,x) +μnψ
(
φ(p,x)

)
+ νn ≤ φ(p,x) +μnM*φ(p,x) + νn.

This implies that {Tn(t)xn}t≥ is uniformly bounded. Since for each t ≥ ,

‖ωn,t‖ =
∥∥J–(βnJxn + ( – βn)JTn(t)xn

)∥∥
≤ βn‖xn‖ + ( – βn)

∥∥Tn(t)xn
∥∥

≤ max
{‖xn‖,

∥∥Tn(t)xn
∥∥}

.

This implies that {ωn,t}, t ≥  is also uniformly bounded. Since αn → , from () we have

lim
n→∞‖Jyn,t – Jωn,t‖ = lim

n→∞αn‖Jx – Jωn,t‖ = , t ≥ . ()

Since E is uniformly smooth, J– is uniformly continuous on each bounded subset of E*, it
follows from () and () that

lim
n→∞ωn,t = p*, ∀t ≥ .

Since xn → p* and J is uniformly continuous on each bounded subset of E, we have Jxn →
Jp*, and for each t ≥ ,

 = lim
n→∞

∥∥Jωn,t – Jp*
∥∥ = lim

n→∞
∥∥βnJxn + ( – βn)JTn(t)xn – Jp*

∥∥

= lim
n→∞

∥∥βn
(
Jxn – Jp*

)
+ ( – βn)

(
JTn(t)xn – Jp*

)∥∥

= lim
n→∞( – βn)

∥∥(
JTn(t)xn – Jp*

)∥∥.

By condition  < lim infn→∞ βn < lim supn→∞ βn < , we have that

lim
n→∞

∥∥JTn(t)xn – Jp*
∥∥ = , uniformly for t ≥ .

Since J is uniformly continuous, this shows that limn→∞ Tn(t)xn = p* =  uniformly for
t ≥ . Again by the assumptions that the semigroup T := {T(t) : t ≥ } is closed and uni-
formly L-Lipschitzian, we have

∥∥Tn+(t)xn – Tn(t)xn
∥∥

≤ ∥∥Tn+(t)xn – Tn+(t)xn+
∥∥ +

∥∥Tn+(t)xn+ – xn+
∥∥ + ‖xn+ – xn‖ +

∥∥xn – Tn(t)xn
∥∥

≤ (
L(t) + 

)‖xn+ – xn‖ +
∥∥Tn+(t)xn+ – xn+

∥∥ +
∥∥xn – Tn(t)xn

∥∥. ()

By limn→∞ Tn(t)xn = p* uniformly for t ≥ , xn → p* and L(t) is a bounded andmeasurable
function, and from () we have that

lim
n→∞

∥∥Tn+(t)xn – Tn(t)xn
∥∥ =  uniformly for t ≥ ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/142
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and

lim
n→∞Tn+(t)xn = p* uniformly for t ≥ ,

so we get

lim
n→∞T(t)Tn(t)xn = p* uniformly for t ≥ .

By virtue of the closeness of semigroup T, we have that T(t)p* = p*, i.e., p* ∈ F(T(t)). By
the arbitrariness of t ≥ , we have p* ∈ F(T) =

⋂
t≥ F(T(t)).

(V) Finally, we prove xn → p* = �F(T)x.
Let ω = �F(T)x. Since ω ∈ F(T) ⊂ Cn and xn = �Cnx, we get φ(xn,x) ≤ φ(ω,x), n ≥ .

This implies that

φ
(
p*,x

)
= lim

n→∞φ(xn,x) ≤ φ(ω,x). ()

In view of the definition of�F(T)x, from (), we have p* = ω. Therefore, xn → p* = �F(T)x.
This completes the proof of Theorem .. �
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