RESEARCH

Fixed Point Theory and Applications a SpringerOpen Journal

Open Access

A three-step iterative scheme for solving nonlinear ϕ -strongly accretive operator equations in Banach spaces

Safeer Hussain Khan^{1*}, Arif Rafiq² and Nawab Hussain³

*Correspondence: safeer@qu.edu.qa ¹ Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar Full list of author information is available at the end of the article

Abstract

In this paper, we study a three-step iterative scheme with error terms for solving nonlinear ϕ -strongly accretive operator equations in arbitrary real Banach spaces.

Keywords: three-step iterative scheme; ϕ -strongly accretive operator; ϕ -hemicontractive operator

1 Introduction

Let *K* be a nonempty subset of an arbitrary Banach space *X* and *X*^{*} be its dual space. The symbols D(T), R(T) and F(T) stand for the domain, the range and the set of fixed points of *T* respectively (for a single-valued map $T : X \to X$, $x \in X$ is called a fixed point of *T* iff T(x) = x). We denote by *J* the normalized duality mapping from *E* to 2^{E^*} defined by

$$J(x) = \left\{ f^* \in X^* : \left\langle x, f^* \right\rangle = \|x\|^2 = \|f^*\|^2 \right\}$$

Let $T : D(T) \subseteq X \to X$ be an operator. The following definitions can be found in [1–15] for example.

Definition 1 *T* is called *Lipshitzian* if there exists L > 0 such that

 $\|Tx - Ty\| \le L\|x - y\|,$

for all $x, y \in K$. If L = 1, then T is called *nonexpansive*, and if 0 < L < 1, T is called *contraction*.

Definition 2

(i) *T* is said to be strongly pseudocontractive if there exists a t > 1 such that for each $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\operatorname{Re}\langle Tx - Ty, j(x - y) \rangle \leq \frac{1}{t} ||x - y||^2.$$

© 2012 Khan et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (ii) *T* is said to be strictly hemicontractive if F(T) is nonempty and if there exists a t > 1 such that for each $x \in D(T)$ and $q \in F(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\operatorname{Re}\langle Tx-q,j(x-q)\rangle \leq \frac{1}{t}||x-q||^2.$$

(iii) *T* is said to be ϕ -strongly pseudocontractive if there exists a strictly increasing function $\phi : [0, \infty) \rightarrow [0, \infty)$ with $\phi(0) = 0$ such that for each $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\operatorname{Re}(Tx - Ty, j(x - y)) \le ||x - y||^2 - \phi(||x - y||) ||x - y||.$$

(iv) *T* is said to be ϕ -hemicontractive if F(T) is nonempty and if there exists a strictly increasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that for each $x \in D(T)$ and $q \in F(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\operatorname{Re}(Tx - q, j(x - q)) \le ||x - q||^2 - \phi(||x - q||) ||x - q||.$$

Clearly, each strictly hemicontractive operator is ϕ -hemicontractive.

Definition 3

(i) *T* is called *accretive* if the inequality

$$||x - y|| \le ||x - y + s(Tx - Ty)||$$

holds for every $x, y \in D(T)$ and for all s > 0.

(ii) *T* is called *strongly accretive* if, for all $x, y \in D(T)$, there exists a constant k > 0 and $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \geq k ||x - y||^2.$$

(iii) *T* is called ϕ -strongly accretive if there exists $j(x - y) \in J(x - y)$ and a strictly increasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that for each $x, y \in X$,

$$\langle Tx - Ty, j(x - y) \rangle \ge \phi (\|x - y\|) \|x - y\|.$$

Remark 4 It has been shown in [11, 12] that the class of strongly accretive operators is a proper subclass of the class of ϕ -strongly accretive operators. If *I* denotes the identity operator, then *T* is called *strongly pseudocontractive* (respectively, ϕ -strongly pseudocontractive) if and only if (I - T) is strongly accretive (respectively, ϕ -strongly accretive).

Chidume [1] showed that the Mann iterative method can be used to approximate fixed points of Lipschitz strongly pseudocontractive operators in L_p (or l_p) spaces for $p \in [2, \infty)$. Chidume and Osilike [4] proved that each strongly pseudocontractive operator with a fixed point is strictly hemicontractive, but the converse does not hold in general. They also proved that the class of strongly pseudocontractive operators is a proper subclass of the class of ϕ -strongly pseudocontractive operators and pointed out that the class of ϕ strongly pseudocontractive operators with a fixed point is a proper subclass of the class of ϕ -hemicontractive operators. These classes of nonlinear operators have been studied by various researchers (see, for example, [7–25]). Liu *et al.* [26] proved that, under certain conditions, a three-step iteration scheme with error terms converges strongly to the unique fixed point of ϕ -hemicontractive mappings.

In this paper, we study a three-step iterative scheme with error terms for nonlinear ϕ -strongly accretive operator equations in arbitrary real Banach spaces.

2 Preliminaries

We need the following results.

Lemma 5 [27] Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences of nonnegative real numbers with $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} c_n < \infty$. If

 $a_{n+1} \le (1+b_n)a_n + c_n, \quad n \ge 1,$

then the limit $\lim_{n\to\infty} a_n$ exists.

Lemma 6 [28] Let $x, y \in X$. Then $||x|| \le ||x + ry||$ for every r > 0 if and only if there is $f \in J(x)$ such that $\operatorname{Re}\langle y, f \rangle \ge 0$.

Lemma 7 [9] Suppose that X is an arbitrary Banach space and $A : E \to E$ is a continuous ϕ -strongly accretive operator. Then the equation Ax = f has a unique solution for any $f \in E$.

3 Strong convergence of a three-step iterative scheme to a solution of the system of nonlinear operator equations

For the rest of this section, *L* denotes the Lipschitz constant of $T_1, T_2, T_3 : X \to X, L_* = (1 + L)$ and $R(T_1), R(T_2)$ and $R(T_3)$ denote the ranges of T_1, T_2 and T_3 respectively. We now prove our main results.

Theorem 8 Let X be an arbitrary real Banach space and $T_1, T_2, T_3 : X \to X$ Lipschitz ϕ -strongly accretive operators. Let $f \in R(T_1) \cap R(T_2) \cap R(T_3)$ and generate $\{x_n\}$ from an arbitrary $x_0 \in X$ by

$$\begin{aligned} x_{n+1} &= a_n x_n + b_n (f + (I - T_1) y_n) + c_n v_n, \\ y_n &= a'_n x_n + b'_n (f + (I - T_2) z_n) + c'_n u_n, \\ z_n &= a''_n x_n + b''_n (f + (I - T_3) x_n) + c''_n w_n, \quad n \ge 0, \end{aligned}$$
(3.1)

where $\{v_n\}_{n=0}^{\infty}, \{u_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ are bounded sequences in X and $\{a_n\}, \{c_n\}, \{a'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, \{c'_n\}, are sequences in [0,1] and <math>\{b_n\}$ in (0,1) satisfying the following conditions: (i) $a_n + b_n + c_n = 1 = a'_n + b'_n + c'_n = a''_n + b''_n + c''_n$, (ii) $\sum_{n=0}^{\infty} b_n = \infty$, (iii) $\sum_{n=0}^{\infty} b_n^2 < \infty$, $\sum_{n=0}^{\infty} b'_n < \infty$, (iv) $\sum_{n=0}^{\infty} c_n < \infty$, $\sum_{n=0}^{\infty} c'_n < \infty$ and $\sum_{n=0}^{\infty} c''_n < \infty$. Then the sequence $\{x_n\}$ converges strongly to the solution of the system $T_i x = f; i = 1, 2, 3$.

Proof By Lemma 7, the system $T_i x = f$; i = 1, 2, 3 has the unique solution $x^* \in X$. Following the techniques of [5, 8–12, 26, 29], define $S_i : X \to X$ by $S_i x = f + (I - T_i)x$; i = 1, 2, 3; then

each S_i is demicontinuous and x^* is the unique fixed point of S_i ; i = 1, 2, 3, and for all $x, y \in X$, we have

$$\langle (I - S_i)x - (I - S_i)y, j(x - y) \rangle$$

$$\geq \phi_i (\|x - y\|) \|x - y\|$$

$$\geq \frac{\phi_i(\|x - y\|)}{(1 + \phi_i(\|x - y\|) + \|x - y\|)} \|x - y\|^2$$

$$= \theta_i(x, y) \|x - y\|^2,$$

where $\theta_i(x, y) = \frac{\phi_i(||x-y||)}{(1+\phi_i(||x-y||)+||x-y||)} \in [0,1)$ for all $x, y \in X$; i = 1, 2, 3. Let $x^* \in \bigcap_{i=1}^3 F(S_i)$ be the fixed point set of S_i , and let $\theta(x, y) = \inf \min_i \{\theta_i(x, y)\} \in [0, 1]$. Thus

$$\langle (I-S_i)x - (I-S_i)y, j(x-y) \rangle \ge \theta(x,y) ||x-y||^2; \quad i = 1, 2, 3.$$
 (3.2)

It follows from Lemma 6 and inequality (3.2) that

$$\|x-y\| \le \|x-y+\lambda\left[(I-S_i)x-\theta(x,y)x-\left((I-S_i)y-\theta(x,y)y\right)\right]\|,\tag{3.3}$$

for all $x, y \in X$ and for all $\lambda > 0$; i = 1, 2, 3.

Set $\alpha_n = b_n + c_n$, $\beta_n = b'_n + c'_n$ and $\gamma_n = b''_n + c''_n$, then (3.1) becomes

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n) x_n + \alpha_n S_1 y_n + c_n (\nu_n - S_1 y_n), \\ y_n &= (1 - \beta_n) x_n + \beta_n S_2 z_n + c'_n (u_n - S_2 z_n), \\ z_n &= (1 - \gamma_n) x_n + \gamma_n S_3 x_n + c''_n (w_n - S_3 x_n), \quad n \ge 0. \end{aligned}$$
(3.4)

We have

$$\begin{aligned} x_n &= (1 + \alpha_n) x_{n+1} + \alpha_n \big[(I - S_1) x_{n+1} - \theta \left(x_{n+1}, x^* \right) x_{n+1} \big] \\ &- \big(1 - \theta \left(x_{n+1}, x^* \right) \big) \alpha_n x_n + \big(2 - \theta \left(x_{n+1}, x^* \right) \big) \alpha_n^2 (x_n - S_1 y_n) \\ &+ \alpha_n (S_1 x_{n+1} - S_1 y_n) - \big[1 + \big(2 - \theta \left(x_{n+1}, x^* \right) \big) \alpha_n \big] c_n (v_n - S_1 y_n). \end{aligned}$$

Furthermore,

$$x^{*} = (1 + \alpha_{n})x^{*} + \alpha_{n} \left[(I - S_{1})x^{*} - \theta \left(x_{n+1}, x^{*} \right) x^{*} \right] - \left(1 - \theta \left(x_{n+1}, x^{*} \right) \right) \alpha_{n} x^{*}$$

so that

$$\begin{aligned} x_n - x^* &= (1 + \alpha_n) (x_{n+1} - x^*) + \alpha_n [(I - S_1) x_{n+1} - \theta (x_{n+1}, x^*) x_{n+1} \\ &- ((I - S_1) x^* - \theta (x_{n+1}, x^*) x^*)] \\ &- (1 - \theta (x_{n+1}, x^*)) \alpha_n (x_n - x^*) + (2 - \theta (x_{n+1}, x^*)) \alpha_n^2 (x_n - S_1 y_n) \\ &+ \alpha_n (S_1 x_{n+1} - S_1 y_n) - [1 + (2 - \theta (x_{n+1}, x^*)) \alpha_n] c_n (\nu_n - S_1 y_n). \end{aligned}$$

Hence,

$$\begin{aligned} \left\| x_n - x^* \right\| &\geq (1 + \alpha_n) \left\| x_{n+1} - x^* + \frac{\alpha_n}{(1 + \alpha_n)} \left[(I - S_1) x_{n+1} - \theta \left(x_{n+1}, x^* \right) x_{n+1} \right. \\ &- \left((I - S_1) x^* - \theta \left(x_{n+1}, x^* \right) x^* \right) \right] \right\| \\ &- \left(1 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n \left\| x_n - x^* \right\| - \left(2 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n^2 \left\| x_n - S_1 y_n \right\| \\ &- \alpha_n \left\| S_1 x_{n+1} - S_1 y_n \right\| - \left[1 + \left(2 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n \right] c_n \left\| v_n - S_1 y_n \right\| \\ &\geq (1 + \alpha_n) \left\| x_{n+1} - x^* \right\| - \left(1 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n \left\| x_n - x^* \right\| \\ &- \left(2 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n^2 \left\| x_n - S_1 y_n \right\| - \alpha_n \left\| S_1 x_{n+1} - S_1 y_n \right\| \\ &- \left[1 + \left(2 - \theta \left(x_{n+1}, x^* \right) \right) \alpha_n \right] c_n \left\| v_n - S_1 y_n \right\|. \end{aligned}$$

Hence,

$$\begin{aligned} \left\| x_{n+1} - x^* \right\| &\leq \frac{\left[1 + \left(1 - \theta(x_{n+1}, x^*) \right) \alpha_n \right]}{(1 + \alpha_n)} \left\| x_n - x^* \right\| + 2\alpha_n^2 \|x_n - S_1 y_n\| \\ &+ \alpha_n \|S_1 x_{n+1} - S_1 y_n\| + \left[1 + \left(2 - \theta\left(x_{n+1}, x^* \right) \right) \alpha_n \right] c_n \|v_n - S_1 y_n\| \\ &\leq \left[1 + \left(1 - \theta\left(x_{n+1}, x^* \right) \right) \alpha_n \right] \left[1 - \alpha_n + \alpha_n^2 \right] \left\| x_n - x^* \right\| \\ &+ 2\alpha_n^2 \|x_n - S_1 y_n\| + \alpha_n \|S_1 x_{n+1} - S_1 y_n\| + 3c_n \|v_n - S_1 y_n\| \\ &\leq \left[1 - \theta\left(x_{n+1}, x^* \right) \alpha_n + \alpha_n^2 \right] \left\| x_n - x^* \right\| + 2\alpha_n^2 \|x_n - S_1 y_n\| \\ &+ \alpha_n \|S_1 x_{n+1} - S_1 y_n\| + 3c_n \|v_n - S_1 y_n\|. \end{aligned}$$
(3.5)

Furthermore, we have the following estimates:

$$\begin{aligned} \|z_{n} - x^{*}\| &= \|(1 - \gamma_{n})(x_{n} - x^{*}) + \gamma_{n}(S_{3}x_{n} - x^{*}) + c_{n}''(w_{n} - S_{3}x_{n})\| \\ &\leq (1 - \gamma_{n})\|x_{n} - x^{*}\| + \gamma_{n}\|S_{3}x_{n} - x^{*}\| + c_{n}''\|w_{n} - S_{3}x_{n}\| \\ &\leq (1 - \gamma_{n})\|x_{n} - x^{*}\| + L_{*}\gamma_{n}\|x_{n} - x^{*}\| \\ &+ c_{n}''(\|w_{n} - x^{*}\| + \|S_{3}x_{n} - x^{*}\|) \\ &\leq (1 + (L_{*} - 1)\gamma_{n} + L_{*}c_{n}'')\|x_{n} - x^{*}\| + c_{n}''\|w_{n} - x^{*}\| \\ &\leq (3L_{*} - 1)\|x_{n} - x^{*}\| + c_{n}''\|w_{n} - x^{*}\|, \end{aligned}$$
(3.6)
$$\|y_{n} - x^{*}\| = \|(1 - \beta_{n})(x_{n} - x^{*}) + \beta_{n}(S_{2}z_{n} - x^{*}) + c_{n}'(u_{n} - S_{2}z_{n})\| \\ &\leq (1 - \beta_{n})\|x_{n} - x^{*}\| + \beta_{n}\|S_{2}z_{n} - x^{*}\| \\ &+ c_{n}'(\|u_{n} - x^{*}\| + L_{*}\beta_{n}\|z_{n} - x^{*}\| \\ &+ c_{n}'(\|u_{n} - x^{*}\| + L_{*}\|z_{n} - x^{*}\|) \\ &\leq (1 - \beta_{n} + L_{*}(3L_{*} - 1)\beta_{n} + L_{*}(3L_{*} - 1)c_{n}')\|x_{n} - x^{*}\| \\ &+ (L_{*}\beta_{n}c_{n}'' + L_{*}c_{n}'c_{n}'')\|w_{n} - x^{*}\| + c_{n}'\|u_{n} - x^{*}\| \\ &\leq [3L_{*}(3L_{*} - 1) - 1]\|x_{n} - x^{*}\| + 3L_{*}c_{n}''\|w_{n} - x^{*}\| + c_{n}'\|u_{n} - x^{*}\|, \end{aligned}$$
(3.7)

$$\begin{aligned} \|x_{n} - S_{1}y_{n}\| &\leq \|x_{n} - x^{*}\| + L_{*}\|y_{n} - x^{*}\| \\ &\leq \left[1 + L_{*}\left[3L_{*}(3L_{*} - 1) - 1\right]\right]\|x_{n} - x^{*}\| \\ &+ 3L_{*}^{2}c_{n}''\|w_{n} - x^{*}\| + L_{*}c_{n}'\|u_{n} - x^{*}\|, \end{aligned}$$
(3.8)
$$\|S_{1}x_{n+1} - S_{1}y_{n}\| &\leq L_{*}\|x_{n+1} - y_{n}\| \\ &= L_{*}\|(1 - \alpha_{n})(x_{n} - y_{n}) + \alpha_{n}(S_{1}y_{n} - y_{n}) + c_{n}(v_{n} - S_{1}y_{n})\| \\ &\leq L_{*}\left[(1 - \alpha_{n})\|x_{n} - y_{n}\| + \alpha_{n}\|S_{1}y_{n} - y_{n}\| + c_{n}\|v_{n} - S_{1}y_{n}\|\right] \\ &\leq L_{*}\left[\|x_{n} - y_{n}\| + \alpha_{n}\|S_{1}y_{n} - y_{n}\| + c_{n}\|v_{n} - S_{1}y_{n}\|\right]. \end{aligned}$$
(3.9)

Using (3.4) and (3.6),

$$\begin{aligned} \|x_{n} - y_{n}\| &= \left\|\beta_{n}(x_{n} - S_{2}z_{n}) - c_{n}'(u_{n} - S_{2}z_{n})\right\| \\ &\leq \beta_{n}\|x_{n} - S_{2}z_{n}\| + c_{n}'\|u_{n} - S_{2}z_{n}\| \\ &\leq \left[\left[1 + L_{*}(3L_{*} - 1)\right]\beta_{n} + L_{*}(3L_{*} - 1)c_{n}'\right]\|x_{n} - x^{*}\| \\ &+ L_{*}(\beta_{n} + c_{n}')c_{n}''\|w_{n} - x^{*}\| + c_{n}'\|u_{n} - x^{*}\| \\ &\leq \left[\left[1 + L_{*}(3L_{*} - 1)\right]\beta_{n} + L_{*}(3L_{*} - 1)c_{n}'\right]\|x_{n} - x^{*}\| \\ &+ 3L_{*}c_{n}''\|w_{n} - x^{*}\| + c_{n}'\|u_{n} - x^{*}\|. \end{aligned}$$
(3.10)

Using (3.7),

$$||S_{1}y_{n} - y_{n}|| \leq ||S_{1}y_{n} - x^{*}|| + ||y_{n} - x^{*}||$$

$$\leq (1 + L_{*})||y_{n} - x^{*}||$$

$$\leq (1 + L_{*})[3L_{*}(3L_{*} - 1) - 1]||x_{n} - x^{*}||$$

$$+ 3L_{*}(1 + L_{*})c_{n}''||w_{n} - x^{*}|| + (1 + L_{*})c_{n}'||u_{n} - x^{*}||.$$
(3.11)

Again, using (3.7),

$$\|\nu_{n} - S_{1}y_{n}\| \leq \|\nu_{n} - x^{*}\| + L_{*}\|y_{n} - x^{*}\|$$

$$\leq L_{*}[3L_{*}(3L_{*} - 1) - 1]\|x_{n} - x^{*}\| + \|\nu_{n} - x^{*}\|$$

$$+ 3L_{*}^{2}c_{n}''\|w_{n} - x^{*}\| + L_{*}c_{n}'\|u_{n} - x^{*}\|.$$
(3.12)

Substituting (3.10)-(3.12) in (3.9), we obtain

$$\|S_{1}x_{n+1} - S_{1}y_{n}\| \leq L_{*} \Big[1 + L_{*}(3L_{*} - 1) \Big] \beta_{n} + L_{*}(3L_{*} - 1)c'_{n} \\ + \Big[3L_{*}(3L_{*} - 1) - 1 \Big] \Big[(1 + L_{*})\alpha_{n} + L_{*}c_{n} \Big] \Big\| x_{n} - x^{*} \Big\| \\ + 3L_{*} \Big[L_{*}c''_{n} + \Big[(1 + L_{*})\alpha_{n} + L_{*}c_{n} \Big] c''_{n} \Big] \Big\| w_{n} - x^{*} \Big\| \\ + L_{*} \Big[c'_{n} + \Big[(1 + L_{*})\alpha_{n} + L_{*}c_{n} \Big] c'_{n} \Big] \Big\| u_{n} - x^{*} \Big\| \\ + L_{*}c_{n} \Big\| v_{n} - x^{*} \Big\|.$$
(3.13)

Substituting (3.8), (3.12) and (3.13) in (3.5), we obtain

$$\begin{aligned} \left\| x_{n+1} - x^* \right\| &\leq \left[1 + \left[3 + L_*(3 + L_*) 3L_*(3L_* - 1) - 1 \right] \right] \alpha_n^2 \\ &+ L_* \left[3L_*(3L_* - 1) - 1 \right] \alpha_n \beta_n + L_*^2 (3L_* - 1) \alpha_n c'_n \\ &+ L_* \left[3L_*(3L_* - 1) - 1 \right] \alpha_n c_n + 3L_* \left[3L_*(3L_* - 1) - 1 \right] c_n \left\| x_n - x^* \right\| \\ &- \theta (x_{n+1}, x^*) \alpha_n \left\| x_n - x^* \right\| + \left[3L_*(1 + 3L_*) \alpha_n^2 c'_n + 3L_*^2 \alpha_n c'_n + 3L_*^2 \alpha_n c_n c''_n \\ &+ 9L_*^2 c_n c''_n \right] \left\| w_n - x^* \right\| + \left[L_*(3 + L_*) \alpha_n^2 c'_n + L_* \alpha_n c'_n \\ &+ L_*^2 \alpha_n c_n c'_n + 3L_* c_n c'_n \right] \left\| u_n - x^* \right\| + (2L_* + 3) c_n \left\| v_n - x^* \right\|. \end{aligned}$$
(3.14)

Since $\{v_n\}$, $\{u_n\}$ and $\{w_n\}$ are bounded, we set

$$M = \sup_{n \ge 0} \|v_n - x^*\| + \sup_{n \ge 0} \|u_n - x^*\| + \sup_{n \ge 0} \|w_n - x^*\| < \infty.$$

Then it follows from (3.14) that

$$\begin{aligned} \|x_{n+1} - x^*\| &\leq \left[1 + \left[3 + L_*(3 + L_*)\left[3L_*(3L_* - 1) - 1\right]\right]\alpha_n^2 \\ &+ L_*\left[3L_*(3L_* - 1) - 1\right]\alpha_n\beta_n + L_*^2(3L_* - 1)\alpha_nc'_n \\ &+ L_*\left[3L_*(3L_* - 1) - 1\right]\alpha_nc_n + 3L_*\left[3L_*(3L_* - 1) - 1\right]c_n\right]\|x_n - x^*\| \\ &- \theta\left(x_{n+1}, x^*\right)\alpha_n\|x_n - x^*\| + \left[3L_*(1 + 3L_*)\alpha_n^2c''_n + 3L_*^2\alpha_nc''_n + 3L_*^2\alpha_nc_nc''_n \\ &+ 9L_*^2c_nc''_n\right]M + \left[L_*(3 + L_*)\alpha_n^2c'_n + L_*\alpha_nc'_n \\ &+ L_*^2\alpha_nc_nc'_n + 3L_*c_nc'_n\right]M + (2L_* + 3)c_nM \\ &= (1 + \delta_n)\|x_n - x^*\| - \theta\left(x_{n+1}, x^*\right)\alpha_n\|x_n - x^*\| + \sigma_n \\ &\leq (1 + \delta_n)\|x_n - x^*\| + \sigma_n, \end{aligned}$$
(3.15)

where

$$\begin{split} \delta_n &= \left[3 + L_*(3 + L_*) \left[3L_*(3L_* - 1) - 1 \right] \right] \alpha_n^2 \\ &+ L_* \left[3L_*(3L_* - 1) - 1 \right] \alpha_n \beta_n + L_*^2 (3L_* - 1) \alpha_n c'_n \\ &+ L_* \left[3L_*(3L_* - 1) - 1 \right] \alpha_n c_n + 3L_* \left[3L_*(3L_* - 1) - 1 \right] c_n, \\ \sigma_n &= M \left[3L_*(1 + 3L_*) \alpha_n^2 c''_n + 3L_*^2 \alpha_n c''_n + 3L_*^2 \alpha_n c_n c''_n + 9L_*^2 c_n c''_n \\ &\quad L_*(3 + L_*) \alpha_n^2 c'_n + L_* \alpha_n c'_n + L_*^2 \alpha_n c_n c'_n + 3L_* c_n c'_n \\ &+ (2L_* + 3) c_n \right]. \end{split}$$

Since $b_n \in (0, 1)$, the conditions (iii) and (iv) imply that $\sum_{n=0}^{\infty} \delta_n < \infty$ and $\sum_{n=0}^{\infty} \sigma_n < \infty$. It then follows from Lemma 5 that $\lim_{n\to\infty} ||x_n - x^*||$ exists. Let $\lim_{n\to\infty} ||x_n - x^*|| = \delta \ge 0$. We now prove that $\delta = 0$. Assume that $\delta > 0$. Then there exists a positive integer N_0 such that $||x_n - x^*|| \ge \frac{\delta}{2}$ for all $n \ge N_0$. Since

$$\theta(x_{n+1},x^*)\|x_n-x^*\| = \frac{\phi(\|x_{n+1}-x^*\|)}{1+\phi(\|x_{n+1}-x^*\|)+\|x_{n+1}-x^*\|}\|x_n-x^*\| \ge \frac{\phi(\frac{\delta}{2})\delta}{2(1+\phi(D)+D)},$$

for all $n \ge N_0$, it follows from (3.15) that

$$\left\|x_{n+1}-x^*\right\| \le \left\|x_n-x^*\right\| - \frac{\phi(\frac{\delta}{2})\delta}{2(1+\phi(D)+D)}\alpha_n + \lambda_n \quad \text{for all } n \ge N_0.$$

Hence,

$$\frac{\phi(\frac{\delta}{2})\delta}{2(1+\phi(D)+D)}\alpha_n \le \left\|x_n - x^*\right\| - \left\|x_{n+1} - x^*\right\| + \lambda_n \quad \text{for all } n \ge N_0.$$

This implies that

$$\frac{\phi(\frac{\delta}{2})\delta}{2(1+\phi(D)+D)}\sum_{j=N_0}^n\alpha_j\leq \left\|x_{N_0}-x^*\right\|+\sum_{j=N_0}^n\lambda_j.$$

Since $b_n \leq \alpha_n$,

$$\frac{\phi(\frac{\delta}{2})\delta}{2(1+\phi(D)+D)}\sum_{j=N_0}^n b_j \le \|x_{N_0} - x^*\| + \sum_{j=N_0}^n \lambda_j$$

yields $\sum_{n=0}^{\infty} b_n < \infty$, contradicting the fact that $\sum_{n=0}^{\infty} b_n = \infty$. Hence, $\lim_{n\to\infty} ||x_n - x^*|| = 0$.

Corollary 9 Let X be an arbitrary real Banach space and $T_1, T_2, T_3 : X \to X$ be three Lipschitz ϕ -strongly accretive operators, where ϕ is in addition continuous. Suppose $\liminf_{r\to\infty} \phi(r) > 0$ or $||T_ix|| \to \infty$ as $||x|| \to \infty$; i = 1, 2, 3. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}, \{w_n\}, \{w_n\}, \{v_n\}, \{y_n\}$ and $\{x_n\}$ be as in Theorem 8. Then, for any given $f \in X$, the sequence $\{x_n\}$ converges strongly to the solution of the system $T_ix = f; i = 1, 2, 3$.

Proof The existence of a unique solution to the system $T_i x = f$; i = 1, 2, 3 follows from [9] and the result follows from Theorem 8.

Theorem 10 Let X be a real Banach space and K be a nonempty closed convex subset of X. Let $T_1, T_2, T_3 : K \to K$ be three Lipschitz ϕ -strong pseudocontractions with a nonempty fixed point set. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}, \{a''_n\}, \{b''_n\}, \{c''_n\}, \{w_n\}, \{u_n\}$ and $\{v_n\}$ be as in Theorem 8. Let $\{x_n\}$ be the sequence generated iteratively from an arbitrary $x_0 \in K$ by

$$\begin{aligned} x_{n+1} &= a_n x_n + b_n T_1 y_n + c_n v_n, \\ y_n &= a'_n x_n + b'_n T_2 z_n + c'_n u_n, \\ z_n &= a''_n x_n + b''_n T_3 x_n + c''_n w_n, \quad n \ge 0. \end{aligned}$$

Then $\{x_n\}$ converges strongly to the common fixed point of T_1 , T_2 , T_3 .

Proof As in the proof of Theorem 8, set $\alpha_n = b_n + c_n$, $\beta_n = b'_n + c'_n$, $\gamma_n = b''_n + c''_n$ to obtain

$$\begin{split} x_{n+1} &= (1-\alpha_n) x_n + \alpha_n T_1 y_n + c_n (\nu_n - T_1 y_n), \\ y_n &= (1-\beta_n) x_n + \beta_n T_2 z_n + c_n (u_n - T_2 z_n), \end{split}$$

$$z_n = (1 - \gamma_n)x_n + \gamma_n T_3 x_n + c_n(w_n - T_3 x_n), \quad n \ge 0.$$

Since each T_i ; i = 1, 2, 3 is a ϕ -strong pseudocontraction, $(I - T_i)$ is ϕ -strongly accretive so that for all $x, y \in X$, there exist $j(x - y) \in J(x - y)$ and a strictly increasing function ϕ : $(0, \infty) \rightarrow (0, \infty)$ with $\phi(0) = 0$ such that

$$\langle (I - T_i)x - (I - T_i)y, j(x - y) \rangle \ge \phi (||x - y||) ||x - y|| \ge \theta (x, y) ||x - y||^2; \quad i = 1, 2, 3.$$

The rest of the argument now follows as in the proof of Theorem 8.

Remark 11 The example in [4] shows that the class of ϕ -strongly pseudocontractive operators with nonempty fixed point sets is a proper subclass of the class of ϕ -hemicontractive operators. It is easy to see that Theorem 8 easily extends to the class of ϕ -hemicontractive operators.

Remark 12

- (i) If we set $b''_n = 0 = c''_n$ for all $n \ge 0$ in our results, we obtain the corresponding results for the Ishikawa iteration scheme with error terms in the sense of Xu [15].
- (ii) If we set b_n'' = 0 = c_n'' = b_n' = 0 = c_n' for all n ≥ 0 in our results, we obtain the corresponding results for the Mann iteration scheme with error terms in the sense of Xu [15].

Remark 13 Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences satisfying the following conditions:

- (i) $0 \leq \alpha_n, \beta_n \leq 1, n \geq 0$,
- (ii) $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$,
- (iii) $\sum_{n=0}^{\infty} \alpha_n = \infty$,
- (iv) $\sum_{n=0}^{\infty} \beta_n < \infty$, and
- (v) $\sum_{n=0}^{\infty} \alpha_n^2 < \infty$.

If we set $a'_n = (1 - \beta_n)$, $b'_n = \beta_n$, $c'_n = 0$, $a_n = (1 - \alpha_n)$, $b_n = \alpha_n$, $c_n = 0$, $b''_n = 0 = c''_n$ for all $n \ge 0$ in Theorems 8 and 10 respectively, we obtain the corresponding convergence theorems for the original Ishikawa [18] and Mann [30] iteration schemes.

Remark 14

- (i) Gurudwan and Sharma [29] studied a strong convergence of multi-step iterative scheme to a common solution for a finite family of φ-strongly accretive operator equations in a reflexive Banach space with weakly continuous duality mapping. Some remarks on their work can be seen in [31].
- (ii) All the above results can be extended to a finite family of ϕ -strongly accretive operators.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors studied and approved the manuscript.

Author details

¹Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar. ²Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan. ³Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.

Acknowledgements

The last author gratefully acknowledges the support from the Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU) during this research.

Received: 30 June 2012 Accepted: 29 August 2012 Published: 12 September 2012

References

- Chidume, CE: Iterative approximation of fixed points of Lipschitz strictly pseudo-contractive mappings. Proc. Am. Math. Soc. 99, 283-288 (1987)
- 2. Chidume, CE: Iterative solution of nonlinear equations with strongly accretive operators. J. Math. Anal. Appl. 192, 502-518 (1995)
- 3. Chidume, CE: Iterative solutions of nonlinear equations in smooth Banach spaces. Nonlinear Anal. TMA 26, 1823-1834 (1996)
- Chidume, CE, Osilike, MO: Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces. Numer. Funct. Anal. Optim. 15, 779-790 (1994)
- Chidume, CE, Osilike, MO: Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings. J. Math. Anal. Appl. 192, 727-741 (1995)
- 6. Deimling, K: Zeros of accretive operators. Manuscr. Math. 13, 365-374 (1974)
- 7. Liu, LW: Approximation of fixed points of a strictly pseudocontractive mapping. Proc. Am. Math. Soc. **125**, 1363-1366 (1997)
- Liu, Z, Kang, SM: Convergence and stability of the Ishikawa iteration procedures with errors for nonlinear equations of the φ-strongly accretive type. Neural Parallel Sci. Comput. 9, 103-118 (2001)
- Liu, Z, Bouxias, M, Kang, SM: Iterative approximation of solution to nonlinear equations of *φ*-strongly accretive operators in Banach spaces. Rocky Mt. J. Math. 32, 981-997 (2002)
- Kim, JK, Liu, Z, Kang, SM: Almost stability of Ishikawa iterative schemes with errors for φ-strongly quasi-accretive and φ-hemicontractive operators. Commun. Korean Math. Soc. 19(2), 267-281 (2004)
- Osilike, MO: Iterative solution of nonlinear equations of the φ-strongly accretive type. J. Math. Anal. Appl. 200, 259-271 (1996)
- Osilike, MO: Iterative solution of nonlinear φ-strongly accretive operator equations in arbitrary Banach spaces. Nonlinear Anal. 36, 1-9 (1999)
- Rafiq, A: Iterative solution of nonlinear equations involving generalized φ-hemicontractive mappings. Indian J. Math. 50(2), 365-380 (2008)
- Tan, KK, Xu, HK: Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces. J. Math. Anal. Appl. 178, 9-21 (1993)
- Xu, Y: Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224, 91-101 (1998)
- Chidume, CE, Osilike, MO: Nonlinear accretive and pseudo-contractive operator equations in Banach spaces. Nonlinear Anal. TMA 31, 779-789 (1998)
- Ding, XP: Iterative process with errors to nonlinear φ-strongly accretive operator equations in arbitrary Banach spaces. Comput. Math. Appl. 33, 75-82 (1997)
- 18. Ishikawa, S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
- 19. Kamimura, S, Khan, SH, Takahashi, W: Iterative schemes for approximating solutions of relations involving accretive operators in Banach spaces. Fixed Point Theory Appl. 5, 41-52 (2003)
- Khan, SH, Hussain, N: Convergence theorems for nonself-asymptotically nonexpansive mappings. Comput. Math. Appl. 55, 2544-2553 (2008)
- 21. Khan, SH, Yildirim, I, Ozdemir, M: Convergence of a generalized iteration process for two finite families of Lipschitzian pseudocontractive mappings. Math. Comput. Model. **53**, 707-715 (2011). doi:10.1016/j.mcm.2010.10.007
- 22. Miao, Y, Khan, SH: Strong convergence of an implicit iterative algorithm in Hilbert spaces. Commun. Math. Anal. 4(2), 54-60 (2008)
- 23. To-Ming Lau, A: Semigroup of nonexpansive mappings on a Hilbert space. J. Math. Anal. Appl. 105, 514-522 (1985)
- 24. To-Ming Lau, A: Invariant means and semigroups of nonexpansive mappings on uniformly convex Banach spaces. J. Math. Anal. Appl. **153**, 497-505 (1990)
- 25. To-Ming Lau, A: Fixed point properties of semigroups of nonexpansive mappings. J. Funct. Anal. **254**, 2534-2554 (2008)
- Liu, Z, An, Z, Li, Y, Kang, SM: Iterative approximation of fixed points for φ-hemicontractive operators in Banach spaces. Commun. Korean Math. Soc. 19(1), 63-74 (2004)
- 27. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. **178**, 301-308 (1993)
- 28. Kato, T: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508-520 (1967)
- 29. Gurudwan, N, Sharma, BK: Approximating solutions for the system of *φ*-strongly accretive operator equations in reflexive Banach space. Bull. Math. Anal. Appl. **2**(3), 32-39 (2010)
- 30. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
- 31. Rafiq, A: On iterations for families of asymptotically pseudocontractive mappings. Appl. Math. Lett. 24(1), 33-38 (2011)

doi:10.1186/1687-1812-2012-149

Cite this article as: Khan et al.: **A three-step iterative scheme for solving nonlinear** ϕ **-strongly accretive operator equations in Banach spaces.** *Fixed Point Theory and Applications* 2012 **2012**:149.