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Abstract
Recently, some authors have started to generalize fixed point theorems for
contractive mappings in a class of generalized metric spaces in which the
self-distance need not be zero. These spaces, partial metric spaces, were first
introduced by Matthews in 1994. The proved fixed point theorems have been
obtained for mappings satisfying contraction type conditions empty of the
self-distance. In this article, we prove some coupled fixed point theorems for
mappings satisfying contractive conditions allowing the appearance of self-distance
terms. These partially contractive mappings do reflect the structure of the partial
metric space, and hence their coupled fixed theorems generalize the previously
obtained by (Aydi in Int. J. Math. Sci. 2011:Article ID 647091, 2011). Some examples are
given to support our claims.
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1 Introduction and preliminaries
The Banach contraction mapping principle is considered to be the soul of many extended
fixed point theorems. It has widespread applications in many branches of mathematics,
engineering and computer science. During the last decadesmany authorswere able to gen-
eralize this principle [–]. After the appearance of partial metric spaces as a place for dis-
tinct research work into flow analysis, non-symmetric topology and domain theory [, ],
many authors started to generalize this principle to these spaces (see [–]. However, the
contraction type conditions used in those generalizations do not reflect the structure of a
partial metric space apparently. Later, the authors in [] proved a more reasonable con-
traction principle in the partial metric space in which they used self-distance terms. On
the other hand, the theory of coupled fixed point theorems has recently attracted some
authors (see [–]). Also, Meir-Keeler type common and tripled fixed point theorems
have been recently considered over partial metric spaces [, ]. In this article, we prove
a coupled partial contraction principle generalizing the recently published coupled fixed
point theorems in []. An example is presented to show that our coupled partial contrac-
tion principle is worthy of investigation.
A partial metric space (PMS) (see, e.g., [, ]) is a pair (X,p : X × X → R+) (where R+

denotes the set of all nonnegative real numbers) such that
(P) p(x, y) = p(y,x) (symmetry)
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(P) If  ≤ p(x,x) = p(x, y) = p(y, y) then x = y (equality)
(P) p(x,x) ≤ p(x, y) (small self-distances)
(P) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity)

for all x, y, z ∈ X.
For a partial metric p on X, the function dp : X ×X →R+ given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y) ()

is a (usual) metric on X. Each partial metric p on X generates a T topology τp on X with a
base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x,x) + ε} for all x ∈ X and ε > .

Definition  (see, e.g., [, , ])
(i) A sequence {xn} in a PMS (X,p) converges to x ∈ X if and only if

p(x,x) = limn→∞ p(x,xn);
(ii) A sequence {xn} in a PMS (X,p) is called Cauchy if and only if limn,m→∞ p(xn,xm)

exists (and is finite);
(iii) A PMS (X,p) is said to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x,x) = limn,m→∞ p(xn,xm);
(iv) A mapping f : X → X is said to be continuous at x ∈ X , if for every ε > , there

exists δ >  such that f (Bp(x, δ))⊂ Bp(f (x), ε).

Lemma  (see, e.g., [, , ])
(A) A sequence {xn} is Cauchy in a PMS (X,p) if and only if {xn} is Cauchy in a metric

space (X,dp);
(B) A PMS (X,p) is complete if and only if the metric space (X,dp) is complete. Moreover,

lim
n→∞dp(x,xn) =  ⇔ p(x,x) = lim

n→∞p(x,xn) = lim
n,m→∞p(xn,xm). ()

A sequence {xn} is called -Cauchy [] if limm,n p(xn,xm) = . The partial metric space
(X,p) is called -complete [, ] if every -Cauchy sequence in x converges to a point
x ∈ X with respect to p and p(x,x) = . Clearly, every complete partial metric space is
-complete. The converse need not be true.

Example  (see []) Let X =Q ∩ [,∞) with the partial metric p(x, y) =max{x, y}. Then
(X,p) is a -complete partial metric space which is not complete.

Let ρp = inf{p(x, y) : x, y ∈ X} and define Xp = {x ∈ X : p(x,x) = ρp}.
The following theorem was presented in [].

Theorem  Let (X,p) be a complete metric space, α ∈ [, ) and T : X → X a given map-
ping. Suppose that for each x, y ∈ X the following condition holds:

p(x, y) ≤ max
{
αp(x, y),p(x,x),p(y, y)

}
.

Then
() the set Xp is nonempty;
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() there is a unique u ∈ Xp such that Tu = u;
() for each x ∈ Xp the sequence {Tnx}n≥ converges to u with respect to the metric dp.

If (X,p) is a partial metric space, then clearly (p × p) : X × X → R defined by (p ×
p)((x, y), (u, v)) = p(x,u) + p(y, v) is a partial metric, and hence (X × X, (p × p)) is a par-
tial metric space. Clearly, if (X,p) is complete (-complete) then so is (X×X, (p×p)). The
minimum self partial distance in (X ×X, (p× p)) is defined by

ρp×p := inf
{
(p× p)

(
(x, y), (x, y)

)
= p(x,x) + p(y, y) : x, y ∈ X

}
.

The set of all points in X ×X with self partial distance ρp×p is denoted by

(X ×X)p×p =
{
(x, y) ∈ X ×X : (p× p)

(
(x, y), (x, y)

)
= ρp×p

}
.

Example  LetX = [, ] and provideX with the partialmetric p(x, y) = |x–y| if both x, y ∈
[, ) and p(x, y) = max{x, y} otherwise. Then clearly (X,p) is a complete partial metric
space, ρp×p =  and (X ×X)p×p = [, )× [, ).

Definition  Let (X,p) be a partial metric space and F : X ×X → X be a mapping. Then
F is called
(a) partially contractive if there exist constants  ≤ k, l <  such that for all x, y,u, v ∈ X ,

p
(
F(x, y),F(u, v)

)

≤ 

max

{
kp(x,u) + lp(y, v), (p× p)

(
(x, y), (x, y)

)
, (p× p)

(
(u, v), (u, v)

)}
, ()

(b) strong partially contractive if there exist constants  ≤ k, l <  such that for all
x, y,u, v ∈ X ,

p
(
F(x, y),F(u, v)

)

≤ 

max

{
kp(x,u) + lp(y, v),

(p× p)((x, y), (x, y)) + (p× p)((u, v), (u, v))


}
. ()

Aydi [] proved the following coupled fixed point theorems in partial metric spaces:

Theorem  Let (X,p) be a complete partial metric space. Suppose that the mapping F :
X ×X → X satisfies the following contractive condition for all x, y,u, v ∈ X:

p
(
F(x, y),F(u, v)

) ≤ kp(x,u) + lp(y, v),

where  ≤ k, l <  with k + l < . Then F has a unique coupled fixed point. That is, there
exists unique (x, y) ∈ X ×X such that F(x, y) = x and F(y,x) = y.

Theorem  Let (X,p) be a complete partial metric space. Suppose that the mapping F :
X ×X → X satisfies the following contractive condition for all x, y,u, v ∈ X:

p
(
F(x, y),F(u, v)

) ≤ kp
(
F(x, y),x

)
+ lp

(
F(u, v),u

)
,

where  ≤ k, l <  with k + l < . Then F has a unique coupled fixed point.
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2 Main results
Theorem Let (X,p) be a complete partial metric space and F : X×X → X be a partially
contractive mapping. Then
(a) (X ×X)p×p 
= ∅,
(b) there exists a unique (u, v) ∈ (X ×X)p×p such that

F(u, v) = u and F(v,u) = v; ()

(c) for each (x, y) ∈ (X ×X)p×p the sequence {(xn, yn)} ∈ X ×X defined by

x = F(x, y), y = F(y,x), xn+ = F(xn, yn), yn+ = F(yn,xn), n≥ ,

converges to (u, v) with respect to dp × dp. That is

lim
n→∞(dp × dp)

(
(xn, yn), (u, v)

)
= lim

n→∞
(
dp(xn,u) + dp(yn, v)

)
= .

Proof If (x, y) ∈ X ×X, define the sequence {(xn, yn)} ∈ X ×X by

x = F(x, y), y = F(y,x), xn+ = F(xn, yn), yn+ = F(yn,xn), n≥ .

We divide the proof of the claim (a) into the following steps:
Step I: The sequence {(p× p)((xn, yn)(xn, yn))} = {p(xn,xn) + p(yn, yn)} is non-increasing.

From the condition () we have

Tn = p
(
F(xn, yn),F(xn, yn)

)
+ p

(
F(yn,xn),F(yn,xn)

)

≤ 

[
p(xn,xn) + p(yn, yn)

]
+


[
p(xn,xn) + p(yn, yn)

]

= p(xn,xn) + p(yn, yn) = (p× p)
(
(xn, yn), (xn, yn)

)
,

where Tn = (p × p)((xn+, yn+), (xn+, yn+)). As a result of Step I, there exists r(x, y) ≥ 
such that

lim
n→∞(p× p)

(
(xn, yn), (xn, yn)

)
= inf

n
(p× p)

(
(xn, yn), (xn, yn)

)
= r(x, y).

Step II: For each n≥ , we show that

(p× p)
(
(xn, yn), (x, y)

)

≤ M(x, y) :=


 – τ
(p× p)

(
(x, y), (x, y)

)
+ (p× p)

(
(x, y), (x, y)

)
, ()

where τ =max{k, l}. We follow by induction. For n = , , it is clear. Assume () is true for
n≤ r, and let us prove () for n = r +  ≥ . Then by the help of (), the triangle inequality
and Step I, we have

E = (p× p)
(
(xr+, yr+), (x, y)

)
≤ p(xr+,x) + p(x,x) + p(yr+, y) + p(y, y)
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= p(x,x) + p(y, y) + p
(
F(xr , yr),F(x, y)

)
+ p

(
F(yr ,xr),F(y,x)

)
≤ (p× p)

(
(x, y), (x, y)

)

+


max

{
kp(xr ,x) + lp(yr , y), (p× p)

(
(x, y), (x, y)

)}

+


max

{
lp(xr ,x) + kp(yr , y), (p× p)

(
(x, y), (x, y)

)}

≤ (p× p)
(
(x, y), (x, y)

)
+max

{
τ (p× p)

(
(xr , yr), (x, y)

)
, (p× p)

(
(x, y), (x, y)

)}
≤ (p× p)

(
(x, y), (x, y)

)
+max

{
τM(x, y), (p× p)

(
(x, y), (x, y)

)} ≤ M(x, y),

where E = p(xr+,x) + p(yr+, y).
Step III: We show that

lim
m,n→∞(p× p)

(
(xn, yn), (xm, ym)

)
= lim

m,n→∞
[
p(xn.xm) + p(yn, ym)

]
= r(x, y). ()

Let ε > .Choose n such that (p×p)((xn , yn ), (xn , yn )) < r(x, y)+ε and M(x, y)τ n <
r(x, y) + ε. Then form,n≥ n, we have

S = p
(
F(xn–, yn–),F(xm–, ym–)

)
+ p

(
F(yn–,xn–),F(ym–,xm–)

)

≤ 

max

{
kp(xn–,xm–) + lp(yn–, ym–), (p× p)

(
(xn–, yn–),

(xn–, yn–)
)
, (p× p)

(
(xm–, ym–), (xm–, ym–)

)}

+


max

{
lp(xn–,xm–) + kp(yn–, ym–), (p× p)

(
(xn–, yn–),

(xn–, yn–)
)
, (p× p)

(
(xm–, ym–), (xm–, ym–)

)}
≤ max

{
τ
[
p(xn–,xm–) + p(yn–, ym–)

]
, (p× p)

(
(xn–, yn–),

(xn–, yn–)
)
, (p× p)

(
(xm–, ym–), (xm–, ym–)

)} ≤ · · ·
≤ max

{
τ n

[
p(xn–n ,xm–n ) + p(yn–n , ym–n )

]
, (p× p)

(
(xn–n , yn–n ),

(xn–n , yn–n )
)
, (p× p)

(
(xm–n , ym–n ), (xm–n , ym–n )

)}
≤ max

{
r(x, y) + ε, r(x, y) + ε, M(x, y)τ n

} ≤ r(x, y) + ε, ()

where S = p(xn,xm) + p(yn, ym). On the other hand, (P) implies r(x, y) – ε ≤ p(xn,xn) +
p(yn, yn) ≤ p(xn,xm) + p(yn, ym) and so () is obtained.
As a result of () and completeness of (X,p), there exists (x., y.) ∈ X ×X such that

r(x, y) = lim
m,n→∞(p× p)

(
(xn, yn), (xm, ym)

)

= lim
n→∞(p× p)

(
(xn, yn),

(
x., y

.

))

= (p× p)
((
x., y

.

)
,
(
x., y

.

))
. ()

Step IV: We show that for each n≥  the following holds:

(p× p)
((
x., y

.

)
,
(
x., y

.

))

= (p× p)
((
x., y

.

)
,
(
F
(
x., y

.

)
,F

(
y.,x

.

)))

. ()
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First, note that by (P) applied to p or p× p, we have

(p× p)
((
x., y

.

)
,
(
x., y

.

)) ≤ (p× p)

((
x., y

.

)
,
(
F
(
x., y

.

)
,F

(
y.,x

.

)))

. ()

By the help of the triangle inequality applied to p or p× p , for each n≥ , we have

T ≤ (p× p)
((
x., y

.

)
, (xn+, yn+)

)
+ (p× p)

(
(xn+, yn+),

(
F
(
x., y

.

)
,F

(
y.,x

.

)))

– (p× p)
(
(xn+, yn+), (xn+, yn+)

)
, ()

whereT = (p×p)((x., y.), (F(x., y.),F(y.,x.))). By the condition () and definition of p×p,
we have

L ≤ 

max

{
kp

(
xn,x.

)
+ lp

(
yn, y.

)
,

(p× p)
(
(xn, yn), (xn, yn)

)
, (p× p)

((
x., y

.

)
,
(
x., y

.

))}

+


max

{
kp

(
yn, y.

)
+ lp

(
xn,x.

)
,

(p× p)
(
(yn,xn), (yn,xn)

)
, (p× p)

((
y.,x

.

)
,
(
y.,x

.

))}

≤ max
{
τ
[
p
(
xn,x.

)
+ p

(
yn, y.

)]
,

(p× p)
(
(xn, yn), (xn, yn)

)
, (p× p)

((
x., y

.

)
,
(
x., y

.

))}

,

where L = (p × p)((xn+, yn+), (F(x., y.),F(y.,x.))). Without loss of generality (by passing
to subsequence if necessary), we may assume that for each n ≥ , we have one of the fol-
lowing:

(p× p)
(
(xn+, yn+),

(
F
(
x., y

.

)
,F

(
y.,x

.

))) ≤ τ

[
p
(
xn,x.

)
+ p

(
yn, y.

)]
,

or

(p× p)
(
(xn+, yn+),

(
F
(
x., y

.

)
,F

(
y.,x

.

))) ≤ (p× p)

(
(xn, yn), (xn, yn)

)
,

or

(p× p)
(
(xn+, yn+),

(
F
(
x., y

.

)
,F

(
y.,x

.

))) ≤ (p× p)

((
x., y

.

)
,
(
x., y

.

))
.

Substituting each of these cases in (), letting n→ ∞ and using () together with (), we
arrive at ().
Step V: We prove that (X ×X)p×p 
= ∅.
For each k ∈N, pick (xk , yk) ∈ X ×X with

(p× p)
(
(xk , yk), (xk , yk)

)
< ρp×p +


k
. ()

We show that

lim
m,n→∞(p× p)

((
x.n, y

.
n
)
,
(
x.m, y

.
m
))

= ρp×p. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/148
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Given ε >  put n = [ 
ε(–τ ) ] + . If k ≥ n then by () we have

ρp×p ≤ (p× p)
((
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
))
,
(
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
)))

= p
(
F
(
x.k , y

.
k
)
,F

(
x.k , y

.
k
))

+ p
(
F
(
y.k ,x

.
k
)
,F

(
y.k ,x

.
k
))

≤ p
(
x.k ,x

.
k
)
+ p

(
y.k , y

.
k
)

= (p× p)
((
x.k , y

.
k
)
,
(
x.k , y

.
k
))

= r(xk , yk)

≤ (p× p)
(
(xk , yk), (xk , yk)

)
< ρp×p +


k

≤ ρp×p +

n

< ρp×p +
ε( – τ )


. ()

Hence, we conclude that for all k ≥ n,

Uk := (p× p)
((
x.k , y

.
k
)
,
(
x.k , y

.
k
))

– (p× p)
((
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
))
,
(
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
)))

≤ ε( – τ )


+
(
ρp×p – (p× p)

((
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
))
,
(
F
(
x.k , y

.
k
)
,F

(
y.k ,x

.
k
))))

<
ε( – τ )


()

and

(p× p)
((
x.k , y

.
k
)
,
(
x.k , y

.
k
)) ≤ ρp×p +

ε( – τ )


. ()

Now, if m,n ≥ n, then by the triangle inequality applied to (p × p), Step IV and (), we
have

(p× p)
((
x.n, y

.
n
)
,
(
x.m, y

.
m
))

=Un +Um + p
(
F
(
x.n, y

.
n
)
,F

(
x.m, y

.
m
))
+ p

(
F
(
y.n,x

.
n
)
,F

(
y.m,x

.
m
))

≤ Un +Um +max
{
τ
[
(p× p)

((
x.n, y

.
n
)
,
(
x.m, y

.
m
))]

,

(p× p)
((
x.n, y

.
n
)
,
(
x.n, y

.
n
))
, (p× p)

((
x.m, y

.
m
)
,
(
x.m, y

.
m
))}

. ()

Hence, using () and (), we obtain

ρp×p ≤ (p× p)
((
x.n, y

.
n
)
,
(
x.m, y

.
m
))

≤ max

{
ε

,
ε( – τ )


+ (p× p)

((
x.n, y

.
n
)
,
(
x.n, y

.
n
))
,

ε( – τ )


+ (p× p)
((
x.m, y

.
m
)
,
(
x.m, y

.
m
))}

≤ max

{
ε

, ε( – τ ) + ρp×p

}

< ρp×p + ε. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/148
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This shows () and so {(x.n, y.n)} is Cauchy in the complete partial metric space (X×X,p×
p). Therefore, there exists (x, y) ∈ X ×X such that

(p× p)
(
(x, y), (x, y)

)
= lim

n→∞(p× p)
((
x.n, y

.
n
)
,
(
x.n, y

.
n
))

= lim
n→∞(p× p)

((
x.n, y

.
n
)
,
(
x.m, y

.
m
))

= ρp×p. ()

In particular (x, y) ∈ (X ×X)p×p and so (X ×X)p×p 
= ∅.
Now, let (x, y) ∈ (X × X)p×p be arbitrary. Then by (), (P) applied to p × p and (),

we have

ρp×p ≤ (p× p)
((
x., y

.

)
,
(
x., y

.

))

≤ (p× p)
((
x., y

.

)
,
(
F
(
x., y

.

)
,F

(
y.,x

.

)))

= (p× p)
((
x., y

.

)
,
(
x., y

.)) = r(x, y)

≤ (p× p)
(
(x, y), (x, y)

)
= ρp×p. ()

Therefore, (P) applied to p× p implies that

(p× p)
((
x., y

.

)
,
(
x., y

.

))

= (p× p)
((
x., y

.

)
,
(
F
(
x., y

.

)
,F

(
y.,x

.

)))

and so (x., y.) is a coupled fixed point of F . Clearly, () implies that {(xn, yn)} converges
to the coupled fixed point (x., y.) with respect to dp × dp which proves (c). To complete
the proof of (b), assume (x, y) ∈ (X ×X)p×p and (u, v) ∈ (X ×X)p×p are both coupled fixed
points of F . Then by () we have

(p× p)
(
(x, y), (u, v)

)
= (p× p)

((
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

))
≤ max

{
τ (p× p)

(
(x, y), (u, v)

)
, (p× p)

(
(x, y), (x, y)

)
,

(p× p)
(
(u, v), (u, v)

)}
. ()

From which it follows either (p × p)((x, y), (u, v)) ≤ τ (p × p)((x, y), (u, v)) and so (p ×
p)((x, y), (u, v)) =  implies that (x, y) = (u, v), or ρp×p ≤ (p × p)((x, y), (u, v)) ≤ (p ×
p)((x, y), (x, y)) = (p × p)((u, v), (u, v)) = ρp×p, and hence (P) applied to p × p implies
(x, y) = (u, v). �

Remark  Although Theorem  does not imply the uniqueness of the fixed point, it is
easy to see that, under the assumptions made, if (x, y) and (u, v) are both coupled fixed
points for F satisfying (p × p)((x, y), (x, y)) = (p × p)((u, v), (u, v)), then (x, y) = (u, v). If the
partially contractive condition () is replaced by the somewhat stronger condition below,
the uniqueness of the coupled fixed point is guaranteed.

Theorem  Let (X,p) be a complete partial metric space, ≤ k, l <  and F : X ×X → X
be a strong partially contractive mapping. Then there exists a unique coupled fixed point
(x, y). Furthermore, (x, y) ∈ (X × X)p×p and for each (x, y) ∈ (X × X)p×p, the sequence
{(xn, yn)} ∈ X ×X defined by

x = F(x, y), y = F(y,x), xn+ = F(xn, yn), yn+ = F(yn,xn), n≥ ,
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converges to (x, y) with respect to dp × dp. That is

lim
n→∞(dp × dp)

(
(xn, yn), (x, y)

)
= lim

n→∞
(
dp(xn,x) + dp(yn, y)

)
= .

Proof By Theorem , we only need to prove the uniqueness of the coupled fixed point. If
(x, y) and (u, v) are two coupled fixed points, then

G = p(x,u) + p(y, v) = p
(
F(x, y),F(u, v)

)
+ p

(
F(y,x),F(v,u)

)

≤ 

max

{
kp(x,u) + lp(y, v),

(p× p)((x, y), (x, y)) + (p× p)((u, v), (u, v))


}

+


max

{
kp(x,u) + lp(y, v),

(p× p)((x, y), (x, y)) + (p× p)((u, v), (u, v))


}

≤ max

{
τ
(
p(x,u) + p(y, v)

)
,
(p× p)((x, y), (x, y)) + (p× p)((u, v), (u, v))



}
, ()

where G = (p × p)((x, y), (u, v)) and τ = max{k, l}. From () we distinguish the following
cases:
Case : If (p × p)((x, y), (u, v)) ≤ τ (p(x,u) + p(y, v)) = τ (p × p)((x, y), (u, v)), then (p ×

p)((x, y), (u, v)) =  and so (x, y) = (u, v).
Case : If (p×p)((x, y), (u, v))≤ (p×p)((x,y),(x,y))+(p×p)((u,v),(u,v))

 , then (dp×dp)((x, y), (u, v)) = 
and so (x, y) = (u, v). �

As a corollary, we obtain the alreadymentioned result [] stated in Theorem . As well,
let us remark that the result of Aydi inTheorem is valid also for -complete partialmetric
spaces.

Corollary  Let (X,p) be a -complete partial metric space. Suppose that the mapping
F : X ×X → X satisfies the following contractive condition for all x, y,u, v ∈ X:

p
(
F(x, y),F(u, v)

) ≤ kp(x,u) + lp(y, v), ()

where  ≤ k, l <  with k + l < . Then F has a unique coupled fixed point (u, v) such that
(p× p)((u, v), (u, v)) = . Also for each (x, y) ∈ X × X the sequence {(xn+, yn+)} converges
to (u, v) with respect to the metric dp × dp.

Proof The condition () implies that (p × p)((xn+, yn+), (xn+, yn+)) ≤ (k + l)n(p ×
p)((x, y), (x, y)), which, in turn, by () implies (p × p)((x., y.)) = . But then by ()
we have (p × p)((x., y.), (F(x., y.),F(y.,x.))) =  so the dp × dp-limit of the sequence
{(xn+, yn+)} is actually the unique coupled fixed point (x., y.). �

Example  Define p : [, ] × [, ] → [, ] by p(x, y) = max{x, y}. Then ([, ],p) is a
complete partial metric space. Let F : [, ]× [, ] → [, ] be defined by

F(x, y) =
|x – y|


.

Then we have
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(a) There are no  ≤ k, l <  with k + l <  such that p(F(x, y),F(u, v))≤ kp(x,u) + lp(y, v),
for all x, y,u, v ∈ [, ]. That is, F does not verify the assumptions of Theorem . Indeed, if
we assume that there exist  ≤ k, l <  with k + l <  such that for all x, y,u, v ∈ X = [, ],
we have

p
(
F(x, y),F(u, v)

) ≤ kp(x,u) + lp(y, v),

then

p
(
F(, ),F(, )

)
=



≤ kp(, ) + lp(, ) = k, ()

and

p
(
F(, ),F(, )

)
=



≤ kp(, ) + lp(, ) = l, ()

then we have k + l ≥ , which is a contradiction.
(b) There are no  ≤ k, l <  with k + l <  such that p(F(x, y),F(u, v)) ≤ kp(F(x, y),x) +

lp(F(u, v),u). That is, F does not verify the assumptions of Theorem. Indeed, if we assume
that there exist  ≤ k, l <  with k + l <  such that for all x, y,u, v ∈ X = [, ], we have

p
(
F(x, y),F(u, v)

) ≤ kp
(
F(x, y),x

)
+ lp

(
F(u, v),u

)
. ()

Then we conclude that

p
(
F(, ),F(, )

)
=



≤ kp
(


, 

)
+ p(, ) =

k

<


,

which is a contradiction.
(c) F is partially contractive. That is F verifies the assumptions of Theorem . Hence, it

has the coupled fixed point (, ). The condition () is clearly satisfied since |x– y| ≤ x + y
for all x, y ∈ X = [, ].
(d) Note that (X×X)p×p = {(, )} and hence the coupled Picard sequence {(xn, yn)} con-

verges for (x, y) = (, ) and for (x, y) ∈ (X×X)\{(, )}may converge or not depending
on the particular choice of (x, y).
(e) If F is replaced by H(x, y) = |x–y|

 , then it is strong partially contractive, and hence by
Theorem , we guarantee the uniqueness of the coupled fixed point (, ).
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